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The dipole scattering amplitude (7(n),

the dipole 1s probing small distances inside the proton: r ~ 1/Q
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The dipole scattering amplitude (7(n),

the dipole 1s probing small distances inside the proton: r ~ 1/Q
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The dipole scattering amplitude (7(n),

the dipole 1s probing small distances inside the proton: r ~ 1/Q
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The geometric scaling of g;,,((x, Q?)

saturation models fit well F, data
TI">:T(I"2 Zy) 20y = 02 Y 2
< ( ) Y QS ( ) @) =9 Golec-Biernat and Wiisthoff (1999)
lL Bartels, Golec-Biernat and Kowalski (2002)
o\ P, 2 Iancu, Itakura and Munier (2003)
oprs(x, Q%) = oprs(r = Q7/Q5()) and they give predictions which describe
this is seen in the data with A = 0.3 accurately a number of observables at
HERA (F.,P, F,, DVCS, vector mesons
Stasto, Golec-Biernat and Kwiecinski (2001) ( 2 L . V ) )
o and RHIC (nuclear modification factor in d-Au)
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The dipole scattering amplitude (7(n),

Pomeron loops < stochasticity in the evolution

One obtains the physical amplitude (T("), from an WYWW<
event-by-event dipole amplitude 7y (7) which obeys a
Langevin equation

Mueller and Shoshi (2004) Iancu and Triantafyllopoulos (2005)
Mueller, Shoshi and Wong (2005)

Iancu, Mueller and Munier (2005)

Y =In 1/x% ,/ 4,
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O Low density

In A2 p=InQ2

A : average speed
D : diffusion coefficient
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A new scaling law

Properties of the dipole amplitude (T()), have been obtained by exploiting the similarities
between the QCD equation and the s-FKPP equation well-known in statistical physics

The saturation scale is a stochastic variable distributed according to a Gaussian probability law:

2 IM2 )
P(n Q3) = % eXp(— IHZ(% Y/ Qs )) (fOI’ ‘ln[qu /@2] << DY ) Iancu, Mueller and Munier (2005)
Y C.M., G. Soyez, B.-W. Xiao, hep-ph/0606233
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Consequences for the observables
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Some analytic estimates

Analytical estimates for gy,,((x, Q?) in the diffusive scaling regime:

valid for /DIn(l/x) << In(Q% Q¢) << Din(l/x)
Aoy _ 7 'ml)ln x exp(—2Z?) with f = Nelon Zej% and 7= ln(Q2/ 652)
f

d?b VE 1277 ~ /Din(l/x)
. . e dOppis — F exp(—222)
And for the diffractive cross-section ~2p 4 Dinll/x Ve

the cross-sections (total and diffractive) are dominated by small dipole sizes r ~1/Q
there is no Pomeron (power-like) increase
the diffractive cross-section is dominated by the scattering of the quark-antiquark component
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Analytical estimates for gy,,((x, Q?) in the diffusive scaling regime:

valid for /DIn(l/x) << In(Q% Q¢) << Din(l/x)

=72 O 2
4% - JIn(l/x) XPCZY)  with F=MNeleu¥'p2  and Z= In(Q? Q3)
7

d?b VE 1277 ~ /Din(l/x)
, , e dOpps — F exp(—2Z2?)
And for the diffractive cross-section ~2p 4 Dinll/x Ve

 the cross-sections (total and diffractive) are dominated by small dipole sizes r ~1/Q
e there is no Pomeron (power-like) increase
» the diffractive cross-section is dominated by the scattering of the quark-antiquark component

In the diffusive scaling regime (up to momenta Q2 much bigger than the saturation scale Q2(x)):

cross-sections are dominated by rare events, in which the photon hits a black spot,
that he sees dense (at saturation) at the scale Q?

saturation is the relevant physics
the features expected when Q2 < §2(z) are extended up to much higher Q2



Conclusions

Y=1In1/x A a4 at higher energies, a new
*0\*1 scaling law: diffusive scaling
) diffusive Qv —
‘;\: Saturation scaling <T(r)>yz T(—ln[r2 Q2 (Y )]/1 / Dy)
> within the LHC energy range?
an intermediate energy regime:
HERA geometric geometric scaling
- scaling _ =
v (1) =T(P Q2 (1))
S
Q : -
Low density Q?(Y) — Q% Y
it seems that HERA is probing
the geometric scaling regime
>
In A2, p=InQ>
Q@ ~ 17

In the diffusive scaling regime, saturation is the relevant physics
up to momenta much higher than the saturation scale



