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BFKL LO formalism

Y=1log(X;/X)

e Typical kinematical domain where BFKL effects are
supposed to appear with respect to DGLAP: k2 ~ (92,
and Q? not too large

e O BFKL forward jet cross section

e Saddle point approximation and fits to the H1 do/dx
data: 2 parameters, o in exponential (constant and
fitted at LO), and normalisation



BFKL LO formalism

e BFKL LO forward jet cross section, saddle point
approximation:
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e 2 parameters in fits to do/dx: N, «



One parenthesis: cross section calculation

e Two difficulties: We need to integrate over the bin in ()?,
Tjet, k7 to compare with the experimental measurement
and we need to take into account the experimental cuts
(as an example: E, > 10 GeV, kpr > 3.5 GeV,

7 < 60; <20 degrees....)

e e perform the integration numerically: we chose the
variables for which the cross section is as flat as possible
to avoid numerical difficulties in precision: k%/Q?, 1/Q?,
10g1 /% jet

e \We take into account some of the cuts at the integration
level (k7 for instance) and the other ones using a toy
Monte Carlo



How to go to BFKL-NLL formalism?

e Simple idea: Keep the saddle point approximation, and
use the BFKL NLO kernel

e Formula at NLL:
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e Only free parameter in the BFKL NLL fit: absolute
normalisation



BFKL NLL and resummation schemes

NLO BFKL: Corrections were found to be large with
respect to LO, and lead to unphysical results

NLO BFKL kernels need resummation: to remove
additional spurious singularities in v and (1 — 7)

NLO BFKL kernel:

xwvro(vw) = X (y,w) + alxa(v) — xV (7))

X1(7): calculated, NLO BFKL eigenvalues (Lipatov,
Fadin, Camici, Ciafaloni)

x? and x1(0): ambiguity of resummation at higher
order than NLO, different ways to remove these
singularities, not imposed by BFKL equation, Salam,
Ciafaloni, Colferai

Transformation of the energy scale: v — v — w/2
(Salam) needed for F5, but not for forward jet cross
sections (the problem is symmetric contrary to F5)



How to determine ¢, x(v¢), and x"(7¢)?

First step: Knowledge of xnro(7,w, a) from BFKL
equation and resummation schemes (w is the Mellin
transform of Y')

Second step: Use implicit equation y(v,w) = w/a to
compute numerically w as a function of « for different
schemes and values of «

Third step: Numerical determination of saddle point
values 7o as a function of « as well as the values of
and y”

Study performed for three different resummation
schemes: S3 and S4 from Gavin Salam, and CCS from
Ciafaloni et al.

For more information: see R. Peschanski, C. Royon, and
L. Schoeffel, Nucl.Phys.B716 (2005) 401,
hep-ph/0411338



ver X(7¢), and x”(7¢) as a function of o

Determination of ¢, x(7¢), and x”(7¢) as a function of «
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Fit procedure

e Fit to H1 do/dx data only

e Fit using the 6 data points or 5 points only, removing the
lowest & point

e « (constant) is found to be small at LO, of the order of
0.1, and ag(k%) is imposed using the renormalisation
group equation at NLL

fit | data set x*/dof N o

LO | 6pts | 13/4 (0.47) | 0.42 ] 0.102
LO | 5pts [24/3(0.15)]0.37]0.133

)
CCS| 6pts |22.0/5(0.6)]0.91 -
csS | sopts [24/4 (021) 095 -




Fit results

o \* for CCS: 2.4 (0.2), S3: 15.5 (0.8), S4: 4.2 (0.2)

e Good description of H1 data using BFKL LO and BFKL
NLL formalism, DGLAP-NLO fails to describe the data

e BFKL higher corrections found to be small (We are in
the BFKL-LO region, cut on 0.5 < kT%/Q?* < 5)
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Comparison with ZEUS data

Comparison with ZEUS do /dx and do/dQ? data (similar
with do /dkr data)
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Comparison with H1 triple differential data
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Comparison with H1 triple differential data

e DGLAP NLO predictions cannot describe H1 data in the
full range, and large difference between DGLAP NLO and
DGLAP LO results (DGLAP NLO includes part of the

small x resummation effects)

e BFKL LO describes the H1 data when r = k%./Q? is
close to 1

e BFKL LO fails outside the region r» ~ 1 specially at high
Q2

e BFKL higher order corrections found to be small (as
expected) when r ~ 1

e Higher order BFKL corrections larger when r further
away from 1, where the BFKL NLL prediction is closer to
the DGLAP one ((Q* resummation effects are starting to
be large)

e BFKL NLL gives a good description of data over the full
range: first success of BFKL higher order corrections,
shows the need of these corrections



Comparison with H1 triple differential data

e Comparison between the three resummation schemes:

CCS, S1 and S3

e CCS and S4 lead to similar description of data while S3
is slightly disfavoured
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Conclusion

DGLAP NLO fails to describe forward jet data

First BFKL NLL description of H1 and ZEUS forward jet
data: very good description

The BFKL scale which is used in the exponential ag(k*)
can describe the H1 cross section measurements

Higher order corrections small when r = kt?/Q* ~ 1 and
larger when 7 is further away from 1 as expected

BFKL NLL formalism leads to a better description than
the BFKL LO one for the triple differential cross section:
Resummed BFKL NLO kernels include part of the

evolution in ?



