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Abstract

Data collected by the D0 detector at a pp̄ center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider have been used to search for
pair production of the lightest supersymmetric partner of the top quark decaying into b�ν̃. The search is performed in the ��′ = eμ and μμ final
states. No evidence for this process has been found in data samples of approximately 400 pb−1. The domain in the [M(t̃1),M(ν̃)] plane excluded
at the 95% C.L. is substantially extended by this search.
© 2007 Elsevier B.V. All rights reserved.

PACS: 14.80.Ly; 12.60.Jv

Supersymmetric theories [1] predict the existence of a scalar
partner for each standard model fermion. Because of the large
mass of the Standard Model top quark, the mixing between its
chiral supersymmetric partners is the largest among all squarks;
therefore the lightest supersymmetric partner of the top quark,
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� Deceased.

t̃1 (stop), might be the lightest squark. If the t̃1 → b�ν̃ decay
channel is kinematically accessible, it will be dominant [2] as
long as the t̃1 → bχ̃±

1 and t̃1 → t χ̃0
1 channels are kinemati-

cally closed, where χ̃±
1 and χ̃0

1 are the lightest chargino and
neutralino, respectively. In this Letter we present a search for
stop pair production in pp̄ collisions at 1.96 TeV with the
D0 detector, where a virtual chargino χ̃± decays into a lep-
ton and a sneutrino, and where the sneutrino ν̃, considered to
be the next lightest supersymmetric particle, decays into a neu-
trino and the lightest neutralino χ̃0

1 ; in pp̄ collisions, stop pairs
are dominantly produced via the strong interaction in quark–
antiquark annihilation and gluon fusion. We use the minimal
supersymmetric Standard Model (MSSM) as the phenomeno-
logical framework for this search. We assume the branching
ratio Br(χ̃±

1 → �ν̃) = 1 with equal sharing among all lepton
flavors, and we consider only cases where � = e,μ. For stop
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pair production, we consider bb̄��′νν̄χ̃0
1 χ̃0

1 final states with
��′ = e±μ∓ and ��′ = μ+μ− (eμ and μμ channels); the signal
topology consists of two isolated leptons, missing transverse
energy ( /ET ), and jets. D0 has also searched for scalar top in
the charm jet final state [3].

The D0 detector [4] comprises a central tracking system sur-
rounded by a liquid-argon sampling calorimeter and a system
of muon detectors. Charged particles are reconstructed using a
multi-layer silicon detector and eight double layers of scintillat-
ing fibers in a 2 T magnetic field produced by a superconduct-
ing solenoid. The calorimeter provides hermetic coverage up
to pseudo-rapidities |η| � 4 (where η = − log(tan(θ/2)), and
where θ is the polar angle with respect to the proton beam di-
rection) in a semi-projective tower geometry with longitudinal
segmentation. After passing through the calorimeter, muons are
detected in the muon detector comprising three layers of track-
ing detectors and scintillation counters located inside and out-
side of 1.8 T iron toroids. Events containing electrons or muons
are selected for off-line analysis by a trigger system. A set of
dilepton triggers is used to tag the presence of electrons and
muons based on their energy deposit in the calorimeter, hits in
the muon detectors, and tracks in the tracking system.

Three-body decays of the t̃1 are simulated using COM-
PHEP [5] and PYTHIA [6] for generation and hadronization
respectively. Standard Model background processes are sim-
ulated using the PYTHIA and ALPGEN [7] Monte Carlo
(MC) generators. These MC samples are generated using the
CTEQ5L [8] parton distribution functions (PDF); they are nor-
malized using next-to-leading order cross sections [9]. All gen-
erated events are passed through the full simulation of the detec-
tor geometry and response based on GEANT [10]. MC events
are then reconstructed and analyzed with the same programs as
used for the data.

Muons are reconstructed by finding tracks pointing to hit
patterns in the muon system. Non-isolated muons are rejected
by requiring the sum of the transverse momenta (pT ) of tracks
inside a cone with �R = √

(�φ)2 + (�η)2 = 0.5 (where φ

is the azimuthal angle) around the muon direction, and the
calorimeter energy in an annulus of size 0.1 < �R < 0.4
around the muon to be less than 4 GeV/c and 4 GeV. Isolated
electrons are selected based on their characteristic energy de-
position in the calorimeter, their fraction of deposited energy in
the electromagnetic portion of the calorimeter and their trans-
verse shower profile inside a cone of radius �R= 0.4 around
the direction of the electron; furthermore, it is required that a
track points to the energy deposition in the calorimeter and that
its momentum and the calorimeter energy are consistent with
the same electron energy; an “electron-likelihood” is defined as
a variable combining information from the energy deposition in
the calorimeter and the associated track. Backgrounds from jets
and photon conversions are further suppressed by requiring the
tracks associated with the muons and electrons to each have at
least one hit in the silicon detector. Jets are reconstructed from
the energy deposition in calorimeter towers using the Run II
cone algorithm [11] with radius �R = 0.5, and corrected for
the jet energy scale (JES) [12]; in this search, jets are consid-
ered with pT > 15 GeV/c. The /ET is defined as the energy

imbalance of all calorimeter cells in the plane transverse to the
beam direction, and is corrected for the JES, the electromag-
netic energy scale, and reconstructed muons. All efficiencies
are measured with data [13].

In both eμ and μμ channels, the signal points [M(t̃1),

M(ν̃)] = (110,80) GeV/c2 and (145,50) GeV/c2, respectively
referred as “soft” (point A) and “hard” (point B) signals, have
been used to optimize the selection of signals of different kine-
matics because of different �m = M(t̃1) − M(ν̃). The choice
of these points was also motivated by the sensitivity of the D0
search during Run I [14]. The main background processes im-
itating the signal topology are Z/γ ∗, WW , t t̄ production, and
multijet background. All but the latter are estimated with MC
simulation. The multijet background is estimated from data.
In the eμ channel, two samples each dominated by a differ-
ent multijet background are obtained by inverting the muon
isolation requirements, and by inverting the cut on the electron-
likelihood; in the μμ channel, such a sample is obtained by se-
lecting same-sign muon events. Factors normalizing each sam-
ple to the selection sample are also obtained from data, and
applied to the background samples to obtain the multijet back-
ground estimation, this, at an early stage of the selection.

For the eμ channel, the integrated luminosity [15] of the data
sample is (428±28) pb−1. The preselection is concluded by re-
quiring the transverse momenta of the electron and muon (see
Fig. 1(a) and (b)) to be greater than 10 and 8 GeV/c, respec-
tively. In this final state, the data are dominated by the multijet
and Z/γ ∗ → ττ backgrounds. In these processes, poorly re-
constructed leptons are correlated with /ET , giving rise to higher
event populations at high and low values of the azimuthal an-
gular difference between the leptons and the /ET , a low value
of the angular difference for one lepton being correlated with
a high value of the other. Taking advantage of a higher back-
ground contribution at low values of angular distributions, we
require

(1)�φ(μ,/ET ) > 0.4, �φ(e,/ET ) > 0.4.

We require /ET to be greater than 15 GeV to reduce contribution
of both the multijet and Z/γ ∗ → ττ backgrounds. To reject
multijet events in which leptons are associated with a jet, we
require the two leptons to be at a �R distance greater than 0.5
from any reconstructed jet. To further reduce the multijet contri-
bution, we require the z component of the origin of the highest
transverse momentum muon track to be within four standard
deviations σ from the z component of the primary vertex:

/ET > 15 GeV,

�R
[
(e,μ), jet

]
> 0.5,

(2)
∣∣z(μ) − z(p.v.)

∣∣ < 4σ.

To reduce the Z/γ ∗ → ττ background, we cut on low values
of the transverse mass of the muon and /ET (MT (μ,/ET ), see
Fig. 1(c)). To further reduce this background, we make use of
the correlation between the angular differences �φ(μ,/ET ) and
�φ(e, /ET ), and require their sum (see Fig. 1(d)) to be greater
than 2.9:

MT (μ,/ET ) > 15 GeV/c2,
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Table 1
eμ channel. Expected numbers of events in various background and signal channels, and number of observed events in data, at various selection levels. Statistical
as well as systematic uncertainties from the JES correction are shown for the total background and signal

Selection Background contributions Total
background

Data Signal

Multijet Z/γ ∗ → �� t t̄ Diboson Point A Point B

Preselection 304.5 286.7 12.4 28.6 632.3±19.5+0.0
−0.0 596 65.9±2.4+0.0

−0.0 26.6±0.7+0.0
−0.0

(1) 194.4 115.4 10.4 25.3 345.4±15.0+0.7
−0.7 329 54.1±2.2+0.0

−0.0 22.7±0.7+0.0
−0.0

(2) 8.6 20.0 9.1 21.2 58.9 ± 3.8+2.2
−2.2 52 31.6±1.7+0.8

−0.0 19.0±0.6+0.0
−0.1

(3) 5.9 3.6 7.4 20.2 37.1 ± 2.7+0.9
−0.9 34 26.0±1.5+0.3

−0.0 17.3±0.6+0.2
−0.2

Fig. 1. eμ channel. Distributions of the transverse momenta of the electron (a) and of the muon (b) after preselection cuts; (c) the transverse mass MT (μ,/ET ) after

preselection cuts and /ET > 15 GeV and �R[(e,μ), jet] > 0.5; (d) the angular sum �φ(μ,/ET )+�φ(e,/ET ) after the cut (2); (e) ST and (f) HT distributions after
the cut (3).

(3)�φ(μ,/ET ) + �φ(e,/ET ) > 2.9.

The contributions of different backgrounds, and the expected
numbers of signal and observed data events in the eμ final
state at different selection levels are summarized in Table 1.
After all selections, the WW (dominating the diboson contri-
bution) and t t̄ contributions are the dominant backgrounds. To
separate soft signals such as point A from these backgrounds,
we consider the variable ST defined as the scalar sum of the
transverse momentum of the muon, the electron, and the /ET

(see Fig. 1(e)). To separate hard signals such as point B from
background contributions, we consider the variable HT defined
as the scalar sum of the transverse momentum of all jets (see
Fig. 1(f)). Rather than cutting on these two variables, the HT

and ST spectra predicted for signal and background are com-
pared with the observed spectra in twelve [ST ,HT ] bins (see
Table 2) when extracting limits on the signal cross section, thus

allowing a separation of signals of different kinematics from the
WW and t t̄ backgrounds.

For the μμ channel, the integrated luminosity [15] of the
data sample is (395 ± 26) pb−1. The selection of the signal
in this final state is more challenging because of the strongly
dominating Z/γ ∗ → μμ background. The preselection is con-
cluded by requiring the transverse momenta of the two highest
transverse momenta opposite-sign muons to be greater than 8
and 6 GeV/c. While the signal is characterized by the pres-
ence of jets originating from the hadronization of b quarks, the
Z/γ ∗ → μμ background owes the presence of jets to initial
state radiation gluons which hadronize into softer jets, resulting
in a lower multiplicity of jets; the latter is also valid for soft sig-
nals such as point A. To keep sensitivity to soft signals while
rejecting substantial background, we require at least one jet:

(4)N( jets) � 1.
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Table 2
eμ channel. Expected numbers of events for total background, signal points A and B , and number of observed events in data, in the twelve [ST ,HT ] bins. Statistical
and JES uncertainties are added in quadrature for the total background and signal points

Bin Total background Data Signal

Point A Point B

ST ∈ [0,70[ GeV, HT = 0 2.6 ± 1.1 1 7.3 ± 1.0 0.0 ± 0.0
ST ∈ [70,120[ GeV, HT = 0 9.2 ± 1.2 14 4.8 ± 0.7 0.2 ± 0.1
ST ∈ [120, . . . [ GeV, HT = 0 7.7 ± 0.7 5 0.8 ± 0.3 1.8 ± 0.2
ST ∈ [0,70[ GeV, HT ∈ ]0,60] 1.9 ± 0.7 2 5.2 ± 0.7 0.0 ± 0.0
ST ∈ [70,120[ GeV, HT ∈ ]0,60] 3.6 ± 1.2 4 5.3 ± 0.8 1.2 ± 0.2
ST ∈ [120, . . . [ GeV, HT ∈ ]0,60] 3.0 ± 0.4 2 0.6 ± 0.3 6.3 ± 0.5
ST ∈ [0,70[ GeV, HT ∈ ]60,120] 0.4 ± 0.6 0 0.6 ± 0.3 0.0 ± 0.0
ST ∈ [70,120[ GeV, HT ∈ ]60,120] 0.7 ± 0.2 1 1.2 ± 0.3 1.3 ± 0.2
ST ∈ [120, . . . [ GeV, HT ∈ ]60,120] 3.6 ± 0.8 2 0.1 ± 0.1 4.3 ± 0.3
ST ∈ [0,70[ GeV, HT ∈ ]120, . . . [ 0.0 ± 0.0 0 0.0 ± 0.0 0.0 ± 0.0
ST ∈ [70,120[ GeV, HT ∈ ]120, . . . [ 0.8 ± 0.6 1 0.0 ± 0.0 0.4 ± 0.1
ST ∈ [120, . . . [ GeV, HT ∈ ]120, . . . [ 3.7 ± 1.1 2 0.1 ± 0.1 1.7 ± 0.3

Fig. 2. μμ channel. (a) �φ(μ1,/ET ) versus /ET in simulated Z/γ ∗ → μμ events; the contour of the cut (5) is shown by the solid line. Distributions of the b jet

tagging probability P(jet) (b), the invariant mass of the two most energetic muons (c), and /ET (d) after preselection cuts.

To further remove Z/γ ∗ → μμ background events, where
poorly reconstructed muons correlate with the /ET , we require
the /ET to be greater than the contour shown on Fig. 2(a), using
a cut parametrized by the following equation:

(5)/ET /GeV > 20 + ∣∣�φ(μ1, /ET ) − 1.55
∣∣9.2

,

where μ1 is the highest transverse momentum muon. To aug-
ment the search sensitivity in this channel, we take advantage of
the presence of jets originating from the fragmentation of long-
lived b quarks in the signal. An algorithm based on the lifetime
of hadrons calculates the probability P for the tracks of a jet
to originate from the primary interaction point [16]. This b jet

tagging probability is constructed such that its distribution is
uniform for light-flavor jets while peaking at zero for heavy-
flavor jets which have a vertex significantly displaced from the
primary vertex (Fig. 2(b)). Considering the highest transverse
energy jet, we require

(6)P( jet) < 1%.

A cut on the dimuon invariant mass (Fig. 2(c)) in the vicinity
of the Z boson resonance only at low /ET (Fig. 2(d)) further
suppresses the Z/γ ∗ → μμ background while preserving the
signal:

(7)M(μ,μ) /∈ [75,120] GeV/c2 for /ET < 50 GeV.
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Table 3
μμ channel. Expected numbers of events in various background and signal channels, and number of observed events in data, at various selection levels. Statistical
as well as systematic uncertainties from the JES correction are shown for the total background and signal

Selection Background contributions Total
background

Data Signal

Multijet Υ (1,2S) Z/γ ∗ → �� t t̄ WW Point A Point B

Preselection 3607.6 973.1 23781.7 5.1 9.6 28377.1 ± 348+0.0
−0.0 28733 9.8±0.4+0.0

−0.0 41.1±1.5+0.0
−0.0

(4) 682.1 80.8 3894.9 5.1 1.5 4664.4 ± 97+452
−553 4337 8.8±0.4+0.1

−0.1 24.2±1.1+1.5
−1.9

(5) 41.8 0.4 155.7 4.7 1.1 203.7 ± 8+52
−22 213 7.5±0.3+0.2

−0.1 12.9±0.8+1.2
−1.3

(6) 0.0 0.0 6.1 2.6 0.0 8.7 ± 1.6+1.3
−0.1 4 3.5±0.2+0.2

−0.0 3.4±0.4+0.4
−0.3

(7) 0.0 0.0 0.1 2.3 0.0 2.9 ± 0.4+0.1
−0.1 1 3.1±0.2+0.2

−0.0 3.3±0.4+0.4
−0.3

Table 4
μμ channel. Expected numbers of events for total background, signal points A and B , and number of observed events in data, in the 5 HT bins. Statistical and JES
uncertainties are added in quadrature for the total background and signal points

Bin Total background Data Signal

Point A Point B

HT ∈ ]0,40] GeV 0.11 ± 0.0 0 2.0 ± 0.3 0.5 ± 0.1
HT ∈ ]40,80] GeV 0.89 ± 0.4 0 1.1 ± 0.3 1.0 ± 0.1
HT ∈ ]80,120] GeV 0.75 ± 0.0 0 0.2 ± 0.1 0.8 ± 0.1
HT ∈ ]120,160] GeV 0.56 ± 0.0 1 0.0 ± 0.0 0.4 ± 0.1
HT ∈ ]160, . . . [ GeV 0.57 ± 0.0 0 0.0 ± 0.0 0.4 ± 0.1

Table 3 summarizes the different stages of the signal selection
in the μμ channel. The t t̄ background dominates after the selec-
tion cuts; five HT bins are considered (see Table 4) to separate
various signal points from this background.

The expected numbers of background and signal events
depend on several measurements and parametrizations which
each introduce a systematic uncertainty: lepton identification
and reconstruction efficiency [(2.6–7)%] [13], trigger efficiency
[(3.5–5)%] [13], luminosity [6.1%] [15], multijet background
modeling [10%], JES [(4–22)%] [12], jet identification and re-
construction efficiency and resolution [(4–16)%] [13], b jet
tagging [(1–11)%] [16], PDF uncertainty affecting the signal
efficiency [10%] [17].

After applying all selection cuts for eμ and μμ data sets,
no evidence for t̃1 production is observed. We combine the
number of expected signal and background events and their cor-
responding uncertainty, and the number of observed events in
data from the twelve bins of the eμ selection (Table 2) and the
five bins of the μμ selection (Table 4) to calculate upper-limit
cross sections for signal production at the 95% C.L. for various
signal points using the modified frequentist approach [18]. In
this calculation, correlated uncertainties are taken into account;
no overlap is expected nor observed between the two samples.
Regions for which the calculated cross section upper limit is
smaller than the theoretical one are excluded at 95% C.L. Fig. 3
shows the excluded region as a function of the scalar top quark
and sneutrino masses, for nominal (solid line) and for both min-
imal and maximal (band surrounding the line) values of the
t̃1

¯̃t1 production cross section; the latter variation corresponds to
the PDF uncertainty for the signal cross section, quadratically
added to the 2μr and μr/2 renormalization scale variations of
the t̃1

¯̃t1 cross section. Although the numbers of expected and

Fig. 3. For the nominal production cross section, the 95% C.L. excluded re-
gions in the [M(t̃1),M(ν̃)] plane for the observed (full curve) and the average
expected (dashed curve) limits are shown; the band surrounding the observed
limit represents the lower and upper bounds of the signal cross-section varia-
tion. The regions excluded by D0 during Run I [14] and by LEP [19] are also
shown.

observed events are similar (Tables 1 and 3), their distribution
across the bins (Tables 2 and 4) causes the expected cross sec-
tion limit to be lower than the observed one. For minimal values
of the production cross section, the search in the eμ final state
individually excludes a stop mass of 176 GeV/c2 for a sneu-
trino mass of 60 GeV/c2, and a sneutrino mass of 97 GeV/c2

for a stop mass of 130 GeV/c2; the search in the μμ final state,
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once combined with the eμ final state, extends the final sen-
sitivity by approximately 10 GeV/c2 for small and large mass
differences.

In summary, we have searched for the lightest scalar top
quark decaying into b�ν̃; events with an electron and a muon,
and two muons have been considered for this search. No
evidence for the lightest stop is observed in these decays,
leading to a 95% C.L. exclusion in the [M(t̃1),M(ν̃)] plane.
The largest stop mass excluded is 186 GeV/c2 for a sneu-
trino mass of 71 GeV/c2, and the largest sneutrino mass ex-
cluded is 107 GeV/c2 for a stop mass of 145 GeV/c2; these
mass limits are obtained with the most conservative theoreti-
cal production cross section, taking into account the PDF un-
certainty and the variation of the renormalization scale. This
is the most sensitive search for stop decaying into b�ν̃ to
date.
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