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Abstract

We describe a search for the Standard Model Higgs boson with a mass of 105 GeV/c2 to 145 GeV/c2 in data corresponding to an integrated
luminosity of approximately 450 pb−1 collected with the DØ detector at the Fermilab Tevatron pp̄ collider at a center-of-mass energy of 1.96 TeV.
The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with
the Higgs boson decaying to a bb̄ pair. The data are well described by the expected background, leading to 95% confidence level cross section
upper limits σ(pp̄ → ZH) × B(H → bb̄) in the range of 3.1 pb to 4.4 pb.
© 2007 Elsevier B.V. All rights reserved.

PACS: 13.85.Ni; 13.85.Qk; 13.85.Rm
Over the past two decades, increasingly precise experimental
results have repeatedly validated the Standard Model (SM) and
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the relationship between gauge invariance and the embedded
coupling strengths. For massive W and Z bosons, gauge invari-
ance of the Lagrangian is preserved through the Higgs mech-
anism, but the Higgs boson (H ) has yet to be observed. The
current lower bound on the mass of the Higgs boson from di-
rect experimental searches is MH = 114.4 GeV/c2 at the 95%
confidence level [1]. Searches for pp̄ → WH → e(μ)νbb̄,
pp̄ → WH → WWW ∗, and pp̄ → ZH → νν̄bb̄ have been
recently reported [2–4]. The CDF Collaboration has recently
reported results in the pp̄ → WH → �ν channel [5] and pre-

mailto:hobbs@sbhep.physics.sunysb.edu
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viously reported results in the pp̄ → WH → �ν and pp̄ →
ZH → �+�−bb̄ (� = e,μ) channels with significantly smaller
data sets [6–8]. This Letter provides the first results from the
DØ experiment of searches for a Higgs boson produced in as-
sociation with a Z boson, which then decays either to an elec-
tron pair or to a muon pair. The Higgs is assumed to decay
to a bb̄ pair with a branching fraction given by the SM. The
Z(→ �+�−)H channels reported in this Letter comprise ma-
jor components of the search for a Higgs boson at the Tevatron
collider.

Z bosons are reconstructed and identified through pairs
of isolated electrons or muons with large momentum compo-
nents transverse to the beam direction (pT ), having invariant
mass consistent with that of the Z boson. Events are required
to have exactly two jets identified as arising from b quarks
(b jets). The resulting data are examined for the presence of
a (H → bb̄) signal in the b-tagged dijet mass distribution. An
efficient b-identification algorithm with low misidentification
rate and good dijet mass resolution are essential to enhance
signal relative to the backgrounds. The analysis of the dielec-
tron [9] (dimuon [10]) channel is based on 450 ± 27 pb−1

(370 ± 23 pb−1) of data recorded by the DØ experiment be-
tween 2002 and 2004.

The DØ detector [11,12] has a central-tracking system con-
sisting of a silicon microstrip tracker (SMT) and a central fiber
tracker (CFT), both located within a ≈ 2 T superconducting
solenoidal magnet, with designs optimized for tracking and ver-
texing covering pseudorapidities |η| < 3 and |η| < 2.5, respec-
tively (η = − ln[tan(θ/2)], with θ the polar angle relative to the
direction of the proton beam). Central and forward preshower
detectors are positioned just outside of the superconducting
coil. A liquid-argon and uranium calorimeter has a central sec-
tion (CC) covering pseudorapidities up to |η| ≈ 1.1 and two
end calorimeters (EC) that extend coverage to |η| ≈ 4.2, with
all three housed in separate cryostats [12]. An outer muon sys-
tem, covering |η| < 2, consists of a layer of tracking detectors
and scintillation trigger counters in front of 1.8 T toroids, fol-
lowed by two similar layers behind the toroids [13]. Luminosity
is measured using plastic scintillator arrays placed in front of
the EC cryostats [14].

The primary background to the Higgs signal is the asso-
ciated production of a Z boson with jets arising from gluon
radiation, among which Z + bb̄ production is an irreducible
background. The other background sources are t t̄ production,
diboson (ZZ and WZ) production, and events from multijet
production that are misidentified as containing Z bosons. The
backgrounds are grouped into two categories with the first cat-
egory, called physics backgrounds, containing events with Z

or W bosons arising from SM processes: inclusive Z + bb̄

production, inclusive Z + jj production in which j is a jet
without b flavor, t t̄ , ZZ, and WZ events. This background is
estimated from simulation as described below. The second cat-
egory, called instrumental background, contains those events
from multijet production that have two jets misidentified as
isolated electrons or muons which appear to arise from the Z

boson decay. This background is modeled using control data
samples and the procedure described below.
Physics backgrounds are simulated using the leading order
ALPGEN [15] and PYTHIA [16] event generators, with the lead-
ing order CTEQ5L [17] used as parton distribution functions.
The decay and fragmentation of heavy flavor hadrons is done
via EVTGEN [18]. The simulated events are passed through a
detailed DØ detector simulation program based on GEANT [19]
and are reconstructed using the same software program used
to reconstruct the collider data. The ZH signal, for a range of
Higgs masses, is also simulated using PYTHIA with the same
processing as applied to data. Determination of the instrumental
background and the normalization of the physics backgrounds
are discussed below.

Candidate Z → ee events are selected using a combina-
tion of single-electron triggers. Accepted events must have
two isolated electromagnetic (EM) clusters reconstructed of-
fline in the calorimeter. Isolation is defined as I = (E

(0.4)
total −

E
(0.2)
EM )/E

(0.2)
EM in which E

(0.4)
total is the total calorimeter energy

within �R < 0.4 of the electron direction and E
(0.2)
EM is the en-

ergy in the electromagnetic portion of the calorimeter within
�R < 0.2 of the electron direction. Candidate electrons must
satisfy I < 0.15. Each EM cluster must have pT > 20 GeV/c

and either |ηdet| < 1.1 or 1.5 < |ηdet| < 2.5, where ηdet is the
pseudorapidity measured relative to the center of the detector,
with at least one cluster satisfying |ηdet| < 1.1. In addition, the
lateral and longitudinal shower shape of the energy cluster must
be consistent with that expected of electrons. At least one of the
two EM clusters is also required to have a reconstructed track
matching the position of the EM cluster energy. Events with a
dielectron mass of 75 < Mee < 105 GeV/c2 form the Z boson
candidate sample in the dielectron channel.

Candidate Z → μ+μ− events are selected using a set of
single-muon triggers. Accepted events must have two isolated
muons reconstructed offline. The muons must have opposite
charge, pT > 15 GeV/c, and |η| < 2.0 with muon trajectories
matched to tracks in the central tracking system (i.e., the SMT
and the CFT), where the central track must contain at least one
SMT measurement. In addition, the central tracks are required
to have a distance of closest approach to the interaction vertex
in the transverse plane smaller than 0.25 cm. Muon isolation
is based on the sum of the energy measured in the calorime-
ter around the muon candidate and the sum of the pT of tracks
within �R = √

(�φ)2 + (�η)2 = 0.5 of the muon candidate
normalized by the muon momentum. The distribution of this
variable in background multihadron events is converted to a
probability distribution such that a low probability corresponds
to an isolated muon. The product of the probabilities for both
muons in an event is computed, and the event is retained if the
product is less than 0.02. Accepted Z boson candidates must
have the opening angle of the dimuon system in the transverse
plane (azimuth) of �φ > 0.4, and invariant mass 65 < Mμμ <

115 GeV/c2. The �φ requirement is used to protect against po-
tential residual, difficult to model background from low mass
dimuon production in which one of the muons is badly mis-
measured. It is present in the preselection but has essentially
no impact after the dimuon mass requirement. This mass range
differs from that of the dielectrons because of the difference in
resolutions of electron energies and muon momenta.
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After selecting the Z candidate events, we define a Z + dijet
sample which, in addition to satisfying the Z candidate se-
lection requirements, has at least two jets in each event. Jets
are reconstructed from energy in calorimeter towers using the
Run II cone algorithm with �R = 0.5 [20] with towers de-
fined as non-overlapping, adjacent regions of the calorimeter
�η×�φ = 0.1×0.1 in size. The transverse momentum of each
jet is corrected for multiple pp̄ interactions, calorimeter noise,
out-of-cone showering in the calorimeter, and energy response
of the calorimeter as determined from the transverse momen-
tum imbalance in photon + jet events [21]. Only jets that pass
standard quality requirements and satisfy pT > 20 GeV/c and
|η| < 2.5 are used in this analysis. The quality requirements
are based on the pattern of energy deposition within a jet and
consistency with the energy deposition measured by the trigger
system.

For the Z → ee channel, the normalizations of the smaller t t̄ ,
WZ and ZZ backgrounds are computed using simulated events
and next-to-leading-order (NLO) cross sections. The cross sec-
tions were computed using the MCFM [22] program and the
next-to-leading order CTEQ6M [23] parton distribution func-
tions. Trigger efficiency, electron identification (ID) efficiency
and resolution correction factors are derived from comparisons
of data control samples and simulated events. The background
contributions from Z + jj , Z + bj and Z + bb̄ processes are
normalized to the observed Z + dijet data yield reduced by the
expected contributions from the smaller physics and instrumen-
tal backgrounds. The relative fractions of the Z + jj , Z + bj

and Z+bb̄ backgrounds in the Z+dijet sample are determined
from the acceptance and selection efficiencies multiplied by
the ratios of the NLO cross sections for these processes again
computed using MCFM with CTEQ6M parton distribution func-
tions. For the Z → μ+μ− channel, all physics backgrounds
are determined using simulated events with NLO cross sec-
tions again determined using MCFM and CTEQ6M. Trigger
efficiency, muon ID efficiency, and resolution correction fac-
tors are derived from comparison of data control samples and
the simulated events.

Instrumental backgrounds in both channels are determined
by fitting the dilepton invariant mass distributions to a sum
of non-Z and Z boson contributions. The Z boson lineshape
is modeled using a Breit–Wigner distribution convoluted with
a Gaussian representing detector resolution. The non-Z back-
ground, consisting of a sum of events from Drell–Yan produc-
tion and instrumental background, is modeled using exponen-
tials. The ratio of Z boson to non-resonant Drell–Yan produc-
tion is fixed by the Standard Model.

The (two) jets arising from Higgs boson decay should con-
tain b-flavored quarks, whereas background from Z + jets has
relatively few events with b jets. To improve the signal-to-
background ratio, two of the jets in the events from the Z+dijet
sample are required to exhibit properties consistent with those
of jets containing b quarks. The same b-jet identification algo-
rithm [24] is used for the dielectron and dimuon samples. It is
based on the finite lifetime of b hadrons giving a low proba-
bility that these tracks appear to arise from the primary vertex
and considers all central tracks associated with a jet. A small
Fig. 1. The dijet invariant mass distribution in double-tagged Z + dijet events.
The Higgs signal corresponds to MH = 115 GeV/c2. (The uncertainties are
statistical only.)

probability corresponds to jets with tracks with large impact
parameter, as expected in b hadron decays. The efficiency for
tagging a b jet from Higgs decay is approximately 50%, deter-
mined as described in the next paragraph. The probability of
misidentifying a jet arising from a charm quark as a b jet is
roughly 20%. The inclusive Z + dijet sample has a cc̄ content
of roughly 2.3%. The probability to misidentify a jet arising
from a light quark (u, d , s) or gluon as a b jet is roughly 4%.
This choice of efficiency and purity optimizes the sensitivity of
the analysis. The relatively large per-jet light-flavor misidenti-
fication rate can be accommodated because two tagged jets are
required in each event.

For background yields determined from simulated events,
the probability as a function of jet pT and η that a jet of a
given flavor would be identified (tagged) as a b jet is applied
to each jet in an event. The probability functions are derived
from control data samples [25]. For jets in the simulated events,
the flavor is determined from a priori knowledge of the parton
that gives rise to the jet. The probability of having two b-tagged
jets is defined by convoluting the per-jet probabilities assuming
there are no jet-to-jet correlations introduced by the b-tag re-
quirement. The observed number of Z + 2 b-jet events and the
predicted background levels are shown in Table 1.

The invariant mass of the two b jets in the Z + 2 b jet sam-
ple is shown in Fig. 1. This distribution is searched for an excess
of events. The peak position in the dijet mass spectrum is ex-
pected to be at a lower value than the hypothetical Higgs mass
because the jet energy is corrected to reflect the energy of par-
ticles in the jet cone without a general correction for the lower
b-jet response compared with light jets. If any good muon is
within �R < 0.5 of the jet, then twice the muon momentum
is added to the jet momentum (after applying the standard jet
correction). This is an approximation to the energy of both the
muon and the accompanying neutrino. The expected contribu-
tion from Higgs boson production shown in Fig. 1 corresponds
to MH = 115 GeV/c2.

Systematic uncertainties for signal and background arise
from a variety of sources, including uncertainties on the trigger
efficiency, on the corrections for differences between data and
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Table 1
Number of observed and expected background events

Final state Z+ � 2 jets 2 b tags

Z → ee Z → μ+μ− Z → �+�− Z → ee Z → μ+μ− Z → �+�−

Zbb 9.4 8.3 17.4 2.0 1.3 3.3
Zjj 414 437 851 1.2 2.6 3.8
t t̄ 2.7 9.6 12.3 0.83 3.1 3.9
ZZ + WZ 9.2 21.4 30.6 0.32 0.42 0.74
Instrumental 28.0 16.1 44.1 0.18 0.41 0.59

Total background 463 493 956 4.5 7.8 12.3

Observed events 463 545 1008 5 10 15
Table 2
Systematic uncertainty in background and signal predictions given as the frac-
tional uncertainty on the event totals. The ranges correspond to variations intro-
duced by different processes (background), the dijet mass window requirement
(background and signal) and intrinsic differences in kinematics arising from
different hypothesized Higgs masses (signal)

Source Background Signal

Lepton ID efficiencies 11–16% 11–12%
Lepton resolution 2% 2%
Jet ID efficiency 5–11% 8%
Jet energy reconstruction 10% 7%
b-jet ID efficiency 10–12% 9%
Cross sections 6–19% 7%
Trigger efficiency 1% 1%
Luminosity 3% 6.1%
Instrumental background 2% (ee)

12% (μμ)

simulation for lepton reconstruction and identification efficien-
cies, lepton energy resolution, jet reconstruction efficiencies
and energy determination, b-identification efficiency, uncertain-
ties from theory and parton distribution functions for cross sec-
tions used for simulated events and uncertainties on the method
used for instrumental background estimates. The luminosity
measurement has an uncertainty of 6.1%. This uncertainty is
applied as systematic uncertainty to the background predictions
which are absolutely normalized using simulation and to the lu-
minosity input to the limit calculation. The uncertainties from
these sources are shown in Table 2. These are evaluated by vary-
ing each of the corrections by ±1σ , by comparing different
methods (for the instrumental backgrounds), and by varying the
parton distribution functions among the 20 error sets provided
as part of the CTEQ6L library. The variations seen for different
processes for a given uncertainty arise because of differences
among the various background processes and because of intrin-
sic differences in the kinematic spectra from different Higgs
mass hypotheses.

The observed yield is consistent with background predic-
tions. Upper limits on the ZH production cross section are
derived at 95% confidence level using the CLs method [26],
a modified frequentist procedure, with a log-likelihood ratio
classifier. The shapes of full dijet invariant-mass spectra of
the signal and background histogrammed in 5 GeV/c2 bins
are used to produce likelihoods that the data are consistent
with the background-only hypothesis or with a background plus
Fig. 2. The expected and observed cross–section limits are shown as a function
of Higgs mass. The cross section based on the SM is shown for comparison.

signal hypothesis. Systematic uncertainties are folded into the
likelihoods via Gaussian distribution, with correlations main-
tained throughout. The data yield, predicted backgrounds and
expected and observed limits are shown in Table 3 for five hypo-
thetical Higgs masses. The limits are also shown in Fig. 2. The
mass window in Table 3 is used for illustration. It is centered
on the mean of the reconstructed Higgs mass in simulated ZH

events and has a width of ±1.5σ in which σ is the result of a
Gaussian fit to the reconstructed dijet mass distribution. The up-
per bounds differ slightly between the Z → ee and Z → μ+μ−
events because of different resolutions.

In summary, we have carried out a search for associated ZH

production in events having two high-pT electrons or muons
and two jets identified as arising from b quarks. Consistency
is found between data and background predictions. A 95%
confidence level upper limit on the Higgs boson cross sec-
tion σ(pp̄ → ZH) × B(H → bb̄) is set between 4.4 pb and
3.1 pb for Higgs bosons with mass between 105 GeV/c2 and
145 GeV/c2, respectively.
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