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The DG Run I Trigger

*Old Run I system consisted of three major
levels of triggering:
* LO : scintillator trigger

* L1: hardware trigger based on fast sums from
calorimeter and muon detectors

* L3 : software trigger running on a farm of ~50 CPUs
L2 trigger added later

* Refined electron candidates in calorimeter

* Finer granularity hardware information from muon
detector

*L1/L2 accept rate was 150Hz
*Event size of 450kB
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The DG Trigger

*For Run IT the Tevatron has been
significantly upgraded

* Increase in luminosity to 5x1032cm-2s-t

*Beam crossing interval reduced to
396/132ns (compared to 3.5us in Run I)

¢ ..and so has the DY detector

* Inner 2T superconducting solenoid

* New tracking detectors
* Silicon, Fibre Tracker and Pre-shower

* Upgraded muon detector
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The DD Trigger Upgrade

*Trigger needed to be significantly
upgraded to meet the challenge:

* Include tracking information from new
detectors

* Expand the L2 trigger to examine all
triggers and to have detector specific pre-
processing engines

* Increase the bandwidth and processing
power of the L3 workstation farm

*This talk concentrates on L2
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The DG Trigger

*DD Trigger split into 3 levels
* "LO" trigger fires every beam crossing

SVXII chip
Detector - _ Digitization
T Rate
‘ |
7.5MHz
(132ns/decision)

50Hz
‘ >‘ l 250kB/ev
Calorimeter - Reconstruction
Digitization _ Farm
Rate
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The L1 Trigger

L1 trigger pure hardware, 128 trigger bits
* Each subdetector provides 16 or 32 bits every 132ns
* Combined (AND/OR network) to make 128 decisions

«3.0Us X
{De’rec’ror} %‘g:‘s’ > Shift Register
> 2.6us between
accepts 16 event deep
L1 Accept FIFO

>1.58us
between
decisions

L2 Reject

Level 3 _ 8 event deep L2 Accept

and DAQ FIFO
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The L2 Trigger

*L2 Trigger software and hardware hybrid

* Hardware for dataflow, software for processing
*Must respond to events in order received

* Workstation farm not good at this

* Use single, powerful CPUs: 500MHz Alpha
*Two stage design

* Pre-processors format and sort L1 data

* Global processor correlates information across the
whole detector

*2-4 Alphas in a crate
* Administrator: handles I/0O, monitoring etc.

* 1-3 workers: process data
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Alphas in a Crate

Data Input

Worker
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The Alpha Card
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The L2 Software

*Alpha boards run patched Linux 2.2.16 kernel
* Custom kernel modules for device drivers
*Written in C++, use Digital/Compaq C++ compiler
* Time budget < 100 us
* No dynamic memory allocation or RTTI (for speed)
* Virtual functions, exceptions very restricted
*Code very portable
* Run same code in trigger simulation as online
* Easy to port to the new "Beta" processors

*Dynamically configurable state machine: flexible

* Single executable for all crates

> Very useful to adapt to multiple hardware setups
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The L2 Software Timing

*Bit search algorithm timings for C,C++ and Asm
* C++ compiler better optimizer than C compiler

* Minimal gains from using assembly code (~few %)
* Compilers REALLY good at optimizing code for CPU!

* Use Digital/Compaq/HP C++ compiler...not GNU C++

C++ and C Compiled Code Times

C++ and Assembly Code Trigger Bit Decoding Times
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L2 Global Design
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L2 Status

ain production run of Alphas had problems...
* Manufacturer failed to bake boards and components
*Used spare parts to have second production run
* Several parts obsolete: unable to obtain more
* Reduced to running one Alpha per crate

*Made up for some of loss in software
* Dropped MET Calorimeter preprocessor
* Rewrote Calorimeter Jet and EM algorithms
* Framework signifcantly faster than anticipated

*Original estimate with one Alpha ~2.2kHz rate
* Currently run at 3-4.4kHz depending on trigger setup

*Replacing Alphas with commerical 933MHz P-ITI Compact
PCI boar'ds and cus‘rom VME extender: factor 3 fas‘rer'
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L2 Monitoring
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The L3 Trigger

*Pure software trigger, includes DAQ
* Reads out entire detector
* Runs speed optimzed reconstruction
*Crates readout using Linux SBCs
* Event builder is the ethernet switch

*Linux nodes run L3 trigger software on full
event

* 256 different triggers possible
*After processing passed events are output into
several exclusive streams

* Collected and written to computing centre for

storage and full reconstruction
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The L3 Trigger
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Offline Dataflow

*All events are written directly to tape

* Fermilab developed ENSTORE system used
* Interfaces to multiple tape robots
* Allows easy migration to new tapes/robots...very usefullll

*Events reconstructed by Linux production farm
* Writes output back to tape and disk cache on d@mino
* DDmino is SGI mainframe 192 x 300MHz CPUs, 30TB disk
*Monte Carlo generation done off-site
* Major European contribution: UK, NL, CZ, FR + UTA

*Two facilities for user-level analysis

* Cluedd: Linux desktops, current main provider for D@
* CAB: Linux backend to d@mino, just up and runnmg
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Offline Dataflow
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Managing I/0: SAM

*All DG I/0 managed by program called SAM

* "Sequential Access by Metadata"
* One of the first production GRID programs

*Central database of all DG data and MC files

* Contains description of the files (how created etc.)
* Contains all known locations of the file

*SAM stations have local disk cache
* Central DB keeps track of files in local caches

*Users use SAM to search for and fetch files
* SAM gets files from 'best’ location

*Access priority to limited resources e.g. tape drives
managed by SAM
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CLUEDY

*Cluster of all DG Linux desktops
* 250+ nodes, 500+ users, > 12TB disk on servers

*Designed to fill gaps in DG computing plan

* Needed analysis CPU and disk space
* D@mino central server 300MHz CPUs, not expandable
* Desktop CPUs (at time) 800MHz (and a lot cheaper!)
* Cheap: FNAL had serious computing budget cutbacks
* IDE disks >3 times cheaper Fibre channel for D@mino
* Allowed institutes to contribute resources
* Harness already existing desktop CPUs (free CPU!)

* No FNAL support: team of post-docs and students
* Code development platform
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Features

*PBS batch system to schedule jobs
* Integrated with new CAB system

*Home grown cluster management program: CLuMP
* Stores cluster configuration in LDAP database

* Auto-generates configuration files on all nodes
* Uses simplified python interface

* Greatly simplifies adding machines and users
* Less mistakes, easier for new sysadmins
*Cluedd SAM station
* Fetch and store files from the central DD store

*Cluedd is currently the major source of all DD analysis
CPU, slowly sharing load with CAB
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Analysis

*DJ currently has three data formats:
* Raw data, Reconstructed (DST) and Thumbnail (TMB)
* TMB small enough to keep on disk (10kB/event)

*DST and TMB can be converted into ROOT files
* DST uses ROOT-tuple format: detector debugging
* TMB uses ROOT tree format: physics analysis
*Common environment for analysing TMB data
within ROOT not yet decided on
* Write your own ROOT format

* MOAN: Matched Object Analysis Network
* Processor based "lego brick" approach, can use TMB & DST

* Truffle: similar to MOAN but nicer CLI..in developmen’r
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Supersymmetry

*Proposed symmetry between Fermions and Bosons

*Extends Standard Model by adding super-
partners for each SM particle

* squarks, sleptons, gluinos...

° : : SM Particles SUSY Particles
ReqL“r'es a nggs Name Symbol Name Symbol
d ou b I eT gluon g gluino g

harged Hi H*
* three neutral and SRR TEE chorginos
. 1,2
two Char'ged HIQQS W boson W+
light Higgs h

*Broken symmetry: heavy Higgs 1
h aven 1 t seen any pseud(Z)SEilsa(,)rnHiggs ;4 neutralinos  X9_,
SUSY particles photon y

. graviton G gravitino G
* i.e. squarks and quarks — quarks g squarks g
leptons [,v sleptons l,v
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Hierarchy Problem

*SM particles contribute to Higgs mass via loop
diagrams

* Contributions diverge quadratically with increasing
energy -

*In SM no new physics until ?r'avi‘ry becomes
important at Planck scale (~10"GeV)

* so Higgs mass contributions will be large

*..but need M, ~<1TeV/c? to prevent W'W-

scattering cross-section breaking unitarity
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Hierarchy Problem

*So Higgs mass contributions are ~30 orders of
maghitude higher than the Higgs mass!

* Cancellation to an incredibly precise level needed

* Not impossible but very artifical
*Supersymmetry solves hierarchy problem by
cancelling loop diagrams

* Super-particles also contribute to Higgs mass

* Cancels out quadratic divergence
*For this to work expect to see SUSY particles
with masses < 1TeV/c?
*SUSY is not the only possible solution to problem

0 Lar'ge extra dimensions lower M to few TeV/c?
21/03/0 2

Planck

R. Moore, Michigan State 5



Other Motivations for SUSY

*Dark Matter candidate (not all SUSY models)

* Add in extra requirement: R parity conservation

* All particles carry 'R' quantum number
* SM particles have R=+1, SUSY particles have R=-1
* Must create SUSY particles in pairs
* Conserve R: product of all R's must be constant

* Implies lightest SUSY particle is stable
* Candidate for non-baryonic dark matter (WMAP result)

* SUSY not required to have R parity conservation
*SUSY alters running of coupling constants

* Makes them all converge at single point
*Required for Superstring theories
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SUSY Breaking

*Several models for how SUSY is broken

* Reduce number of free parameters from soft SUSY
breaking (> 100) to a more manageable number

* soft=break mass degeneracy w/o causing quadratic divergence

*mSUGRA: Minimal Super Gravity

* SUSY breaking occurs at an unreachable mass scale

* Hidden sector, mass scale M_ .,

* Fields in this hidden sector interact with SUSY
particles via gravity causing SUSY breaking

*Gauge mediated SUSY breaking

* SUSY break mediated through gauge interactions by

messenger fields at M <« M,
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GMSB

*Parameters defining GMSB models:
* A=F/M__ : scale of SUSY masses

* M > A messenger mass scale
* N, : equivalent number of 5+5 messenger fields

* tanp : ratio of Higgs vacuum expectation values
* sign(p) : sign Higgsino mass parameter
«C >1:ratio of gravitino mass to value it

grav=

would have is SUSY breaking scale were F

*Lightest SUSY Particle (LSP) is an almost
massless gravitino (M « 1eV)
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GMSB Signal

*Phenomenology depends on next lightest
sparticle ~
* If this is the lightest neutralino then: ¥+ — G
* Signal vy + missing E_

*Model: M _=2A, N.=1, tanp=15, p> O

*Neutralino lifetime not fixed

*Long lifetime case

* Photons do not point to the production vertex

* Centre of EM shower in different calorimeter layers can
be used to determine the photon's track

*Short lifetimes

* Decay of neutralino close to production vertex
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GMSB Backgrounds

*Mis-measured E_ backgrounds

* QCD+direct photons or jets faking photons [dominant]
* Drell-Yan with e faking photon

*True missing E_ backgrounds
» Wy->evy (neutrino gives missing E_) [dominant]

* W+jet->ev+'y"
* />TT>eevy

* +-tbar, WW, WZ etc.

(jet fakes y: can contain lots T°)
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vy + Missing E_Events

*Integrated luminosity of the sample 42pb-!
2 EM Objects with E.> 20GeV, |n|<1.1 (CC)
o et if track p.> 106eV/c within 50mrad in ¢

*Photon pointing: |z,-z,|< 45cm z =z vertex of vy,

* Determines primary vertex to correct MET
*Need to consider jets because of missing E_.

criteria, use AR=0.7 cone algorithm
* Uncorrected E;>106eV; 0.05 < EM Fraction < 0.95

* n90 > 1 (no. cells containing 90% jet energy)
* Ap(MET Jlead jet)<2.5 rad (jet mis-measurement)
* No jets in the ICD region (gap between CC and EC)
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vy + Missing E_Events

*545 Events pass cuts

*Background dominated by fake y from QCD
Signal MC Missing ET
A =35,45 and 60 TeV

_(arbitrary normalization)

vy Data and QCD
Background Missing E_

40 —

¢ Data of

— QCD fakes | ®f |
801 " o

s [

40 H"

20

el X Rl

00 12 050208059 1 0 120 140 160 180 200
Missing E., GeV Missing E., GeV
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GMSB Limits

Set limits for Aamd M_ of models considered

* m(neutralino)> 66 GeV/c?, A> 52 TeV
* Run I limit m(neutralino)> 75 GeV/c?

G [pDb] —
_ 10 DO Run II Preliminary
O u
Q L
= [
(nfo) e
1 = e TS
= S
O - — Theory
- — 95% CL
-1 !
10 3 50 e0 70 'mlxg[éeV]
L | e e e e e e ey
35 40 45 50 55 60

21/03/03 N [TeV] 33



Candidate Event

*Highest Missing E_ candidate

Run 169892 Event 13611435 Thu Mar 6 15:37:33 2003

Run 169892 Event 13611435 Thu Mar 6 15:37:32 2003
E scale: 33 GeV

35

ET
(GeV)

Bins: 345
Mean: 0.542 -3
Rms: 2.33 0 47
Min: 0.00916
Max: 31.7
mE_t: 57.1
phi_t: 143 deg

34
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MSUGRA

*mSUGRA reduces number of extra SUSY
parameters to 4 + sign
*m,m,, : common scalar and gaugino masses at
M. ., scale

* tanp : ratio of Higgs vacuum expectation values
* A sign(u) : common trilinear coupling, Higgsino
mass parameter

*Lightest SUSY Particle (LSP) is lightest
neutralino
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mSUGRA Signal

*One signature for mSUGRA is three leptons
* From production of chargino and neutralino + decay
— 0~ S +7—~0. ~+ + ~0
PP — XoXi + X5 Xo = Ul Xy X1 = X
* "Golden mode" for SUSY
* Very low background from SM

*DJ good place to look for tri-lepton signature

* Highest energy currently available: if they exist,
SUSY particles are heavy otherwise they would
already have been seen

* Good muon coverage
* |n|< 2.0, 3 planes, minimal gaps for supports

* Very good calorimetry (for electron mode)
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MmSUGRA Di-leptons

*Low acceptance if all three leptons are required
* Require two like-sign leptons instead
* Increases acceptance, keeps backgrounds low

*...but understanding backgrounds harder
* Need to include low p. muons (SUSY mass difference)

* Tight cut on p isolation required to kill background
* Use minimal cuts: signal varies over parameter space

*Current status of di-muon analysis presented
* No official results yet...Summer conferences

* Backgrounds need better understanding
* Sign mis-id needs full quantitative analysis

* Non-isolated muons more than current MC predictions
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Di-muon Trigger

*Measure di-muon trigger turn on (L1+L2 only)

* Select events with calorimeter trigger and 2
reconstructed muons

20pb! Dat
° Also apply Reco LLPtEfﬁciencyfurSecundHighestPtMunnlzl'.'lu_n_LZMl]irigger]p Da a
In|<1.8 and g ‘
detector g i gl L
supports cut 5 e | i i,
* Count fraction 0.6 ‘ .

of times di-muon
trigger firedas  °
function of
second leading
muon pT v b e by b b e b b e b b gy

8 10 12 14 16 18
P; of Second Highest Reco Muon (GeV/c)
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Backgrounds

*Two major sources of background

* g-gbar: b-bbar contribution dominant
* g, low and c-cbar doesn’t give like-sign muons

* di-boson: WZ, ZZ

* Also considered W+jets
*b-bbar high o but y associated with jet b->pv c

* Remove by cutting on muon isolation
*Di-boson (WZ,ZZ)

* Low cross-section but muons are isolated

* Reduce by invariant mass cut

*Need a very good under's’randing of muon
E?BJBJIOH TO r'emoy%oor'e Rc igan Sb Ckground 39



Muon Isolation

*Muon isolation defined by subtracted
calorimeter energy in two cones around muon

* E in Cone(AR< 0.4) - E in Cone(AR< 0.15) Lo ] oo |
* Avoids reliance on jet algorithms | |

*Compare MC vs. data for isolated y Cs=—1—=;
o Z>pp (high p) and Y->pp (low p.)

*Observe significantly more halo
energy in data than Monte Carlo

* Warm regions/cells in calorimeter H

*Need to correct MC isolation by adding energy
* Choose gaussian; require isolation > 0
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Muon Isolation

*Optimize smearing
* Vary mean and width of gaussian
* Use Kolmogorov statistic o compare to data

*Best fit is: mean=-0.1, width=1.0

Zpr Y S
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Muon Isolation

*Comparison of before and after smearing for Z
*Z selected from data by r'equiring'

* 2 muons with p.> 10 GeV/c, 75< M < 105 GeV/c?
Ple Smeaﬂﬂg \I\I h Cm a¥e
Vvvitll \.JI | IU
‘%3 i £200
o 50_ .Z—» ML MC §180_ .Z—» MU MC
208 —Data 160 —=—Data
}32503_ ?1402—
T B120F
e - §120:
2200% §1ooﬁ
oo 4 !‘h
- T 40F-
50 i.‘l'*“ »of mim’
C - C -m!g
S 4 5 6 7 8 9 10 N R B S T AR e
E-Cone 0.4-0.15 (GeV) E-Cone 0.4-0.15 (GeV)
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b-bbar MC Cross-section

*Pythia MC cross-section for b-bbar significantly
disagrees with Run I measurement

* Pythia: o, (p>106eV/c)=1.75 pb
* RunTI: o, (p>10GeV/c)=4.47+1.65 pb

° SCC(led from ] Constant 3.5+ 0.2744
1.8TeV (Run I)

iy
N
'

Slope -0.2191 + 0.02171

=
(=]
I | T

using Pythia
ratio: 01.96/ Oig N '\

0®5(pr>p™") [ub]

't - natmx
Fit: 0, =€
Single and dimuon | .-
Run I data points | o —
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MC and Data p Isolation

*Compare MC and data muon isolation
* Like-sign events with 2 muons p> 5 GeV/c

* Observe excess at large isolation (i.e. not isolated)

Total MC ; -+ MC Background

2 —s— Data
bGCkground o —a— Signal MC x5
correctly z +
normalized g

++ 1

32.2pb data

Cut at 1 GeV, =y p.*>10 GeV/c
Olivie L imackam g Ly Lpgn Ly n b Ly e Leg Ly |
pT> IOGQV/C i ' i ’ * ° ° E-7Cone (2)3.4-0.159(GeV)10
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ug Invariant Mass Cut
eFinal cut: 15« M <75 GeV/c?

* Removes sign mis-id at J/V¥, Y and Z resonances

* Removes mis-meastired-high-p-muons
F"Q 40:—
g 35 .bE Monte-Carlo
. E 30 —=— Data

Events with  § ¢

w 25—
2 muons with | ¢ E No STT Tracks

e CFT only

E-Cone 15:_
Iso<6.06eV E l

T l+

0 100 150 200 250 300 350 400 450 500
(GeV/c)
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Current Results

*Not yet reliable: need Yo demonstrate better

understanding of the backgrounds
* Data: 4+2 events; Background: 2.3"%%  _ events

* MC Signal: 0.41+0.12 events
* m,=m,,,=1006eV/c?, tanp=3, p=+,A =0

MC o Generated I Lum Final No.
Process (ub) x1,000 (pb~') Events
bb 4.47 141,000 31.5 2.3+1.5
cC 2.29 210,000 91.7 <1.0
tt 5.86%x1076 5) 853.2 <0.1
Wjets  5.96x10~* 4,250 7,133 <0.021
WZ 2.39%107° 10 4,184 <0.048
77 1.07x107° 10 9,346 <0.010
Signal  3.57x 10~ 3 840.3 0.41+0.12
Data — — 32.2 4+2
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Lot Still to do...

*Need to understand b-bbar background better

* Try using data control sample selected by using Ag
between the muons

* For b-bbar this peaks at m, for SUSY it is flat
*New reconstruction tracking algorithm soon...

* Better (understood) tracking efficiency
* Currently have to apply ~65-90% weight to MC muons
* Will allow far better understanding of tracking isolation

* Better correction for CFT only tracks
*Quantatative analysis of sign mis-id background

*MC Scan of mSUGRA parameter space

* Needed to set limits...or make measurements!
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Conclusions

*Trigger is up and working welll

* L2 beta upgrade within next few months
* Sufficient to carry on to end of Run IIb

*Offline Analysis framework in place
* Testbed for new GRID technologies

* Gaining experience that will be useful for LHC
experiments

*Physics results starting to come...
* Some analyses close to Run I sensitivity

* Summer conferences will be interesting...
* Twice Run I luminosity (~200pb)
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L2 Kernel

\ L2 Interrupt

Switch turns off Ij%dler
all or some interrupts ',,:::: .......
to the kernel

Interrupt Handler

Kernel Memory Space

Communicate with Reserved Physical Memory

processes using o~

shared physical L2 Executable  jphysical
memory ~___Code Memory
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L2 Dataflow

p To Framework (Global only)
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L2 Buffer States
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System Administration

nique system administration scheme
* User (physicist) administered (no FNAL support)
* Divided into sub-clusters by office building

* 6rad students and post-docs contributed from
different institutes

e Counts as official DD service work

* Each institute has local admin with root access to just
their institutes machines

*Several major benefits of this scheme
* Admins are users too: problems get fixed fast!
* Very accessible to users: several in each building
* Split support load so no one person gets swamped
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