A Search for $Wb\bar{b}$ and WH Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France

B.G. Pope, W.L. Prado da Silva, H.B. Prosper, S. Protopopescu, M.B. Przybycien, J. Qian,

Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France

Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France

18 Joint Institute for Nuclear Research, Dubna, Russia

1 B. Quinn, S. Trincaz-Duvoid, M. Petteni, 15 B. Vachon, V. Sirotenko, A. Stone, 34 G. Watts, 5 A. Santoro, Simon Fraser University, Burnaby, Canada, University of Alberta, Edmonton, Canada, Instituto de Física Teórica, Universidad de la República, Montevideo, Uruguay, Instituto de Física Teórica, Universidad de la República, Montevideo, Uruguay, Instituto de Física Teórica, Universidad de la República, Montevideo, Uruguay

Simon Fraser University, Burnaby, Canada, University of Alberta, Edmonton, Canada

19 Institut de Física Teórica, Universidade de la República, Montevideo, Uruguay

Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic

20 RWTH Aachen, III. Physikalisches Institut A, Aachen, Germany

10 IReS, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France and Université de Haute Alsace, Mulhouse, France

21 RWTH Aachen, III. Physikalisches Institut A, Aachen, Germany

22 Universität Freiburg, Physikalisches Institut, Freiburg, Germany

23 Universität Mainz, Institut für Physik, Mainz, Germany

24 Ludwig-Maximilians-Universität München, München, Germany

25 Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

26 Panjab University, Chandigarh, India

27 Tata Institute of Fundamental Research, Mumbai, India

28 University College Dublin, Dublin, Ireland

29 Korea Detector Laboratory, Korea University, Seoul, Korea

30 CINVESTAV, Mexico City, Mexico

31 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

32 University of Nijmegen/NIKHEF, Nijmegen, The Netherlands

33 Joint Institute for Nuclear Research, Dubna, Russia
We present a search for $W^b \bar{b}$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb$^{-1}$ of integrated luminosity accumulated by the DØ experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on $W^b \bar{b}$ production of 6.6 pb for b quarks with transverse momenta $p_T > 20$ GeV and $b\bar{b}$ separation in pseudorapidity–azimuth space $\Delta R_{bb} > 0.75$. Restricting the search to optimized $b\bar{b}$ mass intervals provides upper limits on WH production of 9.0–12.2 pb, for Higgs-boson masses of 105–135 GeV.

PACS numbers: 13.85Qk,13.85.Rm

The Higgs boson is the only scalar elementary particle expected in the standard model (SM). Its discovery would be a major success for the SM and would provide further insights into the electroweak symmetry breaking mechanism. The constraints from precision measurements [1] favor a Higgs boson sufficiently light to be accessible at the Fermilab Tevatron collider. Although the expected luminosity necessary for its discovery is higher than obtained thus far, the special role of the Higgs boson in the SM justifies extensive searches for a Higgs-like particle in-
dependent of expected sensitivity. Such studies also provide an opportunity to investigate the main backgrounds, and in particular the interesting and thus far unobserved Wb production process.

In this Letter, we present a search for a Higgs (H) boson with mass m_H between 105 and 135 GeV, in the production channel $pp \rightarrow WH \rightarrow evb\bar{b}$, at $\sqrt{s} = 1.96$ TeV. The expected WH cross section is of the order of 0.2 pb for this mass range [2]. Our search is based on an integrated luminosity of 174 ± 11 pb$^{-1}$ accumulated by the DO experiment during 2002 and 2003.

The experimental signature of $WH \rightarrow evb\bar{b}$ relies on a final state with one high p_T electron, two b jets and large imbalance in transverse momentum (E_T) resulting from the undetected neutrino. The dominant backgrounds to WH production are from $Wb\bar{b}$, $t\bar{t}$ and single top-quark production. The signal to background ratio is improved by requiring exactly two jets in the final state, because the fraction of $t\bar{t}$ events that contain at most two reconstructed jets is small. We use the high statistics $W + \geq 2$ jets data to check the validity of our simulation, but restrict the selection to $W + 2 \ b$ jets for the final results.

The DO detector includes a magnetic tracking system surrounded by a uranium/liquid-argon calorimeter, which is enclosed in a muon spectrometer. The tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet [3]. The SMT and CFT have designs optimized for tracking and vertexing capabilities for pseudorapidities $|\eta| < 3$ and $|\eta| < 2.5$, respectively [4]. The calorimeter has a central section (CC) covering η up to $|\eta| \approx 1.1$, and two end calorimeters (EC) extending coverage to $|\eta| \approx 4.2$, each housed in a separate cryostat [5]. For particle identification, the calorimeter is divided into an electromagnetic (EM) section, followed by fine (FH) and coarse (CH) hadronic sections. Scintillators between the CC and EC cryostats provide additional sampling of developing showers for $1.1 < |\eta| < 1.4$. The muon system consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T magnetized iron toroids, followed by two similar layers behind the toroids, which provide muon tracking for $|\eta| < 2$. The luminosity is measured using scintillator arrays located in front of the EC cryostats, covering $2.7 < |\eta| < 4.4$.

Event selection starts with the requirement of an isolated candidate electron, with $p_T > 20$ GeV, in the central region of $|\eta| < 1.1$, but away ($|\delta \phi| > 0.02$) from the 32 boundaries of calorimeter modules at periodic azimuthal angle (ϕ) values [6]. Such electrons are required to trigger the event. The average trigger efficiency is $(94 \pm 3)\%$ for $W + 2$ jets events. These initial electron candidates are selected by applying standard DO criteria based on the characteristics of the energy deposited in a cone of radius $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.2$, and requiring that there is a track pointing to the EM cluster [6]. Electron selection is further refined using an electron likelihood discriminant based on the above estimators, as well as on additional tracking information. The combined reconstruction and identification efficiency for electrons passing all these requirements are determined from a $Z \rightarrow e^+e^-$ sample to be $(74 \pm 4)\%$ per electron.

To select W bosons, we require $E_T > 25$ GeV. Events with a second isolated lepton (e or μ [7]) with $p_T > 15$ GeV and $|\eta| < 2.4$ are rejected to suppress $Z +$ jets and $t\bar{t}$ backgrounds. Only events with a primary vertex at $|z| < 60$ cm relative to the center of the detector are retained. At least two jets with $p_T > 20$ GeV and $|\eta| < 2.5$ are then required. A jet is defined as a cluster of calorimeter towers within a radius $\Delta R = 0.5$ [8], having a distance ΔR to any initial electron candidate greater than 0.5. The average jet reconstruction and identification efficiency is $(95 \pm 5)\%$, as determined from $\gamma +$ jet events. For selecting b jets, we use an impact-parameter based algorithm [9], which has been cross-checked with a secondary-vertex reconstruction algorithm.

To improve calorimeter performance, before reconstructing the calorimeter objects, we use an algorithm that suppresses cells with negative energy (originating from fluctuations in noise) and cells with energies four standard deviations below the average electronics noise (σ_n), when they do not neighbor a cell of higher energy, $E > 4\sigma_n$. The EM scale is calibrated using the peak in the $Z \rightarrow e^+e^-$ reconstructed mass, and jet energies are then corrected to the EM scale using $\gamma +$-jet events. These energy corrections, and the transverse momenta of any muons in the event, are propagated into the calculation of the E_T, which is estimated initially using all (unsuppressed) calorimeter cells.

The DO detector simulation based on GEANT [10] and the reconstruction and analysis chain used for data are also used for obtaining expectations from the standard model, which are normalized to cross sections measured in data, or to calculations when no such measurements are available. Small additional energy smearing in E_T and in the energy of the simulated electrons is used to obtain better agreement between data and simulation.

Before applying b tagging, we expect to have two main components in the data: $W +$ jets events and multijet events in which a jet has been misidentified as an electron (called QCD background in the following). $W +$ jets events are simulated using the leading-order matrix-element program ALPGEN [11] for the Wjj process (i.e. production of $W + 2$ partons, which are in our case gluons or u, d, s, c quarks, since the $Wb\bar{b}$ is simulated separately), followed by PYTHIA [12] for parton showering and hadronization. The QCD background is estimated from data using measured probabilities for jets to be misidentified and accepted as electrons.

We have compared the distribution of the dijet invariant mass in $W + 2$ jets events to the simulation, in which the dominant Wjj expectation is normalized using the measured luminosity and the next-to-leading-order
In Fig. 1 we show the distribution of the dijet mass for the one measured in data. A study of the ciency for a central jets as b process, the 2775 pb [17], and 0.6 pb [13], respectively. As for the 2775 pb [17], and 0.6 pb [13], respectively. The resulting systemic uncertainty on the expectation is ±5%. This also includes a 4% uncertainty originating from the alpgen-pythia combined simulation.

To search for Wbbar final states and to suppress background, we apply the b-tagging algorithm to jets having at least two tracks, with pt^track > 1.0(0.5) GeV. These requirements have a typical efficiency per jet of 80% for multijets events, which is reproduced to within 5% by the simulation. The b-tagging algorithm uses a lifetime probability that is estimated from the tracks associated with a given jet. A small probability corresponds to jets having tracks with large impact parameters that characterize b-hadron decays. Requiring a probability smaller than 0.7%, yields a mistag (tagging of u, d, s or gluon jets as b jets) rate of (0.50±0.05)%.

The tagging efficiency in the simulation is adjusted to the one measured in data. A study of the pt and η dependence in data and in simulation indicates a systematic uncertainty on tagging efficiencies of ±6%. When tagging light quarks, there is a larger systematic uncertainty on the efficiency (±25%) that originates from the direct application of the algorithm to simulated events, but this has only a small effect on the final results. For the tagging efficiency of c quarks, we use the same data/simulation efficiency ratio as for b quarks.

To reduce the presence of b jets from gluon splitting, and to help assure an unambiguous determination of jet flavors in simulation, we require the separation between the two reconstructed jets (∆R) to be greater than 0.75. In Fig. 1 we show the distribution of the dijet mass for W+2 jets events in which at least one jet is b tagged. The data are well described by the sum of the multijet background and simulated SM processes (cf. Table I). The tt̄ contribution is simulated with pythia (σtt̄ = 6.77±0.42 pb [14]). Single-top production (σW→t̄b = 1.98 ± 0.32 pb, σW→tb = 0.88±0.13 pb [15]) is generated with com-phep [16], assuming a top-quark mass of 175 GeV, and is shown in Fig. 1, in combination with other processes: Z → ee, W → τν and WZ(→ b̄b), which are simulated using pythia with cross sections of 255 pb [17], 2775 pb [17], and 0.6 pb [13], respectively. As for the Wjj process, the Wb̄b contribution is simulated using alpgen and pythia, requiring pt^b̄b > 8 GeV and ∆Rb̄b > 0.4 at the parton level, with σWb̄b =3.35 pb computed at NLO using the mcfer program. WH production is simulated with pythia using the computed cross section at NLO, which depends on mH [2].

To further improve signal/background, we select events in which a second jet is b tagged. The final results for the number of observed and expected events are given in Table I. Data from the last column are not used in the analysis, but provide a check of the accuracy of our expectations for events with two b-tagged jets in the control sample of W+ ≥ 3 jets events, which is dominated by t̄t̄ production.

The distribution of the dijet mass for events with two b-tagged jets is shown in Fig. 2. The expected rate for events with two b-tagged jets is 4.4 ± 1.2, of which 1.7 events come from Wbbar production. The dominant systematic uncertainties on the expectation come from uncertainties on the b-tagging efficiency (11%) and jet energy corrections. The uncertainty on the latter propagates to uncertainties on Wbbar production, 4% on single-top and WH production, and 3% on t̄t̄ production. The total systematic uncertainty on the expectation is 26%, including the uncertainties on cross sections and luminosity (18% and 6.5%).

Assuming that the six observed events are consistent with the SM, without contributions from Wbbar and WH, and using the Wbbar signal efficiency of (0.90 ± 0.14%), we set a 95% C.L. upper limit of 6.6 pb on the Wbbar cross section, for pt^b̄b > 20 GeV and ∆Rb̄b > 0.75 [18]. The limits on the cross sections are obtained using a Bayesian approach [19] that takes account of both statistical and systematic uncertainties.

The expected contribution from the b̄b decay of a SM Higgs boson, with mH = 115 GeV produced with a W, is also shown in Fig. 2, and amounts to 0.05 events. The mean and width of a Gaussian fit to this expected contribution in the mass window 85–135 GeV are 1.10 and 16 GeV, a relative resolution of (14 ± 1)%.

No events are observed in the dijet mass window of 85–135 GeV. The expected SM background (including Wb̄b) is 1.07 ± 0.26 events, and the expected WH signal is 0.049 ± 0.012 events, with a signal efficiency of (0.21 ± 0.03)%.

In the absence of a signal, we set a limit on the cross section for σ(pp → WH) × BR(H → b̄b) of 9.0 pb at the 95% C.L., for a 115 GeV Higgs boson.

The same study was performed for mH = 105, 125 and 135 GeV, for which 0, 0 and 1 event were observed in the corresponding mass windows. The resulting limits (11.0, 9.1 and 12.2 pb, respectively) are compared to the SM expectation in Fig. 3, and to the results published by the CDF collaboration, using a smaller integrated luminosity
of 109 pb\(^{-1}\) at \(\sqrt{s} = 1.8\) TeV, but for combined \(e\) and \(\mu\) channels [20].

In conclusion, we have performed a search for the \(Wb\bar{b}\) final state, and have set an upper limit of 6.6 pb on this largest expected background to \(WH\) associated production. We have studied the dijet mass spectrum of two \(b\)-tagged jets in the region where we have the best sensitivity to a SM Higgs boson, and for Higgs-boson masses between 105 and 135 GeV we set 95\% C.L. upper limits between 9.0 and 12.2 pb on the cross section for \(WH\) production multiplied by the branching ratio for \(H \to b\bar{b}\).

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à l’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), and the Research Council of Norway.
ticules (France), Ministry of Education and Science, Agency for Atomic Energy and RF President Grants Program (Russia), CAPES, CNPq, FAPEPI, FAPESP and FUNDUNESP (Brazil), Departments of Atomic Energy and Science and Technology (India), Colciencias (Colombia), CONACyT (Mexico), KRF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), Natural Sciences and Engineering Research Council and WestGrid Project (Canada), BMBF and DFG (Germany), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, and the Alexander von Humboldt Foundation.

[4] The pseudorapidity is defined as a function of the polar angle θ as $\eta \equiv -\ln(\tan \frac{\theta}{2})$.
[7] The muon is considered isolated if its distance from the closest jet is $\Delta R > 0.4$.
[17] D. Acosta et al. (CDF Collaboration), hep-ex/0406078, subm. to Phys. Rev. Lett. For $\sigma(W \rightarrow \tau \nu)$ we use $\sigma(W \rightarrow \ell \nu)$ from this Ref. assuming lepton universality.
[18] The NLO MCFM calculation gives $\sigma_{Wb\bar{b}} = 0.75$ pb for parton level cuts $p_T^b > 20$ GeV and $\Delta R_{bb} > 0.75$.

FIG. 4: Distribution of the dijet invariant mass of $W + 2$ jets events, compared with cumulative contributions from the QCD background (derived from data), the simulation of W+jets events and the other SM backgrounds, which are small before b tagging. Uncertainties on the simulation from systematics of the jet energy scale are indicated by the hatched bands. The simulated contributions are normalized to the integrated luminosity of the data.
FIG. 5: Distributions of jet transverse momentum of $W + 2$ jets events. Left: no b–tag is required. Middle: at least one jet is b–tagged. Right: two jets are b–tagged.

FIG. 6: Distribution of W transverse mass of $W + 2$ jets events. Left: no b–tag is required. Middle: at least one jet is b–tagged. Right: two jets are b–tagged.

FIG. 7: Distance in the $\eta - \varphi$ plane between the two jets in the selected $W + 2$ jets sample. Left: no b–tag is required. Middle: at least one jet is b–tagged. Right: two jets are b–tagged.