Search for associated Higgs boson production $WH \to WW\gamma \to l^+\nu l'^-\bar{\nu} + X$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV


(Do Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
5 University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
6 Institute of High Energy Physics, Beijing, People’s Republic of China
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Center for Particle Physics, Charles University, Prague, Czech Republic
10 Czech Technical University, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
14 Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France
15 CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
16 IN2P3-CNRS, Laboratoire de l’Accélérateur Linéaire, Orsay, France
17 LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
18 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
19 IPHC, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France, and Université de Haute Alsace, Mulhouse, France
20 Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, Villeurbanne, France
21 III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
22 Physikalisches Institut, Universität Bonn, Bonn, Germany
23 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
We present a search for associated Higgs boson production in the process $p\bar{p} \rightarrow WH \rightarrow \gamma\gamma + X$ in final states containing two like-sign isolated electrons or muons ($e^\pm e^\pm, \mu^+ \mu^-$).
The Higgs boson $H$ is a hypothesized particle introduced in the standard model (SM) that provides the mechanism by which particles acquire mass. While Higgs searches in the low mass region focus on the $H \rightarrow b\bar{b}$ decay mode, the $H \rightarrow WW^*$ decay mode dominates for SM Higgs masses above 135 GeV [1]. Furthermore, in some models with anomalous couplings (“fermiophobic Higgs”), the branching fraction $Br(H \rightarrow W^0W^*)$ may be close to 100% for Higgs masses as low as $\approx 100$ GeV [2].

In this Letter, we present a search for associated Higgs boson production $(pp \rightarrow WH)$ where the Higgs boson decays into a $WW^*$ pair, and each of the two $W$ bosons with the same charge decay to a charged lepton (electron or muon) plus a neutrino. The final state is characterized by two like-sign, high transverse momentum $p_T$, isolated charged leptons and missing transverse energy $E_T$ due to escaping neutrinos. This decay mode is easier to detect than $H \rightarrow bb$ since the latter suffers from a large irreducible $Wb\bar{b}$ background. The presence of two like-sign leptons from $W$ decays makes this channel advantageous over direct Higgs production, $p\bar{p} \rightarrow H \rightarrow WW^*$, where the two leptons from $W$ decays have opposite signs, resulting in large SM backgrounds $(Z/\gamma^*, WW, \text{and } t\bar{t}$ production). The main physics background in our case is $WZ \rightarrow l\nu l'\nu'$, and at a much lower rate, $ZZ \rightarrow ll l'\nu'\nu'$. The irreducible physics background, non-resonant triple vector boson production $(VVV, V = W, Z)$, has a cross section that is much lower than the signal one, as does $t\bar{t} + V$.

We use data collected by the D0 detector at the Fermilab Tevatron Collider between April 2002 and August 2004. That data sample corresponds to 380 pb$^{-1}$ of integrated luminosity in the $ee$ channel, 370 pb$^{-1}$ in the $e\mu$ channel, and 360 pb$^{-1}$ in the $\mu\mu$ channel, with the variations related primarily to different trigger requirements.

The D0 detector is described in detail elsewhere [3]. Its principal elements are a central-tracking system embedded in a $2$ T superconducting solenoidal magnet, a liquid-argon/uranium calorimeter, and an outer muon system. The central-tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) that provide tracking and vertexing for pseudorapidities $|\eta| < 3$ and $|\eta| < 2.5$, respectively [4]. The calorimeter has a central section (CC) covering $|\eta| < 1.1$, and two end calorimeters that extend coverage to $|\eta| \approx 4.2$. The outer muon system, at $|\eta| < 2$, consists of a layer of tracking detectors and scintillation trigger counters in front of $1.8$ T iron toroids, followed by two similar layers after the toroids.

The signal candidate events are selected by dilepton triggers. Offline, the electrons are reconstructed as clusters in the electromagnetic part of the CC with central tracks pointing to them. The electron energy is measured in the calorimeter, and the tracks provide measurement of the direction and charge. The selected electromagnetic cluster candidates must be isolated, have a longitudinal and transverse shower shape consistent with that of an electron, and pass a likelihood requirement that includes a spatial and momentum match between the cluster and the track, the electron track isolation, and other quantities. The muons are reconstructed in the outer muon system and matched to central tracks, their momenta being measured in the central-tracking system. They are required to be isolated, which means the minimum distance to the nearest jet in the event $\Delta R(\mu,j)$ [5] is greater than 0.5, and the scalar sum of the transverse momenta of tracks in the $\Delta R < 0.5$ cone around the muon track (excluding this track) is less than 4 GeV. Both electrons and muons are required to have transverse momenta greater than 15 GeV.

The efficiency for $WH \rightarrow WW^* \rightarrow ll\nu l'\nu' + X$ signal events to pass the selection was calculated using the PYTHIA 6.2 [6] program following a detailed simulation of the D0 detector based on the GEANT [7] package. We use the simulation to obtain the total acceptance and apply trigger and reconstruction efficiencies derived from the data. The same approach was used to simulate backgrounds from $WZ \rightarrow l\nu l'\nu'$ and $ZZ \rightarrow ll l'\nu'\nu'$. These backgrounds are normalized to their next-to-leading-order cross sections calculated by the mcfm [8] program using the CTEQ6.1M parton distribution functions [9].

In addition to the physics backgrounds mentioned above, there are two types of instrumental background. One type, referred to as “charge flips,” originates from the misreconstruction of the charge of one of the leptons. For the same lepton flavor channels $(ee$ and $\mu\mu)$ this background is dominated by $Z/\gamma^* \rightarrow ll$. The second type of background is like-sign lepton pairs from multijet or $W$+jets production. In the case of muons, these can be real muons from semileptonic heavy flavor decays that pass the isolation cuts, punch-through hadrons misidentified as muons, or muons from $\pi/K$ decays in flight. In the case of electrons, the background originates from electrons in semileptonic heavy flavor decays and from $\gamma$ conversions or from hadrons misidentified as electrons. This second type of background will be referred to as “QCD.” There are other processes which are in-
clude in these two background categories. In particular, charge flips include events due to $WW \rightarrow ll \nu \nu'$ production where one lepton charge is mismeasured. The decay $tt \rightarrow ll' + X$ may contribute to either charge flips (if one of the lepton charges is mismeasured) or QCD (if a lepton from a semileptonic $b$ decay passes the lepton identification cuts). The decay $tt \rightarrow l^+ + \text{jets}$ with a lepton from a $b$ decay may contribute to QCD background.

In order to reduce instrumental backgrounds, tighter track selection is needed. The lepton tracks are required to have at least 2 (out of an average of 8) SMT measurements and at least 5 (out of 16 possible) CFT measurements. Also, they must originate from the primary vertex, which is achieved by requiring the distance between the track origin and primary vertex along the beam to be less than 1 cm, the distance of closest approach (DCA) to the primary vertex in the transverse plane to be less than 0.1 cm, and the DCA significance (DCA divided by its uncertainty) to be less than 3. These cuts suppress both charge flip (due to improved track quality) and QCD (which is enriched with secondary leptons from $b$ decays) backgrounds.

After all these selections, we are left with a sample of 15 $ee$, 7 $e\mu$, and 12 $\mu\mu$ events, still dominated by instrumental background. In order to further improve the signal-to-background ratio, we perform a final selection based on a topological likelihood discriminant $TLD = \prod_i s_i/(\prod_i s_i + \prod_i b_i)$, where $s_i = s_i(v_i)$ and $b_i = b_i(v_i)$ denote probability densities of topological variables $v_i$ for the signal and background, respectively. The variables we use are the opening angle between the two leptons in the transverse plane $\Delta \phi_{\mu\mu}$ ($\mu\mu$ channel), $E_T$ ($ee$, $e\mu$ channels), hadronic missing transverse energy ($E_T$ not corrected for lepton momenta) $E_T'$ (all channels), and the minimum angle between a lepton and $E_T'$ direction $\Delta \phi_{\mu/E_T'}$ (all channels).

We consider four Higgs mass points: 115, 135, 155, and 175 GeV. For each mass, we construct an individual TLD based on variable distributions for the mass point. We optimize the TLD cut with respect to the lowest $WH \rightarrow WW\gamma^*$ production cross section limit calculated from the expected number of events given background-only hypothesis. The contributions from SM background sources ($WW$ and $WZ$) are computed based on their theoretical production cross sections. The shapes of the variable distributions for instrumental backgrounds are determined from data. For charge flips, we use events that pass the same selection as the signal sample, except that leptons are now required to be of unlike sign. These events are weighted according to the charge flip probability as a function of the lepton $p_T$. In addition, for muons the charge mismeasurement implies that the measured $p_T$ is not related to the original muon $p_T$, so the resulting distributions are convoluted with the simulated $p_T$ distribution of mismeasured muons. For QCD, we reverse the likelihood cut for electrons and isolation cuts for muons.

The contributions from charge flips and QCD backgrounds are determined from the fit of the dilepton invariant mass distribution to a weighted sum of the distributions for all backgrounds. To avoid potential bias from the signal, the fit is performed on a sample of events that fail the TLD cut (“complementary sample”). This procedure is performed for the $ee$ and $\mu\mu$ channels, as illustrated in Fig. 1. For the $e\mu$ channel, the background due to charge flips is $a$ priori small, because $Z/\gamma^* \rightarrow ll$ production does not contribute to $e\mu$ except via $Z/\gamma^* \rightarrow \tau\tau \rightarrow e\mu+\text{neutrinos}$. The fraction of charge flips in the $e\mu$ channel is determined from the charge flip probabilities measured in the $ee$ and $\mu\mu$ channels. The number of background events determined on the complementary sample is converted to the background expectation in the signal sample using calculated TLD cut efficiency.

For all considered Higgs mass points, the number of events remaining after the TLD cut as a function of the cut value is consistent with expectations from the SM background, as illustrated in Fig. 2 for $M_H=155$ GeV. For the optimal TLD cut values, 1 event in the $ee$ channel, 3 events in the $e\mu$ channel, and 2 events in the $\mu\mu$ channel have been observed for each Higgs mass point of 135, 155, and 175 GeV. For a Higgs mass of 115 GeV, the observed numbers of events are 1, 4, and 4, respectively, for the three channels. The number of events after the TLD cut together with the prediction for the SM background is shown in Table I.
TABLE I: Number of expected and observed events for a combination of all three channels after all selections are applied. The errors include both statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>MH (GeV)</th>
<th>115</th>
<th>135</th>
<th>155</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge flips</td>
<td>2.35±0.90</td>
<td>1.40±0.53</td>
<td>1.12±0.43</td>
<td>0.89±0.31</td>
</tr>
<tr>
<td>QCD</td>
<td>2.35±1.04</td>
<td>2.04±0.83</td>
<td>1.64±0.69</td>
<td>1.16±0.46</td>
</tr>
<tr>
<td>WZ</td>
<td>3.40±0.28</td>
<td>1.87±0.15</td>
<td>1.51±0.12</td>
<td>1.26±0.10</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.34±0.03</td>
<td>0.21±0.02</td>
<td>0.17±0.01</td>
<td>0.15±0.01</td>
</tr>
<tr>
<td>Total</td>
<td>8.44±1.37</td>
<td>5.52±0.99</td>
<td>4.45±0.82</td>
<td>3.46±0.57</td>
</tr>
<tr>
<td>Signal</td>
<td>0.037±0.004</td>
<td>0.100±0.010</td>
<td>0.143±0.015</td>
<td>0.110±0.011</td>
</tr>
<tr>
<td>Data</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

CL_{S+B}, to the confidence level for the background to represent the data, CL_B, reaches 0.05. The numbers of observed and expected events in the three channels are input separately to improve the sensitivity. The uncertainties on the expected numbers of signal and background events are determined from the statistical and systematic uncertainties and the luminosity uncertainty of 6.5% [11]. The signal uncertainty is 10–11%, depending on the Higgs mass point. The main sources of the signal uncertainty are the lepton identification, 8%, and the trigger efficiency, (4–5)%. The background uncertainty is 16–18%, dominated by the uncertainty on the composition of the instrumental background.

The expected and observed upper limits for the combination of all three channels are given in Table II. Figure 3 shows the observed upper limits together with theoretical predictions for a SM and a fermiophobic Higgs. No region can be excluded with the present data set.

In conclusion, a search has been performed for the process $WH \rightarrow WWW^* \rightarrow l^\pm \nu l^\pm \nu' + X$ in the ee, eμ, and μμ channels. In all cases the number of observed events is in agreement with the predicted SM background. The upper limits set on $\sigma(WH) \times Br(H \rightarrow WW^*)$ for the combination of all three channels vary from 3.2 to 2.8 pb as the Higgs mass varies from 115 to 175 GeV. In the case of the fermiophobic Higgs with a mass of 115 GeV, this represents a factor 2.4 improvement with respect to the previous D0 result obtained in Run I in the $H \rightarrow \gamma\gamma$ decay mode [14]. That becomes a factor 22 improvement for a Higgs mass of 155 GeV.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ,
FIG. 3: The observed upper limits for the four mass points along with the theoretical predictions for the SM and fermiophobic Higgs boson production. Shaded areas correspond to the LEP limits for the SM (114.4 GeV) [12] and fermiophobic (109.7 GeV) [13] Higgs.

FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

[*] On leave from IEP SAS Kosice, Slovakia.
[†] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[‡] Visitor from Lewis University, Romeoville, IL, USA
[4] The pseudorapidity $\eta = -\ln(\tan(\theta/2))$, where $\theta$ is the polar angle. The D0 coordinate system has the z axis along the Tevatron proton beam direction.
[5] The distance $\Delta R$ is defined as $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\phi$ is the azimuthal angle.