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The High Energy Limit of Fixed Order Matrix Elements

Process Diagrams
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t–channel dominance

Example: W+n-jet production at the LHC

∆y = yj2 − yj1 , yW , yj2 ≥ 1, yj1 ≤ −1
V. Del Duca, F. Maltoni, W.J. Stirling, JRA
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Observations

In the limit of large rapidity spans, the fixed order matrix
elements are dominated by contributions from diagrams
with a t-channel gluon exchange
This limit will be called The High Energy Limit and is
generally characterised by the following phase space
configuration of the final state particles

y0 > y1 > · · · > yn > yn+1, |k0| ∼ |ki | ∼ |kn+1|

i.e. multiple, isolated, hard parton production (multiple jets)
Good agreement (∼ 10%) with the full, fixed order result in
the relevant limit
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The Possibility for Prediction of n-jet Rates
The Power of Reggeisation

High Energy Limit
−→

|̂t | fixed, ŝ →∞

ka, y0 = 0

k1, y1

k2, y2

k3, y3

k4, y4

kb, yb

AR
2→2+n =ΓA′A

(
n∏

i=1

eω(qi )(yi−1−yi )

q2
i

V Ji (qi , qi+1)

)
eω(qn+1)(yn−yn+1)

q2
n+1

ΓB′B

qi =ka +
i−1∑
l=1

kl NLL: Fadin, Fiore, Kozlov, Reznichenko

At LL only gluon production; at NLL also quark–anti-quark pairs
produced.
Prediction of any-jet rate possible.
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Reggeisation and the BFKL Equation

The evolution of the reggeised gluon is described by the
BFKL equation

ωfω (ka, kb) = δ(2+2ε) (ka − kb) +

∫
d2+2εk′Kε

(
ka, k′) fω

(
k′, kb

)
ω: Mellin conjugated variable to the rapidity y along the evolution.

The kernel Kε consists of the virtual corrections of the trajectory
and the real corrections from the Lipatov vertices.

The BFKL equation provides a very convenient framework for
organising the divergences in the factorised form of the |M|2 on
the previous slide.
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Energy and Momentum Conservation in an Inclusive Framework

One of the benefits of BFKL : Fully inclusive any-jet partonic
cross sections can be calculated analytically
(p′

a, p′
b → pa, {pi}, pb)

dσ̂(pa, pb) = Γa(pa) f (pa,−pb,∆) Γb(pb)

Inclusive partonic cross section depending on the momentum
of two final state particles.
In order to reconstruct the initial state (impose energy and
momentum conservation, correct parton momentum etc.) and
calculate the convolution with pdfs, we need the full final state
information1!

1Not resummation of soft, colinear radiation: large contribution to energy
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Iteration at (Next to) Leading Logarithmic Accuracy

f (ka, kb, ∆) = exp
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Two problems:
1) Uses the integrated NLL vertices
(cannot resolve full final state)
2) Huge variance from nested rapidity integral

LL: J. Kwiecinski, C. Lewis, A. Martin;
C.R. Schmidt; L. Orr, W.J. Stirling

NLL: A. Sabio-Vera, JRA
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Direct BFKL Evolution @ LL&NLL
Solution to the BFKL equation at fixed ∆ at both LL and NLL:
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Direct BFKL Evolution, 2

f (ka, kb, ∆) =
∞X
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Z
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f (ka, kb,∆): the value at ∆ ≡
∑n+1

i=1 δyi of the product of
vertices V (qi , qi+1) at rapidity yi =

∑i
j=1 δyj connected with

Regge factors eω(qi )δyi describing the probability of no
(resolved) emission between two adjacent (in rapidity) vertices
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Direct BFKL Evolution, 3

1 Choose a random number of vertices for the evolution, n ≥ 0

2 Generate a set {ki}i=1,...,n of transverse momenta (the outgoing
momenta are {−ki}i=1,...,n)

3 Calculate the corresponding set of trajectories {ω(qi)}i=1,...,n+1,
and vertex factors
{V (qi , qi+1)}i=1,...,n, qi = ka +

∑i−1
l=1 kl

4 Generate the inter-vertex rapidity separations {δyi} according to
the distributions eω(qi )δyi

5 Calculate the corresponding ∆ =
∑n+1

i=1 δyi and return∏n
i=1 V (qi , qi+1)

Possibility to construct full final state2! Trivial to impose energy
and momentum conservation and do proper jet studies.

2See later
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Observation

1 Imposing Energy and Momentum conservation (i.e.
restricting phase space integral to that accessible at a
given energy) is completely unrelated to the NLL
corrections to the evolution.

2 To calculate an observable to full NLL accuracy, three
ingredients are necessary:

NLL Impact Factors
NLL Evolution
Energy and Momentum Conservation
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The Ingredients of the NLL Vertex
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Two methods for obtaining the vertices at NLL:
Fadin & Lipatov:

= +
V. Del Duca:

= lim

/ ×
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Divergences and Strategy

Quark contribution to the NLL vertex:

q1 q2

k1 k2

Divergences separate into two categories:
∆ = q1 − q2 = 0: Regulated by the NLL Trajectory
k1 → x∆: Regulated by the quark contribution to the NLL corrections to the
one-gluon production vertex (x is the light-cone momentum fraction of the
anti-quark)
Strategy:

1 Implement Lipatov Vertices and perform integration, while having
access to full final state information. Only possibility of combining
energy and momentum conservation with NLL evolution.

2 Check that the numerical integration over full phase space agrees
with the result of Fadin & Lipatov (or Camici & Ciafaloni)
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Structure of the Amplitude

K (2),qq̄
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#

Symmetry properties of the divergent part of the amplitude ensures that the
1/N2

c suppressed contribution is finite.
Phase space slice regularisation of the divergent pieces ensures
cancellation between the divergences from the quark production and the
quark contribution to the NLL corrections to the one-gluon production.
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First Check. . .
Check of finite part

1/N2
c suppressed terms: 100% agreement.

Calculation under control.
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Properties of the qq̄-Vertex

q1 = (20, 0)GeV, q2 = (0, 20)GeV:

E [GeV]
0 10 20 30 40 50 60 70 80 90 100

/d
E

qq
d

V

1

10

210

310

410

Antiquark: (k1, η), quark: (k2,−η), E = E1 + E2,
〈E〉 ≈ 40GeV, 〈∆12 = 2η〉 ≈ .56
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Summary and Conclustions

Have constructed a very efficient method for obtaining the
BFKL evolution as an approximation to multi-leg processes
Also applicable to small-x studies etc.
Have started the program to obtain fully exclusive final
state information of the NLL BFKL Evolution necessary
for energy and momentum conservation and thus full NLL
accuracy
Conclusion from the study of the exclusive NLL
quark–anti-quark vertex:
Exclusive information absolutely crucial for realistic
phenomenology, since the qq̄-vertex gets contributions
from relatively large invariant masses of the qq̄-pair.
Cannot assign a single rapidity to the quark and the
anti-quark.
http://www.hep.phy.cam.ac.uk/∼andersen/BFKL
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Why do I say we need Energy and Momentum
Conservation to obtain full NLL accuracy?

People who do not care about Energy and Momentum conservation
in the application of BFKL to the description of colour octet exchange
(leading to multiple emissions) often equal the evolution variable ∆ to

∆ = ln
s
s0

where s is the total energy and s0 the Regge scale.
However, we have clearly demonstrated that there is no one-to-one
correspondence between the centre of mass energy and the rapidity
∆ of the evolution.
Energy and Momentum Conservation may simply suppress the
kinematic region of the leading logarithms.
Distinguish NLL accuracy of the evolution from NLL accuracy of an
observable
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But I thought E&M-conservation was a NLL effect –
Why do you say it is not taken into account by the NLL
corrections to the kernel?!

∆y ≈LL ln s/s0 = ln s/s1 + ln s1/s0

Identifies correctly E&M-conservation as a NLL effect.
However, the very form of the BFKL equation means that effects from
constraints in phase space cannot be taken into account by the BFKL
kernel:

1 The kernel evolves between two transverse momenta; the BFKL
equation is uniform in rapidity. Emission of (energetic) particles does not
influence the phase space of emission later (or earlier) in the evolution

2 The NLL corrections to the kernel itself involves a fully inclusive phase
space integral over two-particle production vertices.

Poses no problem in diffractive studies (where no particles are emitted from
the evolution) - however, very significant effects in jet studies.
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