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Top QuarksTop Quarks
Spin 1/2 Spin 1/2 fermionfermion,   charge +2/3,   charge +2/3
WeakWeak--isospinisospin partner of the bottom partner of the bottom 
quarkquark
~40x heavier than its partner~40x heavier than its partner
Heaviest known fundamental particleHeaviest known fundamental particle

t
top

Produced mostly in Produced mostly in tttt pairs at the pairs at the 
TevatronTevatron
85% 85% tttt,, 15% 15% gggg
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MtopMtop = 171.4 = 171.4 ±± 2.1 2.1 GeVGeV

Cross section = 6.8 Cross section = 6.8 ±± 0.6 0.6 pbpb at NNLOat NNLO
Discovered by D0 and CDF in 1995Discovered by D0 and CDF in 1995
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The DØ ExperimentThe DØ Experiment

Fermilab
Tevatron

Top quarks observed by Top quarks observed by 
DØ and CDF in 1995 with DØ and CDF in 1995 with 
~50 ~50 pbpb––11 of dataof data

D0

CDF
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The DØ ExperimentThe DØ Experiment
Top quarks observed by Top quarks observed by 
DØ and CDF in 1995 with DØ and CDF in 1995 with 
~50 ~50 pbpb––11 of dataof data
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The DØ ExperimentThe DØ Experiment
Top quarks observed by Top quarks observed by 
DØ and CDF in 1995 with DØ and CDF in 1995 with 
~50 ~50 pbpb––11 of dataof data
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DatasetDataset
DØ has more than 2 DØ has more than 2 fbfb––11 on tape, on tape, Many thanks to the Many thanks to the 
FermilabFermilab accelerator division!accelerator division!
This analysis uses 0.9 This analysis uses 0.9 fbfb––11 of data collected from 2002 to of data collected from 2002 to 
20052005
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Single Top OverviewSingle Top Overview

s-channel:   “tb”
σσNLONLO = = 0.88 0.88 ±± 0.110.11 pbpb

t-channel:   “tqb”
σσNLONLO = = 1.98 1.98 ±± 0.250.25 pbpb

Experimental results Experimental results (95% C.L.)(95% C.L.)
DØDØ tbtb < 5.0 < 5.0 pbpb (370 (370 pbpb––11))

CDFCDF tbtb < 3.2 < 3.2 pbpb (700 (700 pbpb––11))
DØDØ tqbtqb < 4.4 < 4.4 pbpb (370 (370 pbpb––11))
CDFCDF tqbtqb < 3.1 < 3.1 pbpb (700 (700 pbpb––11))

CDFCDF tb+tqbtb+tqb < 2.7 < 2.7 pbpb LikelihoodsLikelihoods (960 (960 pbpb––11))
tb+tqbtb+tqb < 2.6 < 2.6 pbpb Neural networksNeural networks
tb+tqbtb+tqb = 2.7 = 2.7 pbpb Matrix elementsMatrix elements (significance of 2.3 (significance of 2.3 σσ))–1.3

“tW production”
σσNLONLO = = 0.210.21 pbpb

(Too small to see at the (Too small to see at the TevatronTevatron))

+1.5+1.5
––1.31.3
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Why Look for Single Top?Why Look for Single Top?
Study Study WtbWtb coupling in top productioncoupling in top production

MeasureMeasure ||VVtbtb| | directly  (more later)directly  (more later)
Test Test unitarityunitarity of CKM matrixof CKM matrix
Anomalous Anomalous WtbWtb couplingscouplings

Cross sections sensitive to new physicsCross sections sensitive to new physics
ss--channel: resonances (heavy channel: resonances (heavy WW′′ boson, charged Higgs boson, boson, charged Higgs boson, KaluzaKaluza--Klein excited Klein excited 
WWKKKK, , technipiontechnipion, etc.), etc.)
tt--channel: flavorchannel: flavor--changing neutral currents (changing neutral currents (t t –– Z / Z / γγ / g / g –– c / uc / u couplings)couplings)
Fourth generation of quarksFourth generation of quarks

Top propertiesTop properties
Polarized top quarks Polarized top quarks –– spin correlations measurable in decay productsspin correlations measurable in decay products
Measure top quark partial decay width and lifetimeMeasure top quark partial decay width and lifetime
CP violation (same rate for top and CP violation (same rate for top and antitopantitop?)?)

Similar (but easier) search than for Similar (but easier) search than for WHWH associated Higgs productionassociated Higgs production
Backgrounds the same Backgrounds the same –– must be able to model them successfullymust be able to model them successfully
Test of techniques to extract a small signal from a large backgrTest of techniques to extract a small signal from a large backgroundound



3/13/2007 Shabnam Jabeen (BU) 9

Event SelectionEvent Selection

One isolated electron or One isolated electron or muonmuon
Electron Electron ppTT > 15 > 15 GeVGeV, , ||ηη| < 1.1| < 1.1
MuonMuon ppTT > 18 > 18 GeVGeV, , ||ηη| < 2.0| < 2.0

Missing transverse energyMissing transverse energy
EETT > 15 > 15 GeVGeV

One bOne b--tagged jet and atagged jet and at least one more jett least one more jet
22––4 jets with 4 jets with ppTT > 15 > 15 GeVGeV,   |,   |ηη| < 3.4| < 3.4
Leading jet Leading jet ppTT > 25 > 25 GeVGeV, |, |ηη| < 2.5| < 2.5
Second leading jet Second leading jet ppTT > 20 > 20 GeVGeV
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Signal and Background ModelsSignal and Background Models
Single top quark signals modeled using SINGLETOPSingle top quark signals modeled using SINGLETOP

By Moscow State University theorists, based on COMPHEPBy Moscow State University theorists, based on COMPHEP
Reproduces NLO Reproduces NLO kinematickinematic distributionsdistributions
PYTHIA for PYTHIA for partonparton hadronizationhadronization

tttt pair backgrounds modeled using ALPGENpair backgrounds modeled using ALPGEN
PYTHIA for PYTHIA for partonparton hadronizationhadronization
PartonParton--jet matching algorithm used to avoid doublejet matching algorithm used to avoid double--counting final counting final 
statesstates
Normalized to NNLO cross sectionNormalized to NNLO cross section
18% uncertainty includes component for top mass18% uncertainty includes component for top mass

MultijetMultijet background modeled using data with a nonbackground modeled using data with a non--isolated lepton and jetsisolated lepton and jets
Normalized to data before Normalized to data before bb--tagging (together with tagging (together with WW+jets +jets 
background)background)



WW+jets Background+jets Background
WW+jets background modeled using ALPGEN+jets background modeled using ALPGEN
PYTHIA for PYTHIA for partonparton hadronizationhadronization
PartonParton--jet matching algorithm used to avoid doublejet matching algorithm used to avoid double--counting final statescounting final states
WbbWbb and and WccWcc fractions from data to better represent higherfractions from data to better represent higher--order effectsorder effects
30% uncertainty for differences in event kinematics and assuming30% uncertainty for differences in event kinematics and assuming equal for equal for WbbWbb
and and WccWcc
WW+jets normalized to data before +jets normalized to data before bb--tagging (with tagging (with multijetmultijet background)background)
ZZ+jets, +jets, dibosondiboson backgrounds very small, included in backgrounds very small, included in WW+jets via normalization+jets via normalization

11



Event Yields Before Event Yields Before bb--TaggingTagging
W Transverse MassW Transverse Mass

2 jets

ElectronsElectrons MuonsMuons

3 jets

4 jets

Signal acceptances: Signal acceptances: tbtb = 5.1%, = 5.1%, tqbtqb = 4.5%= 4.5%

S:B ratio for S:B ratio for tb+tqbtb+tqb = 1:180= 1:180

Need to improve S:B to have a hope of Need to improve S:B to have a hope of 
seeing a signal seeing a signal →→ select only events with select only events with bb--
jets in themjets in them

12



bb--Jet IdentificationJet Identification

Ann Heinson   (UC Riverside)

13

Separate b-jets from light-quark and 
gluon jets to reject most W+jets 
background

DØ uses a neural network algorithm
7 input variables based on impact 
parameter and reconstructed vertex

Operating point:
b-jet efficiency ≈ 50%
c-jet efficiency ≈ 10%
light-jet effic.   ≈ 0.5%
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Event Yields after Event Yields after bb--TaggingTagging

Signal acceptances: tb = (3.2 ± 0.4)%, tqb = (2.1 ± 0.3)%

Signal:background ratios for tb+tqb are 1:10 to 1:50
Most sensitive channels have 2jets/1tag, S:B = 1:20

Single top signal is smaller than total background uncertainty
counting events is not a sensitive enough method
use a multivariate discriminant to separate signal from 
background
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Search Strategy SummarySearch Strategy Summary

Maximize the signal acceptanceMaximize the signal acceptance
Particle ID definitions set as loose Particle ID definitions set as loose 
as possible (i.e., highest as possible (i.e., highest 
efficiency, separate signal from efficiency, separate signal from 
backgrounds with fake leptons backgrounds with fake leptons 
later)later)
Transverse momentumTransverse momentum
thresholds set low, thresholds set low, 
pseudorapiditiespseudorapidities widewide
As many decay channels used as As many decay channels used as 
possible possible –– this analysis shown in this analysis shown in 
red boxred box
Channels analyzed separately Channels analyzed separately 
since S:B and background since S:B and background 
compositions differcompositions differ

Separate signal from background Separate signal from background 
using multivariate techniquesusing multivariate techniques
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12 Analysis Channels 12 Analysis Channels 
W Transverse Mass

2 jets

Electrons

3 jets

4 jets

1 tag 2 tags
Muons

1 tag 2 tags
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Systematic UncertaintiesSystematic Uncertainties
Uncertainties are assigned for each signal and background componUncertainties are assigned for each signal and background component ent 
in all analysis channelsin all analysis channels

Most systematic uncertainties apply only to normalizationMost systematic uncertainties apply only to normalization

Two sources of uncertainty also affect the shapes of distributioTwo sources of uncertainty also affect the shapes of distributionsns
jet energy scalejet energy scale
tagtag--rate functions for rate functions for bb--tagging MC eventstagging MC events

Correlations between channels and sources are taken into accountCorrelations between channels and sources are taken into account

Cross section uncertainties are Cross section uncertainties are dominated by the statistical uncertaintydominated by the statistical uncertainty,, the the 
systematic contributions are all smallsystematic contributions are all small

Source of UncertaintySource of Uncertainty SizeSize
Top pairs normalizationTop pairs normalization 18%18%
W+jets & W+jets & multijetsmultijets
normalizationnormalization

1818––28%28%

Integrated luminosityIntegrated luminosity 6%6%
Trigger modelingTrigger modeling 33––6%6%
Lepton ID correctionsLepton ID corrections 22––7%7%
Jet modelingJet modeling 22––7%7%
Other small componentsOther small components Few %Few %
Jet energy scaleJet energy scale 11––20%20%
Tag rate functionsTag rate functions 22––16%16%
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Measuring a Cross SectionMeasuring a Cross Section

NbkgdsNbkgds = 6   (= 6   (ttllttll, , ttljttlj, , WbbWbb, , WccWcc, , WjjWjj, , multijetsmultijets),    ),    NbinsNbins = 12 = 12 chanschans x 100 bins = 1,200x 100 bins = 1,200
Cross section obtained from peak position of Bayesian posterior Cross section obtained from peak position of Bayesian posterior probability densityprobability density
Shape and normalization systematic uncertainties treated as nuisShape and normalization systematic uncertainties treated as nuisance parametersance parameters
Correlations between uncertainties are properly accounted forCorrelations between uncertainties are properly accounted for
Signal cross section prior is nonSignal cross section prior is non--negative and flatnegative and flat

18
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Final Analysis StepsFinal Analysis Steps

We have selected 12 independent sets of data for final analysisWe have selected 12 independent sets of data for final analysis

Background model gives good representation of data in ~90 Background model gives good representation of data in ~90 
variables in every channelvariables in every channel

Calculate Calculate discriminantsdiscriminants that separate signal from backgroundthat separate signal from background
Boosted decision treesBoosted decision trees
Matrix elementsMatrix elements
Bayesian neural networksBayesian neural networks

Check Check discriminantdiscriminant performance using data control samplesperformance using data control samples

Use ensembles of pseudoUse ensembles of pseudo--data to test validity of methodsdata to test validity of methods

Calculate cross sectionsCalculate cross sections using binned likelihood fits ofusing binned likelihood fits of
(floating) signal + (fixed) background to data(floating) signal + (fixed) background to data
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Testing with PseudoTesting with Pseudo--DataData
To verify that the calculation methods work as expected, we testTo verify that the calculation methods work as expected, we test them using them using 
several sets (“ensembles”) of pseudoseveral sets (“ensembles”) of pseudo--datadata
Wonderful tool to test the analyses!  Like running DØ many 1,000Wonderful tool to test the analyses!  Like running DØ many 1,000’s of times’s of times
Select subsets of events from total pool of MC eventsSelect subsets of events from total pool of MC events

Randomly sample a Poisson distribution to simulate statistical fRandomly sample a Poisson distribution to simulate statistical fluctuationsluctuations
Background yields fluctuated according to uncertainties to reproBackground yields fluctuated according to uncertainties to reproduce duce 
correlations between components from normalizationcorrelations between components from normalization

Ensembles we used:Ensembles we used:
ZeroZero--signal ensemble, signal ensemble, σσ((tb+tqbtb+tqb) = 0 ) = 0 pbpb
SM ensemble, SM ensemble, σσ((tb+tqbtb+tqb) = 2.9 ) = 2.9 pbpb
““MysteryMystery”” ensembles, ensembles, σσ((tb+tqbtb+tqb) = ? ) = ? pbpb
Measured Measured XsecXsec ensemble, ensemble, σσ((tb+tqbtb+tqb) = ) = σσmeasmeas

Each pseudoEach pseudo--dataset is like one Ddataset is like one DØØ experiment with 0.9 experiment with 0.9 fbfb––1 of 1 of ““datadata””,,
up to 68,000 pseudoup to 68,000 pseudo--datasets per ensembledatasets per ensemble

20
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SignalSignal--Background SeparationBackground Separation
using Decision Treesusing Decision Trees

MachineMachine--learning technique, widely used in social sciences, learning technique, widely used in social sciences, 
some use in HEPsome use in HEP
Idea: recover events that fail criteria in cutIdea: recover events that fail criteria in cut--based analysesbased analyses
Start at first “node ”  with “training sample” of 1/3 of all Start at first “node ”  with “training sample” of 1/3 of all 
signal and background eventssignal and background events

For each variable, find splitting value with best separation For each variable, find splitting value with best separation 
between two children (mostly signal in one, mostly background between two children (mostly signal in one, mostly background 
in the other)in the other)
Select variable and splitting value with best separation to Select variable and splitting value with best separation to 
produce two “branches” with corresponding events, (F)ailed and produce two “branches” with corresponding events, (F)ailed and 
(P)assed (P)assed cutcutRepeatRepeat recursively on each noderecursively on each node

Stop when improvement stops or when too few events are left Stop when improvement stops or when too few events are left 
(100)(100)
Terminal node is called a “leaf ” withTerminal node is called a “leaf ” with

purity = purity = Nsignal/(Nsignal+NbackgroundNsignal/(Nsignal+Nbackground))

Run remaining 2/3 events and data through tree to derive resultsRun remaining 2/3 events and data through tree to derive results
Decision tree output for each event = leaf purity    Decision tree output for each event = leaf purity    
(closer to 0 for background, nearer 1 for signal)(closer to 0 for background, nearer 1 for signal)
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Boosting the Decision TreesBoosting the Decision Trees
Boosting is a recently developed technique that improves any weak 
classifier (decision tree, neural network, etc)
Boosting averages the results of many trees, dilutes the discrete 
nature of the output, improves the performance
This analysis: 

Uses the “adaptive boosting algorithm”:
Train a tree Tk
Check which events are misclassified by Tk
Derive tree weight wk
Increase weight of misclassified events
Train again to build Tk+1
Boosted result of event i :

20 boosting cycles
Trained 36 sets of trees: (tb+tqb, tb, tqb) x (e,μ) x (2,3,4 jets) x (1,2 b-tags)
Separate analyses for tb and tqb allow access to different types of 
new physics
Search for tb+tqb has best sensitivity to see a signal 

  T (i) = wkTk (i)n=1
Ntree∑

Before boosting After boosting
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Decision Tree VariablesDecision Tree Variables

49 input variables - Same list of variables used for all analysis channels
Adding more variables does not degrade the performance
Reducing the number of variables always reduces sensitivity of the analysis
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Decision Tree Cross ChecksDecision Tree Cross Checks
Select two background-dominated samples:

“W+jets”:   = 2 jets, HT(lepton, ET, alljets) < 175 GeV, =1 tag
“tt”:   = 4 jets, HT (lepton, ET, alljets) > 300 GeV , =1 tag

Observe good data-background agreement
“W+jets”

Electrons

“tt”

Muons

24
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Decision Tree VerificationDecision Tree Verification
Use “mystery” ensembles with many different signal 
assumptions

Measure signal cross section using decision tree outputs

Compare measured cross sections to input ones

Observe linear relation close to unit slope

Input xsec
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SignalSignal--Background SeparationBackground Separation
using Matrix Elementsusing Matrix Elements

Use the 4-vectors of all reconstructed leptons and jets
Use matrix elements of main signal and background Feynman diagrams 
to compute an event probability density for signal and background 
hypotheses
Goal: calculate a discriminant:

Define PSignal as a normalized differential cross section:

Performed in 2-jets and 3-jets channels only
No matrix element for tt so no discrimination between signal and top 
pairs yet
Matrix element verification with ensembles shows good linearity, unit 
slope, near-zero intercept
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Matrix Element Cross ChecksMatrix Element Cross Checks
Select two background-dominated samples:

“Soft W+jets”:   = 2 jets, HT(lepton, ET, alljets) < 175 GeV, =1 tag
“Hard W+jets”:  = 2 jets, HT(lepton, ET, alljets) > 300 GeV, =1 tag

Observe good data-background agreement

“Soft W+jets”

27

“Hard W+jets”

Full range High end Full range High end

tb

tq
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SignalSignal--Background SeparationBackground Separation
using Bayesian Neural Networksusing Bayesian Neural Networks

Bayesian neural networks improve on this technique:
Average over many networks weighted by the 
probability of each network given the training 
samples
Less prone to over-training
Network structure is less important – can use larger 
numbers of variables and hidden nodes

For this analysis:
24 input variables (subset of 49 used by decision 
trees)
40 hidden nodes, 800 training iterations
Each iteration is the average of 20 training cycles
One network for each signal (tb+tqb, tb, tqb) in each 
of the 12 analysis channels

Bayesian neural network verification with ensembles 
shows good linearity, unit slope, near-zero intercept

Neural networks use many input variables, train on 
signal and background samples, produce one output 
discriminant

Network output

Network output

tqb

Wbb
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Statistical AnalysisStatistical Analysis
Before looking at the data, we want to know two things:

By how much can we expect to rule out a background-only hypothesis?
Find what fraction of the ensemble of zero-signal pseudo-datasets give a cross section 
at least as large as the SM value, the “expected p-value”
For a Gaussian distribution, convert p-value to give “expected signficance”

What precision should we expect for a measurement?
Set value for “data” = SM signal + background in each discriminant bin (non-integer) 
and measure central value and uncertainty on the “expected cross section”

With the data, we want to know:
How well do we rule out the background-only hypothesis?

Use the ensemble of zero-signal pseudo-datasets and find what fraction give a cross 
section at least as large as the measured value, the “measured p-value”
Convert p-value to give “measured signficance”

What cross section do we measure?
Use (integer) number of data events in each bin to obtain “measured cross section”

How consistent is the measured cross section with the SM value?
Find what fraction of the ensemble of SM-signal pseudo-datasets give a cross section 
at least as large as the measured value to get “consistency with SM”
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Expected ResultsExpected Results
Decision Trees

1.9 %
2.1 σ

2.7       pb

Expected p-value
Expected significance
Expected cross section +1.6

–1.4

Matrix Elements
3.7 %
1.8 σ

3.0       pb+1.8
–1.5

Bayesian NNs
9.7 %
1.3 σ

3.2      pb+2.0
–1.8

Decision Trees

Probability to rule out
background-only 

hypothesis

Zero-signal ensemble

SM =
2.9 pb

Matrix
Elements

Zero-signal
ensemble

SM =
2.9 pb

Bayesian
Neural

Networks

Zero-signal
ensemble

SM =
2.9 pb

Bayesian
Neural Networks

Expected
result

Matrix Elements

Expected
result

Decision Trees

“Data” =
SM signal +
background

Expected
result
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Bayesian NN ResultsBayesian NN Results

σ(tb+tqb) = 5.0 ± 1.9 pb
Measured p-value = 0.89 %
Measured significance = 2.4 σ
Compatibility with SM = 18%

Bayesian
Neural

Networks

Measured
result

5.0 pb

Bayesian
Neural

Networks

Zero-signal
ensemble

Probability
to rule out
background-only
hypothesis

Bayesian
Neural

Networks

SM-signal
ensemble

Compatibility
With SM

5.0 pb
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Matrix Element ResultsMatrix Element Results

σ(tb+tqb) = 4.6        pb

Measured p-value = 0.21 %
Measured significance = 2.9 σ
Compatibility with SM = 21%

+1.8
–1.5

Matrix
Elements

Measured
result

4.6 pb

Matrix
Elements

Zero-
signal

ensemble

Probability
to rule out
background-only
hypothesis

Matrix
Elements

SM-signal
ensemble

Compatibility
With SM

4.6 pb
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Matrix Element ResultsMatrix Element Results

Discriminant output without 
and with signal component
(all channels combined to 
“visualize” excess)
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Decision Tree ResultsDecision Tree Results

σ(tb+tqb) = 4.9 ± 1.4 pb

Measured p-value = 0.035 %
Measured significance = 3.4 σ
Compatibility with SM = 11%

Decision
Trees

Measured
result

4.9 pb

Decision
Trees

Zero-
signal

ensemble

Probability
to rule out
background-only
hypothesis

Decision
Trees

SM-signal
ensemble

Compatibility
With SM

4.9 pb
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Decision Tree ResultsDecision Tree Results

Discriminant output (all channels 
combined) over the full range and a 
close-up on the high end
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ME Event CharacteristicsME Event Characteristics

Mass (lepton,ET,btagged-jet)  [GeV]

Q(lepton) x η(untagged-jet)

Mass (lepton,ET,btagged-jet)  [GeV]

ME Discriminant < 0.4 ME Discriminant > 0.7

Q(lepton) x η(untagged-jet)
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DT Event CharacteristicsDT Event Characteristics

Mass (lepton,ET,btagged-jet)  [GeV]

W Transverse Mass   [GeV]

DT Discriminant < 0.3

Mass (lepton,ET,btagged-jet) [GeV]

DT Discriminant > 0.65

W Transverse Mass   [GeV]
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Correlation Between MethodsCorrelation Between Methods
Choose the 50 highest events Choose the 50 highest events 
in each in each discriminantdiscriminant and and 
count overlapping eventscount overlapping events

Measure cross section in 400 pseudo-
datasets of SM-signal ensemble and 
calculatecalculate linear correlation between 
each pair of results

Correlation between measured 
cross sections
DT ME BNN

DT 100 % 39 % 57 %
ME 100 % 29 %

BNN 100 %

Results from the three methods are 
consistent with each other

100 %BNN
52 %100 %ME
48 %58 %100 %DT

Overlap of signal-like events

100 %BNN
46 %100 %ME
56 %52 %100 %DT
BNNMEDT

E
le

ct
ro

ns
M

uo
ns
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CKM Matrix Element CKM Matrix Element VtbVtb

Weak interaction eigenstates and mass eigenstates are not the 
same: there is mixing between quarks, described by CKM matrix

In the SM, top must decay to W and d, s, or b quark

Constraints on Vtd and Vts give

If there is new physics, then

No constraint on Vtb
Interactions between top quark and gauge bosons are very interesting
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Measuring |Measuring |VtbVtb||

Assume
SM top quark decay :
Pure V–A :        = 0
CP conservation :        =       = 0

No need to assume only three quark 
families or CKM matrix unitarity
(unlike for previous measurements 
using tt decays)

Measure the strength of the V–A
coupling, |Vtb |, which can be > 1

Additional theoretical uncertainties

tb tqb
Top mass 13 % 8.5 %
Scale 5.4 % 4.0 %
PDF 4.3 % 10 %
αs 1.4 % 0.01 %

Use the measurement of the single top cross section 
to make the first direct measurement of |Vtb|
Calculate a posterior in |Vtb|2     (σ(tb, tqb) ∝ |Vtb|2)
General form of Wtb vertex:
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+0.6
–0.5

First Direct Measurement of |First Direct Measurement of |VtbVtb||

|Vtbf1L| = 
1.3 ± 0.2

0.68 < |Vtb| ≤ 1 at 95% C.L.
(assuming f1L = 1)

|Vtbf1L|2

= 1.7
+0.0
–0.2

|Vtb|2 =                
1.0

|Vtbf1L| = 1.3 ± 0.2
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Challenging measurement – small signal hidden in 
huge complex background
Much time spent on tool development (b-tagging) and 
background modeling
Three multivariate techniques applied to separate 
signal from background
Boosted decision trees give result with 3.4 σ
significance

First direct measurement of |Vtb|

Result submitted to Physical Review Letters
Door is now open for studies of Wtb coupling and 
searches for new physics

Summary:   Evidence forSummary:   Evidence for
Single Top Quark Production at DØSingle Top Quark Production at DØ



Additional MaterialAdditional Material
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Results for Results for tbtb and and tqbtqb SeparatelySeparately

Decision
Trees

Measured
result for

s-channel  tb

Decision
Trees

Measured
result for

t-channel  tqb

σ(tqb) = 4.2        pb

σ(tb) = 1.0 ± 0.9 pb

+1.8
–1.4
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Matrix Element MethodMatrix Element Method
Feynman DiagramsFeynman Diagrams

tb tq

2-jet channels

Wbb Wcg Wgg

3-jet channels

tbg tdb Wbbg
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Matrix Element S:B SeparationMatrix Element S:B Separation
46

tb discriminant tq discriminant
2-jet channels
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