Measurement of the tt production cross section in the all-jets channel
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We have measured the top and anti-top quark (tt) pair cross section using an event sample
corresponding to 162 pb™', which was recorded by D@ in the period 2002/2003. The analysis
concentrates on events where both ¢ and % decay to a b-quark and a W-boson that decays
hadronically. We isolate the tt events from the background using a secondary vertex tag and
several kinematic and topological event quantities. These quantities are combined using artificial
neural networks to achieve optimal discrimination between tt signal and background events. We
observe 220 events with an expected background of 186 + 5(stat) + 12(syst) events, with a signal

efficiency of € - BR = 0.0275 + 0.0009(sta,t)fgjgg§g (syst), which corresponds to a cross section of
o(tt) = 7.7F5 3 (stat) T3 7 (syst) + 0.5(lumi) pb.
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I. INTRODUCTION

This note describes the analysis of the tt — all-jets production cross section with a dataset taken between
July 2002 and January 2004, in pp collisions with /s = 1.96 TeV.

This analysis concentrates on the tt pair production in the ‘all-jet’ channel. The top quarks decay to a b
quark and a W-boson, which subsequently decays hadronically. This channel constitutes 46% of the total tt
production cross section, larger than any other channel with one or both W-bosons decaying to leptons.

One of the experimental difficulties in this tt decay channel is the overwhelming QCD background, which is
three to four orders of magnitude larger than the expected signal. The identification of the b-jets using secondary
vertex tagging (SVT) is by itself not sufficient to reduce the background. The analysis strategy consists of the
determination of the background content in our b-tagged sample, after which we do a multivariate analysis with
artificial neural nets to extract our signal.

These neural networks are trained using Monte Carlo simulated tt events and a background sample which
consists of a fraction of the untagged data events. A tt enriched sample is obtained by selecting with a high
neural network output probability. The final background content in this sample is determined from untagged
data. Note that we use tt Monte Carlo only for neural network training, while the background content is
entirely derived from data.

First, we will discuss our tagged sample and the parametrization of the QCD background with tag rate
functions (TRF), after which we will continue with the kinematic variables, which are then used in a chain of
top-discriminating neural networks. We will shortly discuss the neural network training, after which we use the
neural networks to extract the tt production cross section.

II. MONTE CARLO SIMULATION

We use ALPGEN 1.2 [1] and parton distribution function CTEQ 6.1M [2] to generate our top-anti top
pair production, after which we use PYTHIA 6.2 [3] for the simulation of gluon radiation and hadronization
processes. We separately study tt events where both W-bosons decay hadronically, and where one of the two
W-bosons in the event decays to a lepton-neutrino pair. Our simulated signal is passed through a full detector
simulation. We use the same reconstruction for data and Monte Carlo events.

III. DATA SAMPLE AND EVENT SELECTION
A. Trigger

The data is collected with a dedicated trigger at an average trigger efficiency of 74%. This number is derived
by application of the jet-level turn-on curves (measured on electron+jets data) to our tt Monte Carlo simulation.
Only Monte Carlo simulated events that passed the preselection are used. We make the assumption that our
jet algorithms are not sensitive to the number of jets in our event. Although we expect these correlations to be
relatively small, we plan to study them in the near future. Our trigger requirements depend on the version of
the trigger list, and are listed in table I. The integrated luminosity for our trigger is 162 pb~!, after rejection
of events in luminosity blocks with bad calorimeter or tracking performance.

B. Pre-selection

We use events with six or more jets, reconstructed using a standard n-¢ jet-finding cone algorithm with
radius 0.5 . We then make additional cuts on jet level:

e Jet pr > 15 GeV

e Jet |n| < 2.5



Luminosity per trigger

| v8 | v9-11 | v1l2
name 4TJ10 4JT10 4JT12
L1 CJT(4,5) CJT(4,5) CJT(3,5)
L2 JET(3,8) JET(3,8) JET(3,8)
HT(90) HT(50)

L3|L3FJet(SCJET_9,4,10) |L3FJet(SCIET_9,4,10) |[L3FJet (SC5JET_9_PV1,4,12)
L3FJet(SCJET.9,2,20) |L3FJet(SC5JET_9_PV1,3,15)
L3FJet(SC5JET_9_PV1,2,25)
luminosity 20.8 pb~! 102.7 pb~! 38.9 pb~ !

TABLE I: The tt — all-jets triggers for different trigger list versions.

We reject events that contain isolated leptons or have a primary vertex with Nyqqexs < 3 or |2| > 60 cm. We use
the electron and muon identification criteria as in the tt — [ + jets analyses, to obtain an orthogonal dataset.
The lepton requirements reduce our data sample by less than 1% and have even less influence in signal Monte
Carlo.

After pre-selection, our dataset consists of 292k events.

IV. SVX TAGGING

We use the Secondary Vertex Tagger (SVT) to identify b-jets. We define a jet to be tagged when there is a
secondary vertex with a signed vertex lifetime significance greater than 7.0 associated with the jet. We require
exactly one tagged jet in our events, because the probability to tag a second jet is larger because of the change
in flavor content of our sample. The studies needed to also include double-tagged events will be done in the
near future.

The efficiencies to tag b, ¢ and light quarks and gluon jets are measured using data. These efficiencies are
parametrized as a function of jet pr for different 1 bins. When these parametrizations are applied to the tt
MC, we find the efficiency for a hadronic tt event to have only one tag to be 46%.

The uncertainties on the parametrizations are taken into account in our systematic error calculation.

V. BACKGROUND MODELING

We parametrize our background by the application of tag rate functions (TRFs). As both our tagged and
untagged sample is still completely dominated by background, we use them to determine the probability that
a ‘background’ jet will be tagged:

Pjet(pr,m) = N f(pr)g(n)-

As f(pr) and g(n) are observed to be uncorrelated, we can make this factorization. We parametrize Pje(pr, )
in four different bins of Hyp. N is used to normalize our probability density function to unity. After this
normalization we are able to accurately predict the number of tagged jets. This is illustrated in figure 1la,
which shows the number of observed and predicted SVX tagged jets.

The probability for an event to have one single tag is then

1=Njet i#£]

Pevent(tags = 1) = Z Pjet(i) H(l - PJ'Ef(j))a

J

where we presume that the tagging probabilities are uncorrelated between jets.
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FIG. 1: Test of the normalization of our tag rate functions: Closure test as a function of jet pr.

We studies the dependence of the normalization factor on the selection criteria, and determined a value of
N =1.04+0.07.

The error of the measured normalization factor gives a handle on the TRF accuracy, and is used as the
uncertainty on our background predictions.

VI. EVENT SELECTION USING KINEMATIC QUANTITIES

The variables used to discriminate hadronic top signal from QCD multi-jet background can be distinguished
into five categories[4]. The selection is based on the quantities used in the DO Run 1 analysis, and was not
optimized for use in TeVatron Run 2:

(i) Energy scale. QCD background tends to have an overall lower transverse energy distribution, jets are less
energetic and the total invariant mass of the event is smaller than in tf events. Even though the average
jet energy is smaller in QCD events, the leading jets tend to be more energetic in QCD than in tt events.
The variables used here are Hr, the sum of all jet pr’s and /s, the invariant mass of the event.

(ii) Soft non-leading jets. As the QCD background mainly consists of hard 2-jet processes with extra soft
gluon jets, the additional jets are expected to be softer in QCD background than in tt signal. The
variables we use are H%’ , the sum of all jet pr’s except the leading two, Er, 5, the geometric mean of the
fifth and sixth jet, and N]-A the pr weighted jet multiplicity.

ets?

(iii) Event Shape. These quantities describe the behavior of the angles and sizes of jets in the event as a whole.
Top events have a different shape than QCD background. The jets are almost spherically distributed in
top events, while QCD events usually have a more back-to-back jet distribution. We use aplanarity and
sphericity to quantify this difference between signal and background.

(iv) Rapidity distribution. These quantities are used to identify where the set of jets in the event was observed
in the detector. Because of their typical hard scatter origin, the jets in QCD background events are
expected to be more back-to-back than top signal, while QCD events are also more likely to be boosted
in the direction of the beam-line. This has as a consequence that not all the jets in the event are expected
to be central. We use centrality, the ratio of the total transverse energy over the total energy in the
event, and < 2 >, the pr weighted jet variance from 5 = 0.



Hy /s H%j Nﬁts Er; , Aplan Spher Cent < n? >| My Mw M3 ME™
Hr 1 063 0.74 0.84 0.49 -0.04 0.08 0.23 -0.04 [0.10 0.11 0.34 0.42
Vs 1 052 056 0.35 -0.40 -0.42 -045 0.33 |[0.19 0.27 0.31 0.40
H%j 1 079 077 0.13 0.10 0.12 0.02 |-0.00 0.03 0.37 0.41
Nﬁts 1 057 0.03 010 0.19 -0.02 [-0.01 0.06 0.43 0.51
Er, 1 0.12 0.07 0.07 0.03 |-0.02 0.03 0.42 0.43
Aplan 1 0.69 0.58 -0.27 [-0.12 -0.15 0.03 0.01
Spher 1 0.74 -0.38 [-0.12 -0.19 0.03 0.02
Cent 1 -0.37 |-0.09 -0.16 -0.02 -0.05
<n*> 1 |0.08 0.14 0.01 0.02
M,z 1 0.20 -0.06 -0.07
Mw 1 0.00 0.01
Mg 1

TABLE II: Average correlations among the kinematic parameters for data events

(v) Typical top properties. The second neural network (N N2) is trained on properties which are very typical
for top event structure, like the presence of W-bosons and b-quarks. The variables used are the W and
top x2, Mww and Mz, and the minimal di-jet masses M}n’fn and an’fn

Figure 2 shows the distributions for background and signal Monte Carlo for all the variables mentioned above.
The absolute predicted background is consistent with the observed tagged data.

The kinematic variables used in this analysis are correlated. To account for these correlations in order to
achieve optimal discrimination between signal and background, we use artificial neural networks (ANN). The
correlation matrix for data events is shown in table II.

VII. NEURAL NETWORK ANALYSIS
A. Training

We use feed-forward neural networks (NNs), trained by back propagation as implemented in the JETNET[5]
program. All the NNs have 1 output node and 1 middle layer with a number of nodes double the number of the
input layer. The NNs are trained on a small, randomly chosen fraction (2500 events, ~ 1%) of our background
sample and the same number of MC simulated tt events, also randomly chosen. Tagged data events are never
used in the training of the NNs.

We use the probaebility that an event is tagged to select events for our random sample selection. Events with
high tagging probability are more likely to be used for neural network training. This way our background
training sample contains taggable events that are similar to the tagged events in our signal sample.

B. Neural network chain

The kinematic variables introduced in VI are combined in a chain of artificial neural networks:

e NNO. This neural network is used for rejection of obvious background. Events with a N/NO discriminant
smaller than 0.05 are rejected. NNO uses Hr, /s, H:?}J, N f}ats, sphericity, aplanarity and centrality.
N NO does not have a major influence on our signal, but does reject a significant fraction of our background.

e The next neural net, NN1, includes the same variables as NNO, with additional information from Er, ,
and < n? >. As this neural net is trained only on events that passed the NNO > 0.05 cut, it is a lot more
sensitive to the difference between top-like background and hadronic tt signal. We do not cut on NN1,
but use it as an input to the final neural net.
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FIG. 2: All kinematic variables used in this analysis, for tagged events (points) and the predicted background in those
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tagged events(band), and for informative purposes the distribution shape for hadronic tt signal Monte Carlo.
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FIG. 3: Predicted and observed numbers of tagged events for the lower level neural networks NN10 and NN1.

efficiencies
tt — all — jets

tt — lepton + jets

marginal

cumulative

marginal

cumulative

pre-selection
trigger
NNO > 0.05
Nsvr =1
NN2 > 0.75

0.388 £ 0.003
0.737 £ 0.008
0.997 +£0.011
0.456 £ 0.005
0.436 + 0.007

0.388 £ 0.003
0.286 £ 0.002
0.285 £ 0.002
0.131 +0.001
0.058 £+ 0.001

0.038 +0.001
0.498 £ 0.019
0.983 £ 0.042
0.481 £+ 0.020
0.220 £+ 0.018

0.038 +0.001
0.018 +0.001
0.018 +0.001
0.009 £ 0.000
0.002 £ 0.000

TABLE III: Efficiencies for all analysis cuts.

e The final neural net, NN2, combines the information from NN1 with variables which are sensitive to
high-mass objects in the event, or to the tt hypothesis. The input variables for NN2 are NN1, Mww,
Mz, M>2 and M3}

min®

Figure 3 shows the expected and observed distributions for the neural network discriminants NNO and NN1.

C. NN2 cut

We have studied the optimal NN2 cut value using our (untagged) background events and the tt MC simu-
lation. The statistical fractional error was determined to be minimal for a cut of NN2 > 0.75, which is what
is therefor used in this analysis. Figure 4 shows the expected distributions for background, signal+background
and the actual observed tagged data distribution.

The efliciencies for all analysis cuts are listed in table III. The analysis presented in this note is tuned to find
hadronic tt events, but we find we are also marginally sensitive to events from the lepton+jets decay channels.
The measured efficiencies are:

€all—jets = 0.058 £ 0.001(stat)
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FIG. 4: Neural Network 2 distribution for tagged data, expected background and expected signal+background.

and
€lepton+ijets = 0.0018 & 0.0001(stat),

where the errors are due to limited Monte-Carlo statistics. Combining these two efficiencies according to the
expected branching ratios (which are, respectively, 0.4619 for the all-jets and 0.4355 for all three lepton+jets
channels combined) gives us an efficiency to measure the cross section for all tt production channels which
produce an event topology of at least 6 jets and no isolated leptons. This gives us a final signal efficiency of

€-BR = 0.0275 £ 0.0003(MC, stat).

The main systematic uncertainties on € - BR are the used jet energy scale, and the top mass. Systematic
uncertainties on the efficiency and background are are listed in tables IV and V.
We observe the following number of events above our cut of NN2 > 0.75:

Npackground(expected) = 186 + 5(stat) events,
where the error comes from statistical fluctuations in our background distribution only. As the background
events are determined using TRFSs, this number includes a more than 186 events, hence the small statistical

error. In the single-tagged sample, we observe the following:

NobseTved = 220 events



systematic uncertainties on signal efficiency (in %)

Vertex reconstruction -1.0 1.0
Jet Identification —-9.8 -
Jet Energy Scale o —28.3 +28.1
Jet Resolution +o —0.6 +0.2
Top Mass £5GeV/c? 7.6 +5.9
Trigger Efficiency(trigsim)| -4.0 4.0
SVT parametrizations -4.1 +3.6
total [-31.1 + 31.2

TABLE 1V: Systematic uncertainties on the signal efficiency.

systematic uncertainties on background estimation (in %)

Statistical error TRF's +3.6
Background modeling (TRF's) +6.6
Total | +7.5

TABLE V: Systematic error on expected background calculation.

The tt cross section is then measured to be:
o(tt) = 7.7 34 (stat) "5 7 (syst) + 0.5(lumi)pb,

where we presume a 6.5% error on the integrated luminosity of our analysis sample. The likelihood curve as a
function of the tt production cross section is shown in figure 5.

VIII. CONCLUSION

We have measured the top and anti-top quark (tt) pair cross section in the top to ‘all-jets’ channel using an
event sample corresponding to an integrated luminosity of 162 pb—!, which was recorded by D@ in the period
2002/2003.

The analysis is restricted to events with at least six jets (and no isolated lepton); the expected signature for
tt pairs decaying in a b quark and a W boson and the subsequent decay of each W boson into two quarks.
Assuming a tt cross section of 7 pb, we expect 28 signal events.

The background from QCD events is reduced using several variables related to the topology and the underlying
physical structure of the events. These variables are combined in a chain of two artificial neural networks, after
which we apply a secondary vertex tag (SVT) to reduce background. The efficiency after a cut on the output
on the second neural network is

¢ BR = 0.0275 = 0.0003(stat) "o oorg (syst) 1)

The remaining background is predicted using all events except events with a double tag, weighted with event
weights predicted by an SVT tag rate function. We observe 220 events, where we predict 186+ 5(stat) £14(syst)
background events.

The measured cross section is

o(tt) = 7.7 34 (stat) 3 7 (syst) + 0.5(lumi) pb. (2)
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