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This note describes a search for a Fermiophobic Higgs boson (hy) in the di-photon final state
using D@ data corresponding to an integrated luminosity of 9.7 fb~', collected at the Fermilab
Tevatron collider from April 2002 to September 2011. We set 95% C.L. upper limits on the cross
section times the branching ratio (¢ x BR(hy — 7)) and the branching ratio (BR(hy — 77)) for
different assumed Higgs masses from 100 GeV to 150 GeV. The sensitivity reaches 114 GeV, well
beyond that of the combined LEP experiments. We exclude Fermiophobic Higgs particles with a
mass th < 111.4 GeV.
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I. INTRODUCTION

A search for standard model (SM) Higgs bosons in the H — ~v channel is challenging due to its small branching
ratio of this process. For instance, it is ~ 0.22% for a Higgs boson with a mass of 120 GeV. However, the branching
ratio is enhanced significantly in some models beyond the SM [1]. In the model of Fermiophobic Higgs bosons (hy),
which assumes zero coupling of the Higgs boson to fermions, the branching ratio is enhanced by about an order of
magnitude (see Table I). This hypothesis has been searched for at LEP [2], the Tevatron [3] and the LHC [4]. The
gluon-gluon fusion Higgs Boson production mechanism, which is dominant at the Tevatron, involves a top quark loop
and so is suppressed in the Fermiophobic Higgs model. Therefore, the main production mechanisms are associate
vector boson (hy +V — yy+V, V = W, Z) and vector boson fusion (VBF hy — ~v) in this model. The coupling
strength of a Fermiophobic Higgs boson to V is assumed to be the same as that of a SM Higgs boson.

In this analysis, we use data corresponding to 9.7 fb~! of D@ Run II data and utilize the same analysis technique
as Ref [5]. A Multivariate Analysis Technique (MVA) [6] is used to combine ten kinematic variables to build a final
discriminant between signal and background to enhance the sensitivity.

mp, (GeV) 100 | 110 | 120 | 130 | 140 | 150
BR(H — ~7) 0.0015{0.0019|0.0022{0.0022|0.0019|0.0014
BR(hy — vv) 0.185 | 0.060 | 0.023 | 0.011 | 0.005 [0.0030
BR(hy — vy)/BR(H — vv)| 123 32 10 5 3 2

TABLE I: Branching Ratio comparison for a SM Higgs boson and a Fermiophobic Higgs boson into two photons. BR(H — ~7)
and BR(hy — ~) stand for the branching ratios of a SM Higgs boson and a Fermiophobic boson into two photons respectively.

The DO detector, the data samples, event selection, background estimation and modeling and the associated
systematic uncertainties (except those for gluon-gluon fusion process) are the same as described in the search for the
SM Higgs boson (Ref. [5]). Below we describe only what is specific to this analysis, namely the signal simulation,
separation of the signal from the SM background and limit setting.

II. SIGNAL SIMULATION

Since only gluon-gluon fusion process is absent, we use the same V H and VBF signal samples that are normalized
to the same SM cross sections as [5]. However, the branching ratios for each mass point are different from those in
SM, and are obtained from HDECAY [7] calculations specifically for Fermiophobic Higgs bosons.

III. FINAL DISCRIMINANT DISTRIBUTIONS AND LIMITS
A. Final discriminant distributions

To improve the overall sensitivity, we use the gradient Boosted Decision Tree method (BDTG) from the Toolkit for
Multivariate Analysis [6] that combines ten kinematic variables to build a final discriminant between the signal and
background. The ten kinematic variables we used are,

e leading photon transverse momentum, plT;

e sub-leading photon transverse momentum, p3.

e di-photon invariant mass, M,~;

e di-photon transverse momentum, p;.';

e azimuthal angle between the two photon candidates, A¢..
e cosf*, in Collins-Soper frame [8];

e ¢ in Collins-Soper frame;

e leading photon ANN output, ONN!;

e sub-leading photon ANN output, ONN?Z;



e missing transverse energy Fr.

Figures 1 and 2 show these ten kinematic distributions from data, backgrounds and the M}, = 115 GeV signal. The
signal and total background samples are trained for every mass point displayed in Table II using events within a
[M},, - 30GeV, My, + 30GeV] mass window. At the 2.5 GeV mass points we interpolate the MVA input from the
neighbouring 5 GeV points using the fact that the selection efficiency is almost independent of the di-photon mass and
the mass resolution is approximately constant (~ 3 GeV). As an illustration, we show the MVA output distributions
for six of the hypothetic Fermiophobic Higgs masses in Fig. 3.
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FIG. 1: Data and background modeling comparisons in terms of p}, p5, M., A¢?” and pa’ for the mass region [60, 200] GeV.
A signal for My, = 115 GeV, multiplied by 100 is also shown. The plots in the left column are in linear scale and the plots in
the right column are in log scale. The legend is shown in top left plot.
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FIG. 2: Data and background modeling comparisons in terms of cos@*, ¢*, ONN', ONN? and F for the mass region [60,
200] GeV. A signal for My, = 115 GeV, multiplied by 100 is also shown. The plots in the left column are in linear scale and
the plots in the right column are in log scale. The legend is the same as Fig. 1.
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FIG. 3: MVA output distributions for M}, = 100 —150 GeV in 10 GeV intervals. Each mass point has a mass window selection

of 30 GeV.



[Higgs mass(GeV) [ 100 [102.5] 105 [107.5] 110 [112.5] 115 [117.5] 120 [122.5]

observed limit(fb) [27.1| 25.3 {23.3| 22.3 [19.7| 21.3 |14.8] 13.1 | 9.1 | 9.7
expected limit(fb)[21.3] 20.5 |19.6| 16.9 |15.7| 14.7 [14.4| 14.2 [12.9] 12.9

[Higgs mass(GeV) [ 125 [127.5] 130 [132.5] 135 [137.5] 140 [142.5] 145 [147.5[150]

observed limit(fb) [10.0{ 9.2 |{10.6| 11.5 |12.7| 12.7 [11.6| 12.0 {10.1| 10.3 | 8.7
expected limit(fb){13.4| 13.0 [12.5| 12.2 [10.9] 9.8 [ 94| 9.6 | 9.0 | 8.8 |84

TABLE II: 95% C.L. observed and expected limits on ¢ x BR(hy — 77) for different Fermiophobic Higgs masses.

B. Limit setting

We set upper limits on the cross section times branching ratio and the branching ratio for a Fermiophobic Higgs
boson decaying into a pair of photons, using the MVA output distributions for each mass point in the interval of
[Mp, - 30 GeV, My, + 30 GeV]. The limits are calculated at the 95% confidence level using the modified frequentist
CLg approach with a Poisson log-likelihood ratio test statistic [9]. Systematic uncertainties are treated as nuisance
parameters constrained by their priors, and the best fits of these parameters to data are determined at each value of
My, by maximizing the likelihood ratio [10]. The correlations of the systematic uncertainties are maintained.

As an illustration, the background subtracted data distribution at 115 GeV is shown in Fig. 4.
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FIG. 4: Post-fit background subtracted data distribution for M, = 115 GeV. The green area shows the post-fit 1 standard
deviation (s.d.) under S4B hypothesis and nominal signal yields are considered.

Table IT and Fig. 5(left) show the upper limits on 0 x BR(hy — 77) for the different hypothetic Fermiophobic Higgs
masses. By assuming the SM cross section for the associated vector boson and vector boson fusion Higgs production

mechanism, we also derive the upper limits on the BR(h;y — 77) as a function of the Fermiophobic Higgs mass (see
Table IIT and Fig. 5(right)).

IV. SUMMARY

We have presented a search for Fermiophobic Higgs bosons in the di-photon channel using 9.7 fb~! D@ Run II
data. We set 95% C.L. upper limits on the o x BR(hy — 77) and BR(hy — ) for hypothetic Fermiophobic Higgs
masses. The expected exclusion reaches 114 GeV, well beyond that of the combined LEP experiments. We exclude
Fermiophobic Higgs particles with a mass of My, < 111.4 GeV.



[ Higes mass(GeV) [ 100 [102.5] 105 [107.5] 110 112.5]115] 117.5]120] 122.5]
observed limit(%) 62| 48 |55 53 |5.0| 5.5 |43]| 3.5 [3.7] 3.2
expected limit(%) 40| 41 | 43| 39 (40| 3.8 |4.3]| 43 |4.7| 4.8

theory BR(hy — 77) (%)|18.5] 13.9 [10.4| 7.9 [6.0]| 4.7 |3.7] 2.9 [2.3]| 1.9

[ Higgs mass(GeV)  [125[127.5]130]132.5[135[137.5[140[142.5] 145]147.5]150]
observed limit(%)  [2.6] 4.0 [4.3] 6.1 [7.6] 6.1 [7.4] 6.3 [8.3] 7.6 [7.2
expected limit(%)  [5.1] 5.2 |54 49 [5.0] 5.1 [5.3] 5.5 |5.8] 5.5 |5.8

theory BR(hy — 77) (%)|1.6] 1.3 [1.1] 0.9 [0.8] 0.6 [0.5] 0.5 |[0.4] 0.3 [0.3

TABLE III: 95% C.L. observed and expected limits on BR(hy — 77) for different Fermiophobic Higgs masses. Also shown are
the theory predictions.
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FIG. 5: 95% C.L. upper limits on ¢ x BR (left) and BR (right) as a function of Fermiophobic Higgs masses. The observed
limit is shown as a solid black line while the expected limit under the background-only hypothesis is shown as a dashed red
line. The green and yellow areas correspond to the 1 and 2 standard deviations (s.d.) around the expected limit.
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