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We apply the Best Linear Unbiased Estimate (BLUE) method to combine three measurements of
the single top quark production cross section using decision trees (DT), matrix elements (ME) and
Bayesian neural networks (BNN) on 0.9 fb−1 of DØ data. The resulting combined measurement is
σ (pp̄ → tb+X, tqb+X) = 4.8± 1.3 pb. The probability to measure this value of the cross section
or higher in the absence of signal is 0.027%, corresponding to a 3.5 standard deviation significance.
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I. INTRODUCTION

This note presents the combination of three measurements of the single top quark production cross section obtained
using different multivariate techniques, based on 0.9 fb−1 of DØ data [1]:

σ (pp̄ → tb+X, tqb+X) = 4.9+1.4
−1.4 pb (Decision trees)

= 4.6+1.8
−1.5 pb (Matrix elements)

= 5.0+1.9
−1.9 pb (Bayesian neural networks).

It is now routine to have multiple analyses of the same dataset and to be faced with the associated problem of what
to do with the multiple correlated results. One approach is to pick the result which a priori is the most precise, as
determined by an ensemble study of pseudo-datasets [2]. The more collegial thing to do is to combine the results. In
general, if the correlations between the different measurements are small, one expects to also improve the sensitivity
from the combination.

II. BLE, BLUE, AND ALL THAT

The simplest way to combine results is to use a linear function

f(σ̂, w) ≡ y =
∑

i

wi σ̂i, (1)

of the measurements σ̂i, usually with the constraint
∑
i wi = 1. The weights are determined by minimizing the mean

square error (MSE)

MSE ≡ E((y − σ)2), (2)

= Var(y) + (bias)
2

(3)

where bias(y) = E(y)− σ is the bias and Var(y) = E(y2)− E2(y) is the variance, for a measurement y when the true
value is σ. This method is called the Best Linear Estimate (BLE) method. If each individual measurement σ̂i has a
bias βi then the ensemble average of y

E(y) =
∑

i

wi (βi + σ),

= σ +
∑

i

wi βi, (4)

will be biased absent a fortuitous cancellation. If, however, we have forced the measurements to be unbiased then the
ensemble average of the combined measurement y will also be unbiased. Thus, we arrive at the Best Linear Unbiased
Estimate (BLUE) method [3], in which the weights are obtained by minimizing the variance (since the bias is zero).

Note that in taking the ensemble average in Eq. (4) we have assumed the parameters wi to be constant across the
ensemble [4]. If the wi depend on the estimates σ̂i then the BLUE method will not, in general, yield a combined
estimate that is unbiased, though of course the method can be corrected for bias after the fact.

For uncorrelated measurements σ̂i, the variance is given by

Var(y) =
∑

i

w2
i Var(σ̂i) (5)

and the minimum variance occurs when we set the weights to

wi =
1/Var(σ̂i)∑
i 1/Var(σ̂i)

. (6)

We note, again, that in the derivation of Eq. (5) the parameters wi must be independent of the estimates σ̂i, though
they may vary from one ensemble to another. It should also be noted that Eq. (6) holds true for any distribution
with finite variance. In particular, it is not necessary that the distribution be Gaussian.

In practice, measurements based on the same dataset will be correlated and we must replace Eq. (5) by

Var(y) =
∑

i

∑

j

wi wj Cov(σ̂i, σ̂j), (7)



3

where Cov(σ̂i, σ̂j) ≡ E(σ̂iσ̂j) − E(σ̂i)E(σ̂j) are the matrix elements of the covariance matrix of the measurements.
The minimization yields the result

wi =

∑
j Cov−1(σ̂i, σ̂j)∑

i

∑
j Cov−1(σ̂i, σ̂j)

, (8)

where Cov−1(σ̂i, σ̂j) denotes the matrix elements of the inverse of the covariance matrix.

A. Ansatz for confidence intervals

The expression for the variance, Eq. (7), of the ensemble distribution of y, Eq. (1), suggests the following ansatz
for a confidence interval. Compute

δy =

√∑

i

∑

j

wiwjρi,j δ̂iδ̂j , (9)

where the δ̂i are the uncertainties on σ̂i, and ρi,j ≡ Cov(σ̂i, σ̂j)/
√

Var(σ̂i)Var(σ̂j) is the correlation matrix element.
An approximate (symmetric) confidence interval is then given by [y − δy, y + δy].

III. RESULTS USING THE BLUE METHOD

Since the bias is measured to be small in each of the three single top analyses, using decision trees, matrix elements,
and Bayesian neural networks, we apply the BLUE method outlined above to combine the individual results. For this,
we use corresponding measurements from the three analyses from the following two ensembles of pseudo-datasets:

• SM signal (2.9 pb) + background pseudo-datasets

• Background-only pseudo-datasets.

These ensembles of pseudo-datasets are generated from a pool of 1.6 million Monte Carlo events used in the modeling
of the SM backgrounds and the single top quark signals. Each source of background or signal is fluctuated separately,
according to the allowed variation on that source due to systematic and statistical uncertainties. The normalization
to data imposed in the background model is also taken into account when fluctuating background sources that are
anti-correlated by the normalization. The event weights (from trigger, object reconstruction, and b-jet identification
efficiencies) are taken into account such that events with a higher weight will be more likely to be picked.

In order to take into account correlations between the different measurements (those arising from using the same
set of observed events as well as those from the systematic uncertainties), we use results from the same ensemble-
entry in the sums in Eqs. 1 and 9. There are about 1700 common entries between the three analyses in the SM
signal+background pseudo-datasets, and about 63,000 entries in the background-only pseudo-datasets.

A. Weights, coverage probability, and combined measurement

We use the SM signal+background pseudo-datasets to determine the weights and to check the coverage probability
of the confidence intervals. The cross section measurements from this ensemble are shown in Fig. 1 for the individual
and combined analyses. The mean and square root of the variance obtained from these distributions are given in
Table I. The weights wi for each of the three analyses obtained using Eq. 8, are:

• wDT = 0.401

• wME = 0.452

• wBNN = 0.146
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FIG. 1: Distributions of the measured cross sections from the individual analyses (left), and the
combined analysis (right), using SM signal+background ensembles.

TABLE I: Mean and square root of variance from the SM signal
(2.9 pb) + background ensembles for the different analyses.

Analysis Mean
√

Var σ/∆σ

σ [pb] ∆σ [pb]

Decision trees (DT) 2.9 1.62 1.8

Matrix elements (ME) 3.3 1.60 2.1

Bayesian neural networks (BNN) 3.0 2.05 1.4

Combined 3.1 1.40 2.2

To check the coverage probability of the confidence intervals as discussed in Sec. II A, we determine the correlation
matrix using the same ensemble. This is found to be:

ρ =




D
T

M
E

B
N
N

1 0.57 0.51 DT

0.57 1 0.45 ME

0.51 0.45 1 BNN



.

The resulting coverage probability of [y−δy, y+δy] is 0.64, which is close to 68% of a one-standard-deviation confidence
level interval. We may therefore use this definition of δy to compute the uncertainty on the combined measurement
from real data.

The combined result and its uncertainty for the single top quark cross section measurement is, thus, obtained to
be:

σ (pp̄ → tb+X, tqb+X) = 4.8± 1.3 pb (DT + ME + BNN combined),

using the measurements listed in Sec. I. Fig. 2 summarizes the measurements from the individual analyses as well as
the combination.

B. Significance

We use the background-only ensemble to determine the expected and observed significance of the combined cross
section. Here too, results from the individual analyses are combined using Eq. 1. Distributions of the results from all
the analyses are shown in Fig. 3.

The expected p-value (and the associated significance in Gaussian-like standard deviations) is obtained by counting
how many background-only pseudo-datasets result in a measured cross section above the expected SM value of 2.9 pb.
These are shown in Table II for the different analyses.
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FIG. 2: The single top cross section measurements using real data, from
the individual analyses and the combination.
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FIG. 3: Distributions of the measured cross sections from the different
analyses, using background-only ensemble. The arrow shows the
combined cross section measurement (4.8 pb) using real data.

TABLE II: The expected p-values and significances for the individual and the
combined analyses, using the SM value of 2.9 pb for signal cross section as the
reference point in Fig. 3.

Analysis Expected p-value Expected significance

[std. dev.]

Decision trees (DT) 0.0177 2.1

Matrix elements (ME) 0.0358 1.8

Bayesian neural networks (BNN) 0.0992 1.3

Combined 0.0137 2.2

The observed p-value is similarly calculated by counting how many background-only pseudo-datasets result in a
measured cross section above the observed value of 4.8 pb. The result is 0.027% or 3.5 standard deviations. The
observed cross sections, p-values, and significances from all the analyses are summarized in Table III.

Finally, using the SM signal+background pseudo-datasets, we obtain the compatibility with the SM expectation
by counting how many pseudo-datasets result in a cross section with the observed value or higher for each of the
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TABLE III: The measured cross sections, p-values, and significances for the
individual and combined analyses, the latter two obtained using the background-
only ensemble.

Analysis Measured cross section p-value Significance

[pb] [std. dev.]

Decision trees (DT) 4.9 0.00040 3.4

Matrix elements (ME) 4.6 0.00201 2.9

Bayesian neural networks (BNN) 5.0 0.01157 2.3

Combined 4.8 0.00027 3.5

analyses. The probabilities for the different analyses are 11% for the DT, 22% for the ME, 17% for the BNN, and
12% for the combined analyses.

IV. CONCLUSIONS

To conclude, the measured single top quark production cross section after combining results from the DT, ME and
BNN analyses, is 4.8± 1.3 pb with a significance of 3.5 standard deviations.
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