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We present a measurement of the cross section for Z production times the branching fraction to
τ leptons, σ·Br(Z → τ+τ−), in pp̄ collisions at

√
s =1.96 TeV in the channel in which one τ decays

into µνµντ , and the other into hadrons+ντ or eνeντ . The data sample corresponds to an integrated
luminosity of 226 pb−1 collected with the DØ detector at the Fermilab Tevatron collider. The final
sample contains 2008 candidate events with an estimated background of 55%. From this we obtain
σ·Br(Z → τ+τ−) = 237 ± 15(stat)±18(sys)±15(lum) pb, in agreement with the standard model
prediction.

PACS numbers: 13.38.Dg,13.85.Qk,14.70.Hp

Measurements of the Z boson production cross section
times the leptonic branching fraction (σ·Br) in pp̄ colli-
sions can be used to test standard model (SM) predic-
tions. The σ·Br to e+e− and µ+µ− in pp̄ collisions has

been measured by the UA1 and UA2 collaborations at√
s = 630 GeV [1], by the CDF collaboration at

√
s = 1.8

TeV and
√
s = 1.96 TeV [2], and by the DØ collabora-

tion at
√
s = 1.8 TeV [3]. The Z boson branching ra-



4

tio to τ+τ− has been measured with high precision by
the CERN e+e− collider (LEP) experiments [4]. These
measurements are in good agreement with SM expecta-
tions and lepton universality. We report here the first
measurement of σ·Br(Z → τ+τ−) in pp̄ collisions. This
measurement is a test of the SM and verifies that the
DØ detector can identify τ leptons in the energy range
covered by Z boson decays, which could be critical in
the search for non-SM signals such as supersymmetric
(SUSY) particles in certain regions of the SUSY para-
meter space, or heavy resonances decaying into fermion
pairs with enhanced coupling to the third generation.

The DØ Run II detector is fully described in [5]; a
more succinct description of details relevant to this mea-
surement can be found in [6]. The Z → τ (→ µνµντ )τ
candidate selection strategy focused on one τ lepton de-
caying to muon by triggering on the single muon using
a three-level triggering system. The first level used the
timing and position information in the muon scintillator
system to find muon candidates. The second level used
digital signal processors to form segments defined in the
muon drift chambers. The third level used software algo-
rithms executed on a computer farm to reconstruct tracks
in the central tracking system and required at least one
track with transverse momentum pT > 10 GeV. The in-
tegrated luminosity of the selected sample is 226 pb−1

determined with a 6.5% uncertainty [7].

After full reconstruction, the events were required to
have an isolated muon with pµT > 12 GeV and a τ can-
didate. The muon isolation required less than 4 GeV in
the calorimeter in a cone R ≡ (∆φ)2 + (∆η)2 < 0.1
(where φ is the azimuthal angle and η is the pseudora-
pidity) around the muon, less than 4 GeV in an annulus
0.1 < R < 0.4, and fewer than three tracks (other than
the muon) with pT > 0.25 GeV within R < 0.7.

Most τ leptons decay to one or three long lived charged
particles plus up to three π0 mesons that can be ob-
served in the detector. The τ candidates were found by
constructing a calorimeter cluster made of all the towers
with energy above a preset threshold around a seed tower
within R < 0.5, keeping only clusters with Eτ

T > 5 GeV
and EcoreT > 4 GeV, where Eτ

T (E
core
T ) is the transverse

energy with respect to the beam axis within R < 0.5
(R < 0.3), and requiring rmsτ < 0.25 (see Table I cap-
tion) and at least one associated track with pT > 1.5 GeV
within R < 0.3. If there was more than one track, the one
with highest pT was associated with the τ candidate. A
second track was added if the invariant mass calculated
from the tracks was less than 1.1 GeV, and a third if the
invariant mass was less than 1.7 GeV and the total charge
was not ±3. Candidates with total charge zero were dis-
carded. Finally, subclusters were constructed from the
cells in the EM section of the calorimeter belonging to the
τ -cluster. The minimum ET required for an EM subclus-
ter was 800 MeV. Three types of τ candidates were iden-
tified according to tracking and calorimetry information:

TABLE I: Event pre-selection cuts

Selection applied to the τ -types
only one µ all
pµT > 12 GeV all
µ isolation all
Eτ
T > 10(5) GeV 1 and 3 (2)

ΣpτtrkT > 7(5) GeV 1 and 3 (2)
rmsτ < 0.25

a all
|φµ − φτ | > 2.5 all
Rτ
trk > 0.7

b 1 and 2

armsτ =
n
i=1[(∆φi)

2 + (∆ηi)2]ETi/ET , where i = 1, .., n is
the index of the calorimeter tower associated with the τ -cluster;
∆ηi and ∆φi are the η and φ difference between the center of the
τ -cluster and calorimeter tower i.
bRτ

trk = (E
τ−EtrkCH)/p

trk
T , where EtrkCH is the energy deposited in

a window of 5×5 towers (each tower of size φ×η=0.1×0.1) around
the τ -track in the coarse hadronic (CH) section of calorimeter.

1) single track with no subclusters in the electromagnetic
(EM) section of the calorimeter (π-like), 2) single track
with EM subclusters (ρ-like), or 3) more than one asso-
ciated track. No attempt was made to separate hadrons
from electrons (which can contribute to both τ -type 1
and τ -type 2).
Additional requirements (which depend on the τ -type)

imposed on the selected events to enhance the signal-to-
background ratio are shown in Table I. The background
increases rapidly with decreasing pµT or decreasing E

τ
T .

It is significantly lower for τ -type 2 than for the other τ -
types, so a lower Eτ

T cut is warranted for that τ -type. The
|φµ−φτ | > 2.5 cut takes advantage of the fact that most
Z bosons have low pT and thus the decay τ leptons are
back-to-back in φ. The longitudinal shape variable Rτ

trk

(defined in Table I caption) is used to remove misiden-
tified muons because it has a distribution that peaks at
much lower values for muons than for τ leptons.
The τ leptons from a Z boson decaying to hadrons +

ντ have average visible energy (E
τ ) of the order of 25

GeV and need to be separated from a very large back-
ground of jets. To further reduce the jet background, a
neural network (NN) [8] consisting of a single input layer
containing several nodes (one for each input variable), a
single hidden layer with the same number of nodes, and a
single output node was used. A separate NN was trained
for each type using a Monte Carlo (MC) sample of single
τ leptons uniformly distributed in ET and η and over-
layed with a minimum bias event for signal [9], and jets
recoiling against non-isolated muons from data for back-
ground. The NN input variables were chosen to minimize
the dependence on the τ energy and to exploit the nar-
row width of the energy deposition in the calorimeter, the
low track multiplicity, the low τ mass, and the fact that
τ leptons from Z boson decays are well isolated. The NN
input variables were:

1. profile = (ET1 + ET2)/E
τ
T , where ET1 and ET2 are
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the ET of the two most energetic calorimeter tow-
ers. Used for all τ -types.

2. caliso = (Eτ
T − EcoreT )/EcoreT . A calorimeter isola-

tion parameter used for all τ -types.

3. trkiso = ΣptrkT /ΣpτtrkT , where ptrkT (pτtrkT ) is the
pT of a track within a R < 0.5 cone not associated
(associated) with the τ candidate. A track isolation
parameter used for all τ -types.

4. (EEM1+EEM2)/Eτ in aR < 0.5 cone, whereEEM1

and EEM2 are the energies deposited in the first two
layers of the EM calorimeter. A parameter used for
τ -type 1 to reject jets with one energetic charged
track and soft π0 mesons.

5. pτtrk1T /Eτ
T , where p

τtrk1
T is pT of the highest pT track

associated with the τ . Used for τ -type 1 and 3.

6. pτtrk1T /(Eτ
T ·caliso). A parameter used for τ -type 2

that measures the correlation between track and
energy deposition in isolation annulus.

7. e12 = ΣpτtrkT · EEMT /Eτ
T , where E

EM
T is the

transverse energy deposited in the EM layers of the
calorimeter. Used for τ -types 2 and 3.

8. δα = (∆φ/ sin θ)2 + (∆η)2, where the differences
are between Στ -tracks and ΣEM-clusters. In the
small angle approximation the observed τ mass is
given by e12 · Eτ

T · δα. Used for τ -types 2 and 3.

The dominant background is from multijet (QCD)
processes, mainly from bb̄ events where the muon isola-
tion requirement is met and a jet satisfies the τ selection
criteria. The other sources of background areW → µν +
jets and Z/γ∗ → µ+µ− with one of the muons misiden-
tified as a τ lepton. The Rτ

trk > 0.7 cut removed 70% of
the µ+µ− background while keeping 98% of the signal.
The number of events that did not satisfy this criterion
was used to estimate the background from misidentified
muons remaining in the sample after the cut.
The selected 29,021 events were separated into two

samples: µ and τ of opposite charge sign (OS), and µ
and τ of same charge sign (SS). The OS sample contains
the signal. The SS sample is dominated by background
and was used to predict the QCD background distribu-
tions in the signal sample. From detailed studies of a
sample of data with non-isolated muons, we established
that this procedure is sound if one accounts for a small
excess of OS over SS events that varies somewhat with
the τ -type. The correction factors (fi, where i denotes
the τ -type) were determined to be 1.06±0.06, 1.09±0.03,
and 1.03 ± 0.02, by taking the ratio of OS to SS data in
the non-isolated muon sample. There was no observable
dependence of fi as function of E
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FIG. 1: NN output distributions for: (a) τ -type 1, (b) τ -type
2, (c) τ -type 3, and (d) the sum over all the τ -types.

values, or of the muon parameters. An overall 3% sys-
tematic uncertainty was added for the extrapolation to
the NN > 0.8 region. These factors do not fully account,
however, for the contribution fromW → µν + jets, which
have a larger excess of OS over SS and different distribu-
tions. The additional contribution of this channel to the
signal sample is estimated from pythia [9] MC samples.
The MC is normalized using the OS and SS data with
pµT > 20 GeV, |φµ − φτ | < 2.0, and 0.3 < NN < 0.8
(in this region W → µν events dominate over the QCD
background).

Figure 1 shows the NN distributions for each τ -type
(and the sum) for the signal sample, the predicted back-
ground and the result of adding the predicted signal
(from Z/γ∗ → ττ MC [9]) to the background. Table II
shows the total number of events observed and predicted
before and after the final cut NN >0.8. Distributions of
background subtracted data are in very good agreement
with those expected from Z → ττ MC. Figure 2 com-
pares the expected Eτ

T and p
µ
T (adding all τ -types) signal

distributions to the predicted background distributions,
and to the distributions obtained by subtracting the pre-
dicted background from the signal sample distributions.

The total event efficiency ( TOT) summed over τ -types
1, 2, and 3 is 1.52% for Mττ greater than 60 GeV . The
total efficiency accounts for all losses due to branching
ratios, geometrical acceptance, reconstruction and trig-
ger efficiencies. It is corrected for the small difference
between MC and data reconstruction efficiencies. The
contributions of the three τ -types to the signal in the
final data sample are 13%, 58%, and 29%.



6

TABLE II: Number of predicted and observed contributions
to OS events by τ -type before and after the NN > 0.8 cut

τ -type 1 τ -type 2 τ -type 3 Total
QCDa 1638± 107 6001± 187 6242± 153 13881± 264
Z/γ∗ → µµ 33± 11 67± 22 — 100± 24
W → µνb 42± 41 151± 93 241± 114 434± 153
Z/γ∗ → ττc 139± 6 700± 26 335± 14 1174± 43
Sum 1852± 117 7019± 214 6818± 189 15589± 309
OS events 1880 6971 7060 15911

NN > 0.8
QCD 196± 23 280± 24 508± 32 984± 46
Z/γ∗ → µµ 30± 10 40± 13 — 70± 16
W → µν 3± 5 17± 11 38± 16 58± 20
Z/γ∗ → ττ 121± 6 532± 21 261± 11 914± 24
Sum 350± 26 869± 36 807± 37 2026± 57
OS events 355 820 833 2008

aThe QCD background is estimated by multiplying the number
of SS events by fi (described in the text).
bThe expected contribution is the number of events that must be
added after subtracting the corrected number of SS events from OS
events.
cThe predicted number of Z/γ∗ → τ+τ− events is based on a
theoretical cross section of 257±9 pb for Mττ > 60 GeV [10] plus
3.5% predicted from MC for the number of events expected with
Mττ < 60 GeV.

TABLE III: Systematic uncertainties on σ·Br(Z/γ∗ → τ+τ−)

Energy Scale 2.5%
NN 2.6%
QCD background 3.5%
Z/γ∗ → µµ background 2%
W → µν background 2.3%
Z/γ∗ → ττ MC 1.5%
PDFa 1.7%

data/ MC
b 2.1%

Trigger 3.5%
Total 7.5%

aEfficiency uncertainty due to uncertainty in parton distribution
function (PDF).
b
data/ MC is the ratio of data to MC reconstruction efficiency.

The cross section times branching ratio for Z/γ∗ →
τ+τ− is given by Nsignal/( TOT · Ldt) where Nsignal is
given by the number of signal events and Ldt is the
integrated luminosity of the sample studied. Nsignal =
865±55 (statistical uncertainty only) is the number of
OS events of all τ types after selecting the events with
NN > 0.8, subtracting the estimated background (see
Table II), and subtracting the number of expected events
in the sample with Mττ less than 60 GeV (3.5%).

The systematic uncertainties on the cross section mea-
surement are listed in Table III. The uncertainty (2.5%)
due to the energy scale was estimated from the change
in the acceptance when scaling the energy in MC events
by the energy difference between MC and data (as de-
termined by the pT imbalance in photon + jet events).
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FIG. 2: EτT [(a), (c)] and pµT [(b),(d)] distributions after
NN > 0.8 cut: (a), (b) estimated background (open trian-
gles) and predicted Z → ττ signal (histogram); (c), (d) back-
ground subtracted data (open circles) and predicted Z → ττ
signal.

The systematic uncertainty due to the NN performance
(2.6%) was estimated by generating ensembles of Monte
Carlo events in which the number of events in each bin of
distributions of NN input variables was allowed to fluctu-
ate by the uncertainties in the difference between MC dis-
tributions and the background-subtracted data distribu-
tions. The distributions of NN input variables are in good
agreement with those predicted adding Z/γ∗ → τ+τ−

MC and the estimated background; two are shown in
Fig. 3.

The QCD systematic uncertainty (3.5%) is due to the
uncertainty in determining fi. The uncertainty in the
Z/γ∗ → µ+µ− and W → µν backgrounds (2.0% and
2.3%) come from the statistical uncertainty in determin-
ing their contribution, while the Z/γ∗ → τ+τ− MC sys-
tematic uncertainty reflects limited signal MC statistics.
The value of data/ MC was determined by: i) comparing
tracking and isolation efficiencies between Z → µ+µ−

MC events and Z → µ+µ− data events, and ii) com-
paring the ratio of two- to three-prong events between
background subtracted data and Z/γ∗ → τ+τ− MC in
τ -type 3 candidates. The data/ MC systematic uncer-
tainty is the statistical uncertainty in those comparisons.
The trigger efficiencies were estimated using Z → µ+µ−

data, the systematic uncertainty comes from the statis-
tical uncertainty in that data; the uncertainties include
dependencies on η and φ. Systematic uncertainties from
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FIG. 3: Distributions for OS data, background and back-
ground plus signal of two NN input variables before [(a), (b)]
and after [(c), (d)]NN > 0.8 cut: (a),(c) profile; (b),(d) caliso.

all other sources are less than 1%. Thus we obtain

σ · Br(Z/γ∗ → ττ) = 252± 16(stat)± 19(sys) pb
for Mττ greater than 60 GeV. The quoted statistical un-
certainty is the uncertainty from OS and SS statistics
(excluding the uncertainties on the correction factors).
This yields, after removing the γ∗ contribution,

σ · Br(Z → ττ ) = 237± 15(stat)± 18(sys)± 15(lum) pb
in good agreement with the NNLO standard model pre-
diction of 242±9 pb [10].
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