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Why VM production in DDIS is interesting

I Self-analyzing decays of VM:
amplitudes can be reconstructed
in their full complexity;

I Unique kinematics:
W 2

γp À Q2, |t|; all variables are
independently controlled.

γ∗(q)e(k)

e(k’)-Q
2

p(P)

W2

p(P’)

V(v)

t=- ∆2
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Why VM production in DDIS is interesting (cont.)

Very different theoretical approaches can be tested:

I Phenomenological models: e.g. VDM; Pomeron as a specific
Regge singularity;

I pQCD: collinear factorization; BFKL;

I QCD-motivated phenomenology: color dipole/kt-factorization

In comparison with inclusive DIS, exclusive VM production allows
one to study soft-to-hard transition in a more controllable fashion.

Diffractive DIS: Hebecker, Phys.Rept.331, 1 (2000)

VM in the pre-1997 era: Crittenden, hep-ex/9704009

Recent review: Ivanov, Nikolaev, Savin, Phys.Part.Nucl.37, 1 (2006)
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Basics of color dipole approach

VDM approach to photon-hadron reactions:

|γ∗(Q2)〉 = |γ∗(Q2)〉bare +
∑

V

e

fV

m2
V

m2
V + Q2

|V 〉 ,

where fV is the e+e− decay constant Γ(V → e+e−) = e2

f 2
V

mV
3 .

A(γ∗p → Vp) =
∑

V ′

e

fV ′

m2
V ′

m2
V ′ + Q2

〈V |σ̂|V ′〉 ,

where σ̂ is diffraction operator. At small Q2 production of ground
state VM the diagonal term dominates:

A(γ∗p → ρp) ≈ e

fρ

m2
ρ

m2
ρ + Q2

〈ρ|σ̂|ρ〉 .
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Basics of color dipole approach (cont.)

Microscopic origin:

|A〉 = ΨA
qq̄|qq̄〉+ ΨA

qq̄g |qq̄g〉+ . . .

The lowest Fock state, qq̄ pair (color dipole) dominates.
Key property: due to Lorentz time dilatation, color dipole is frozen in
transverse coordinate space → diffraction operator is diagonal in the
impact parameter space:

A(Ap → Bp) =

∫
dz d2~r ΨB∗

qq̄ (z ,~r)σdip(~r)Ψ
A
qq̄(z ,~r) .

Does not require presence of hard transverse momenta!

Nikolaev, Zakharov, ZPhys.C49, 607 (1991); C53, 331 (1992);

Mueller, NPB415, 373 (1994); Mueller, Patel, NPB425, 471 (1994);
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Basics of color dipole approach (cont.)

Origin of VDM success and its limitation in diffractive VM
production:

I at small Q2, Ψγ
qq̄(Q

2) is similar to typical ground state VM
wave functions; “hadronic” part of photon is well
approximated by VM;

I at larger Q2, Ψγ
qq̄(Q

2) is a coherent superposition of many

JPC = 1−− mesons, including radial and orbital excitations.
Transitions 〈V |σ̂|V ′〉 must be taken into account. GVDM
remains formally correct, but becomes very impractical and
misses the insight.



page 8

Basics of color dipole approach (cont.)

Color dipole formalism is closely related with the BFKL approach
(color dipole cross section ↔ convolution of BFKL kernel with
proton impact factor).

I Important role of coordinate representation in BFKL is known
since Lipatov, Sov.Phys.JETP 63, 904 (1986);

I In the LL, one can enrich BFKL dynamics with running αS

and effective gluon propagation radius to obtain generalized
BFKL evolution of dipole cross section, Nikolaev, Zakharov,

Zoller, JETP Lett.59, 6; PLB328, 486 (1994).

I At NLO, BFKL kernel was reformulated in the coordinate
representation recently, Fadin, Fiore, Papa, NPB769, 108;

PLB647, 179; arXiv:0705.1885 (2007).

Insight into the origin/limitations of the color dipole formalism
from non-perturbative treatment of γ∗p scattering is given in
Ewerz, Nachtman, hep-ph/0404254; hep-ph/0604087.
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σtot(γ
∗p) in kt-factorization

The color dipole representation appears also from direct diagram
calculation in the kt-factorization approach.

Consider lowest order pQCD calculation of the forward γ∗p → γ∗p
scattering.

p p

p p

γ∗

γ∗ γ ∗

γ∗

a) b)

c) d)
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σtot(γ
∗p) in kt-factorization (cont.)

Start with the simpler γ∗q scattering; consider diagram (d):

A = 4παem

∑

f

e2
f · color ·

∫
d4k

(2π)4

∫
d4κ

(2π)4

×Tr[(k̂1 + m)êλi
(k̂2 + m)γµ(k̂3 + m)ê∗λf

(k̂4 + m)γν ]∏
(k2

i −m2 + iε)

× ūqγ
ν′(p̂ − κ̂)γµ′uq

(p − κ)2 + iε
· gµµ′

κ2 + iε
· gνν′

κ2 + iε
.

Three steps:

I integration over Sudakov variables

I factorization under the integral

I spinorial algebra for quark loop
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σtot(γ
∗p) in kt-factorization (cont.)

Step 1: Sudakov decomposition and longitudinal integrals

Introduce p′µ and q′µ — lightcone vectors; s ≡ (p′ + q′)2 = 2p′q′.

qµ = q′µ +
Q2

s
p′µ , pµ = p′µ +

m2

s
q′µ ;

kµ = zq′µ + yp′µ + ~kµ , κµ = βq′µ + αp′µ + ~κµ ,

I Express all propagators in terms of Sudakov variables.

I Integrate out y and α by closing integral countours and taking the
residues. It sets k1 and k3 on mass shell.

I Analyzing the rest, observe that the only way to get ImA is by
setting (p − κ) on mass shell.

Im
∫

dy dz dαdβ

propagators
=

4π2

s3

∫ 1

0

dz

z2(1− z)2
1

(Q2 + M2)2
1

(~κ2)2
,

where M2 =
~k2+m2

z(1−z) is the invariant mass of the qq̄ pair.
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σtot(γ
∗p) in kt-factorization (cont.)

Step 2: “scalarization”

gµµ′ =
2

s
q′µp′µ′ +

2

s
p′µq′µ′ + g⊥µµ′ .

At large s, the first term dominates. The lower line is then

ūqq̂
′(p̂ − κ̂)q̂′uq ≈ s2δζζ′ .

The upper trace is

Tr[(k̂1 + m)êλi
(k̂2 + m)p̂′(k̂3 + m)ê∗λf

(k̂4 + m)p̂′] .
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σtot(γ
∗p) in kt-factorization (cont.)

Step 3: spinorial algebra

Two out of four spinors (k1 and k3) are on mass shell. The
remaining two can be also put on mass shell:

k̂2 + m = k̂on−shell
2 + m +

k2 −m2

s
p̂′ → k̂on−shell

2 + m ,

since p̂′p̂′ = p′2 = 0.

All spinors can be treated on-mass-shell. One can switch to
on-mass-shell lightcone spinors and calculate the trace via sum of
helicity building blocks.
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σtot(γ
∗p) in kt-factorization (cont.)

ImAL/T = s
8αem

∑
f e2

f

3π2

∫
dz d2k

d2κ

κ4
α2

SWL/T ,

with

WT = m2Φ2Ψ2 + [z2 + (1− z)2]~Φ1
~Ψ1 ,

WL = 4z2(1− z)2Q2Φ2Ψ2 .

Here

Ψ2 =
1

z(1− z)[M2 + Q2]
, ~Ψ1 = ~kΨ2 .

while Φ2 and ~Φ1 are the coherent sums of initial photon’s wave
functions for four diagrams:

Φ2 =
∑

a

(−1)aΨ2(z , ~ka) , ~Φ1 =
∑

a

(−1)a~Ψ1(z , ~ka) .
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σtot(γ
∗p) in kt-factorization (cont.)

Density of small-xγ photons in electron:

dnγ
e ≈

αem

π

~κ2d~κ2

(~κ2 + κ2
z)

2

dxγ

xγ
;

F(xγ , ~κ2) ≡ dnγ
e

d log xγd log~κ2
=

αem

π

(
~κ2

~κ2 + κ2
z

)2

.

Density of photons in positronium (zero net charge):

F(xγ , ~κ2) =
αem

π

(
~κ2

~κ2 + κ2
z

)2

· N · [1− F2(~κ
2)] ,

where F2(~κ
2) is two-particle formfactor and N = 2 is the number of

constituents in positronium.

I at ~κ2 ¿ 1/r2
P photons decouple, 1− F2(~κ

2) ∝ ~κ2.

I at ~κ2 À 1/r2
P incoherent sum: N[1− F2(~κ

2)] ≈ N.
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σtot(γ
∗p) in kt-factorization (cont.)

Similar considerations for the unintegrated gluon density in proton:

FBorn
g = CFNc

αs

π
[1− F2(~κ

2)] .

Evolution of the gluon density amounts to

FBorn
g → Fg (xg , ~κ2) .

We assume that this evolution is independent of the upper
subprocess.
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σtot(γ
∗p) in kt-factorization (cont.)

Final expression for σL/T

σL/T =
αem

∑
e2
f

π

∫
dz d2k

d2κ

κ4
αSF(xg , ~κ2)WL/T ,

Structure functions are:

FL/T =
Q2

4π2αem
σL/T , F2 = FL + FT .

One can use data on proton’s F2(xBj ,Q
2) to gain insight of the

properties of F(xg , ~κ2).
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σtot(γ
∗p) in kt-factorization (cont.)

Fourier transform from ~k to ~r

Within the leading log(1/x), ~k appears only in Ψγ and WL,T . It is
this property that leads to ~ri = ~rf — dipole is frozen during
scattering.

1

~k2 + Q
2

=
1

2π

∫
d2~re i~k~rK0(Qr) , etc.,

one gets

σL/T =

∫ 1

0
dz

∫
d2~r |ΨL,T |2σdip(~r) ,

where dipole cross section is

σdip =
4π

3

∫
d2~κ

κ4
αsF(xg , ~κ2) [1− cos(~κ~r)] .
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Properties of σdip(r) and Fg(xg , ~κ
2)

Three key properties of the color dipole cross section:

I at small dipole sizes, r ¿ 1 fm, σdip(~r) ∝ r2: color
transparency.

I at r ∼> 1 fm, plateau forms (saturation)

I transition region depends on energy → geometric scaling
(Stasto, Golec-Biernat, Kwiecinski, PRL86, 596 (2001)) → very
interesting phenomenology including VM production (Marquet,

Peschanski, Soyez, hep-ph/0702171)

Modifications of the color dipole formalism due to non-zero
momentum transfer can be found in Bartels, Golec-Biernat, Peters,

Acta Phys.Polon.B34, 3051 (2003)
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Properties of σdip(r) and Fg(xg , ~κ
2) (cont.)

Example: Golec-Biernat-Wüsthoff saturation model for σdip(r):

σdip(r) = σ0

[
1− exp

(−r2Q2
s (x)

)]
,

where σ0 = 23 mb, Q2
s (x) = 0.0238 GeV2 · x−0.29 is saturation scale

Golec-Biernat, Wüsthoff, PRD59, 014017 (1999)

r (fm)

σ 
(m

b
)

x=10-2
x=10-3
x=10-4
x=10-5

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Improved models: Bartels, Golec-Biernat, Kowalski, PRD66, 014001

(2002); Iancu, Itakura, Minuer, PLB590,199 (2004).
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Properties of σdip(r) and Fg(xg , ~κ
2) (cont.)

Unintegrated gluon density F(xg , ~κ2)

Fits can be obtained from proton
F2(x , Q2) data, e.g. Ivanov,
Nikolaev, PRD65, 054004
(2002).

I soft non-evolving
component

I hard evolving with x
component

I soft-hard diffusion in
observables.
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Fits should be tested against FL(x , Q2) (Jung et al., arXiv:0706.3793).
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Properties of σdip(r) and Fg(xg , ~κ
2) (cont.)

Both languages are useful in different contexts

I small dipoles → large ~κ2 dominate → convenient
interpretation in terms of F(xg , ~κ2).

I large dipoles → soft exchange, no perturbative gluons → soft
color dipole cross section; F(xg , ~κ2) just stands for “Fourier
transform of σdip”.



page 23

Exclusive diffractive production of mesons

From photoabsorption to VM production

Consider non-diagonal transition: γ∗(Q2
1 )p → γ∗(Q2

2 )p at large s;
(DVCS: Q2

2 = 0).

ImA(Q2
1 , Q2

2 ) ∝
∫

dzd2~k
d2~κ

(~κ2)2
F(x1, x2, ~κ

2)W (Q2
1 , Q2

2 ) .

Virtualities enter explicitly, W (Q2
1 ,Q2

2 ), and implicitly F(x1, x2, ~κ
2)

via x1, x2. x1 6= x2 → skewed unintegrated gluon distribution.
W (Q2

1 , Q2
2 ) is calculated as before via analytical continuation.
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Exclusive diffractive production of mesons (cont.)

Production of timelike photon: Q2 = −m2
V .

The last steps:

I replace the final photon LC WF with vector meson LC WF,
ΨV (z , ~k);

I take into account the fact that qq̄ pair can represent different
mesons (ground state, excited, high-spin).
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Exclusive diffractive production of mesons (cont.)

Description of VM

Proton-neutron-deuteron coupling (nonrelativistic example).

φ†n
[
σiu(p) + D ijσjw(p)

]
φp · V i

Here V i is polarization vector; u(p) and w(p) are spherically
symmetric radial WFs; σi is spinorial structure for the S-wave
component, while

D ijσj =

(
3
pipj

p2
− δij

)
σj

is spinorial structure for the D-wave component. Normalizing
S-wave:

∫
d3p(VV ∗)|u(p)|2, which is spherically symmetric.
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Exclusive diffractive production of mesons (cont.)

The same approach to construction of VM from qq̄ pair. The qq̄V
coupling is expressed as

ū′Γµu · Vµ ·ΨV (p) .

I Spinorial structures Γµ (different from γµ!) are constructed
for S-wave and D-wave VM;

I radial wave function ΨV (p) is spherically symmetric (in VM
rest frame) and is independent of the polarization state: no
ΨT , no ΨL, just Ψ(p2).
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Exclusive diffractive production of mesons (cont.)

Radial wave function

Consider real qq̄ pair with momenta:

kµ
q = zq′µ +

m2 + ~k2

zs
p′µ + ~kµ , kµ

q̄ = (1− z)q′µ +
m2 + ~k2

(1− z)s
p′µ − ~kµ .

Then

(kq + kq̄)
2 =

m2 + ~k2

z(1− z)
= M2 > 0 .

Denote 2pµ = kµ
q − kµ

q̄ . In the qq̄ rest frame,

~p = ~k , pz =
(2z − 1)

2
M .

The radial wave function depends on p2 = ~p2 + p2
z .
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Exclusive diffractive production of mesons (cont.)

Spinorial structure Γµ
S for the S-wave state is constructed by

Melosh transform or simply by requirement that normalization
integral depend only on p2 (i.e. spherically symmetric in VM rest
frame):

Γµ
S = γµ +

2pµ

M + 2m
.

It differs from naive γµ vertex by Fermi motion, which is important
for light VM (ρ, ω, φ).
D-wave structure is obtained by applying D-wave projector:

Γµ
D = DµνΓν

S = γµ +
M + m

p2
pµ .
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Exclusive diffractive production of mesons (cont.)

The resulting expression for the amplitudes

1

s
ImA(λV , λγ) =

cV
√

4παem

4π2

∫
dzd2~k

z(1− z)

d2~κ

(~κ + ~∆/2)2(~κ− ~∆/2)2

× αsF(x1, x2, ~κ, ~∆) ·W S/D(λV , λγ) .

cV is flavor-averaged charge:

cv =
1√
2
,

1

3
√

2
, −1

3
,

2

3

for ρ, ω, φ, J/ψ.
List of W S/D(λV , λγ) can be found in Ivanov, Nikolaev, JETP

Lett.69, 294 (1999).
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Understanding experimental data

with color dipole approach
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Pomeron has vacuum quantum numbers. Diffractively produced
meson must have P = C = −1.

I Ground state vector mesons (L = 0, nr = 0): ρ, ω, φ, J/ψ,Υ.

I Radially excited VM (L = 0, nr > 0): ≈ ρ′(1450), . . .

I Orbitally excited VM (L = 2, nr = 0): ≈ ρ′′(1700), . . .

I High-spin mesons, e.g. spin-3 mesons with L = 2 such as
ρ3(1690).

Ground state mesons: lots of accurate data, lots of theoretical
models;
Excited states: almost no data; few models; surprises to be
expected!
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Q2 dependence

1

s
ImA(Q2) =

∫
dz d2~r Ψ∗

V (z ,~r)σdip(~r)Ψ
γ
qq̄(z ,~r) .

Patterns of r behavior:

I Photon LCWF ∼ exp(−Qr), where Q
2

= z(1− z)Q2 + m2;

I σdip ∝ r2 at r ¿ 1 fm (color transparency), σdip ≈ const at
r ∼> 1 fm.

I ΨV ≈ const at r ¿ rV , quickly decays at large r .

The integral peaks at scanning radius

rS ≈ 6√
Q2 + M2

V

.

One can study soft-hard transition via VM production.
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Q2 dependence (cont.)

At small Q2 + M2
V (low Q2 production of light VM), the amplitude is

saturated by integration measure:

AT (Q2) ∝ r2
S ∝

1

Q2 + m2
V

, dσT ∝ 1

(Q2 + m2
V )2

,

which mimics vector dominance model result.
At large Q2 + M2

V color transparency comes into play

A(Q2) ∝ r2
Sσdip(r2

S ) ∝ 1

(Q2 + m2
V )2

,

up to corrections due to the gluon density.

dσL ∝ Q2

[
αSG (x , Q

2
)
]2

(Q2 + m2
V )4

, dσT ∝

[
αSG (x , Q

2
)
]2

(Q2 + m2
V )4

.

Interest in studying Q2-dependence: extraction of gluon density.
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Q2 dependence (cont.)

ρ production

Shape is predicted satisfactorily (ex-

pect for the soft-to-hard transition);

Overall normalization is poorly pre-

dicted, since it depends on the WF

chosen;

New larger data sets are being ana-

lyzed by ZEUS and H1.
10
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10 3

10 4

1 10
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Q2 dependence (cont.)

Complications:

I other factors also depend on Q2 (slope b, balance between σL and
σT ); can be eliminated in principle if one studies dσL/dt and
dσT/dt separately.

I Lack of precise knowledge of the exact hard scale Q
2
. For heavy

quarkonia (such as Υ), Fermi motion is suppressed, so that

Q
2 ≈ (Q2 + m2

V )/4. For light VM, Fermi motion makes

Q
2 ≈ 0.1(Q2 + m2

V ).

I Q
2

L and Q
2

T are somewhat different;

I pQCD applicability? Q
2

= 2 GeV2 corresponds to Q2 ∼ 20 GeV2.
Majority of experimental data on ρ production is at smaller Q2.
Collinear factorization calculations (D.Ivanov, Szymanowski,
Krasnikov, JETP Lett. 80, 226 (2004); Diehl, Kulger, talk at
DIS2007, arXiv:0706.3139) find huge NLO contributions.
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Q2 dependence (cont.)

J/ψ production was suggested to be a better probe of gluon
density.

ZEUS

1

10

10 2

10
-1

1 10 Q2 (GeV2)

σ(
γ* p→

J/
ψ

p)
 (

nb
)

0
//

//

MRT (ZEUS-S) × 1.49
MRT (CTEQ6M) × 2.22
MRT (MRST02) × 2.98

< W > = 90 GeV

10
-1

1

10

10 2

10
-1

1 100

Several approaches describe the Q2-dependence well, up to overall
normalization.
Data do not help much to distinguish among the models.
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Q2 dependence (cont.)

Longitudinal-to-transverse ratio

R =
σL

σT
, RLT =

σL

σT
· m2

V

Q2
.

Non-relativistic asymptotics: RLT = 1, but even J/ψ is very far
from asymptotic regime.

I Poor predictive power of models.

I Very sensitive probe of short distance behavior of VM wave
function.
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Q2 dependence (cont.)

σL/σT for ρ meson
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Q2 dependence (cont.)

I σL/σT from Bloom-Gilman duality (Martin, Ryskin, Teubner,

PRD 55, 4329 (1997))

I If one chooses ΨL and ΨT independently, σL/σT depends on
the respective choice of parameters.

I Even if ΨV is the same for L and T , the predictive power is
low. Due to extra power of ~k2, σT is peaked at smaller dipole
sizes than σL. RLT is smaller for more compact radial wave
functions.

σL/σT for ρ production remains the point of controversy.

σL/σT for φ and J/ψ are described rather well, but the data are
less accurate.
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Flavor universality: facts and myths

Many parts of the production amplitudes depend on

Q
2 ≈ (Q2 + m2

V )/4.
If one compares production cross section of different mesons at

equal Q
2
, then pQCD estimate is:

1

η
J/Ψ
V

≡ σ(V )

σ(J/ψ)
≈ mV Γ(V → e+e−)

mJ/ΨΓ(J/Ψ → e+e−)
,

ρ : ω : φ : J/ψ = 0.32 : 0.029 : 0.077 : 1 .

Therefore, η
J/Ψ
V σ(V ) plotted vs. Q2 + m2

V should follow the same
trend.
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Flavor universality: facts and myths (cont.)
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Flavor universality: facts and myths (cont.)

It is often stated (on the basis of quark charge counting) that
theory predicts SU(4) universality in VM production cross sections

ρ : ω : φ : J/ψ = 1 : 1/9 : 2/9 : 8/9

= 1.125 : 0.125 : 0.22(2) : 1 . (1)

This is quite different both from data and from pQCD
expectations. In fact, there is no sound theoretical argument for
SU(4) universality even at large Q2, since there are additional
flavour-dependent terms (VM wave function).
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W -dependence

Energy dependence is governed by the Pomeron.

Quantified by:

σ(W ) ∝ W δ ,

δ = 4[αIP(〈t〉)− 1] .

Photoproduction:

δΥ > δψ(2S) > δJ/ψ

> δφ > δρ .
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W -dependence (cont.)

In microscopic description, energy rise is due to the small-x rise of
gluon density/σdip.

Different models describe well σJ/ψ(W ) at Q2 = 0.
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W -dependence (cont.)

Electroproduction: δ = δ(Q2)
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At larger Q2, the Pomeron becomes “harder”.
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W -dependence: VM production vs. inclusive DIS

rV
tot =

σγ∗p→Vp(W
2, Q2)

σγ∗p
tot (W 2, Q

2
)

.

Naively, both processes are due to the Pomeron exchange. At

Q
2

= (Q2 + m2
V )/4, rV

tot should not depend on W .

Experiment (A.Levy, talk at DIS2002, Acta Phys. Polon. B33, 3547):

I rρ
tot ≈ const vs. W

I r
J/ψ
tot strongly rises with W

Puzzle for theory?
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W -dependence: VM production vs. inclusive DIS (cont.)

Pomeron is not an isolated Regge pole with fixed αIP .

Effective energy rise exponent is different for

σ(γ∗p → Vp) ∝ [G (x , Q
2
)]2

and σtot(γ
∗p) ∝ ∫

d log Q
2
G (x , Q

2
)

Warning against too simplistic treatment of the Pomeron.
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W -dependence: VM production vs. inclusive DIS (cont.)
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W -dependence: VM production vs. inclusive DIS (cont.)
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t-dependence

Trademark of diffraction: dσ/d |t| ∝ exp(−b|t|).

For proton-elastic VM production

b(Q2) = bp + 2α′IP log

(
x0W

2

Q2 + m2
V

)
+

A

Q2 + m2
V

.

I bp ∼ 4 GeV−2 reflects elastic p formfactor;

I 2α′IP log(. . . ) term comes from Pomeron exchange;

I A/(Q2 + m2
V ) comes from effective γ∗V IP transition;

I Q2 + m2
V universality.

Little predictive power: too much is parametrized.
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Helicity structure

Five independent helicity amplitudes A(λV ; λγ):

I helicity-conserving: A11, A00

I helicity-violating: A01, A10, A1−1.

Strictly forward γ∗p → VP amplitude: s-channel helicity
conservation (SCHC): λV = λγ .

Non-zero momentum transfer ~∆:

A(λV ; λγ) ∝ |~∆||λV−λγ |.

Typical |~∆| is small → helicity violating transitions are small.

Hierarchy among helicity amplitudes can be established,
D.Ivanov, Kirschner, PRD58, 114026 (1998);

Kuraev, Nikolaev, Zakharov, JETP Lett. 68, 696 (1998).
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Helicity structure (cont.)

Experimentally, one measures angular distribution of decay
products (π+π−, etc.) and extracts spin-density matrix elements
ra
λλ′ (Schilling, Wolf, NPB61, 381 (1973)).

I SCHC domination is confirmed;

I small violation of SCHC observed (most notably in r5
00 ∝ A01)

I expected t-behavior of SCHNC elements is confirmed.



page 53

Production of excited mesons

Focus on the ρ system: radial ≈ ρ(1450), orbital ≈ ρ(1700), spin
ρ3(1690) excitations.

I Presence of excited mesons among diffractive final states is obvious
even in GVDM;

I Production of various excited states has dramatically different
properties than ρ production;

I Little is known; various theoretical predictions differ significantly.

Martin, Ryskin, Teubner, PRD56, 3007 (1997) — Bloom-Gilman duality;
Kulzinger, Dosch, Pilner, EPJC7, 73 (1999) — only radial WF effects;

Caporale, Ivanov, PLB622, 55 (2005); EPJC44, 505 (2005) —

kt-factorization
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Production of excited mesons (cont.)

Some features of excited VM production

I radial excitations: node effect of the radial WF leads to
anomalous Q2 and t-dependence;

I orbital excitations: very different pattern of helicity amplitudes

I S/D-wave mixing: can help resolve long-standing puzzle of
ρ(1450)/ρ(1700) assignment.



page 55

Production of excited mesons (cont.)

Features of ρ3 production predicted in Caporale, Ivanov, EPJC44, 505

(2005):

I σρ3 and σρ′′ are of the same order of magnitude;

I σL/σT is very small for ρ′′ and very large for ρ3

I huge helicity violating amplitudes

I ρ3 photoproduction is sensitive to larger color dipoles than ρ.
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Production of excited mesons (cont.)

Experimental opportunities

Extracting excited mesons from multiparticle final state is hard;
Separation of these excitations is even harder.
However:

I Diffractive photoproduction of ρ excitations were observed in
1980’s by Omega Collaboration at CERN; σ(ρ3) ∼ 200–300
nb, σ(ρ′′) ∼ 500 nb.

I Current fixed-target experiments: COMPASS at CERN, E687
(→ E831) at FNAL have high statistics 4π and 6π samples in
this region.

I Worth pursuing: physics output can be very important!
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Conclusions

I Diffractive production of vector mesons has been and
continues to be very stimulating topic of research.

I It offers a unique opportunity to confront a vast spectrum of
theoretical models, from pure phenomenology to rigorous
QCD, which should help us better understand strong
interactions.

I Thanks to great efforts by HERA, there are now lots of data
on all aspects of diffractive VM production. Even more data
are to come.


