A Top Pair Resonance Search At DØ

Amnon Harel

University of Rochester

APS April Meeting 2006, Dallas, Texas.
Tevatron Run II began on March 1st 2001.

The Tevatron collides protons and antiprotons at a center of mass energy of 1.96 TeV.

The predicted integrated luminosity by 2009 is between 4 and 8 fb\(^{-1}\).

The Tevatron delivered over 1 fb\(^{-1}\) (per experiment).

370 pb\(^{-1}\)
The DØ Detector
Introduction

The large mass of the top quark suggests it may play a special role in electroweak symmetry breaking. The Standard Model predicts non resonant top production. A significant bump would indicate a narrow resonance \rightarrow new physics.

Top production studies serve in preparation for the LHC, where top production will be a large background for many new physics searches.

This search was done in the lepton + jets channel.
- the isolated lepton (e/μ, possibly through an intermediate τ) helps reduce multi jet background
- the large branching ratio yield good statistics

Top Pair Branching Fractions

- "alljets" 44%
- $\tau+\tau$ 1%
- $\tau+\mu$ 2%
- $\tau+\tau$ 2%
- $\tau+e$ 2%
- $\tau+\tau$ 1%
- $\mu+\mu$ 15%
- $\mu+e$ 15%
- $e+e$ 15%
- $e+\mu$ 15%
- $\mu+\tau$ 15%
- "dileptons" 15%
- "lepton+jets" 15%
Event Selection

Main Signature

- A lepton (e/µ) + jets trigger.
- A $p_T > 20$ GeV isolated lepton with $|\eta| < 1.1$ (e) or $|\eta| < 2.0$ (µ).
- At least 20 GeV of missing transverse energy (MET).
- Four or more $p_T > 15$ GeV jets with $|\eta| < 2.5$
- At least one jet is b-tagged by reconstructing a displaced secondary vertex.

Additional Cuts

- Central primary vertex location ($|z| < 60$ cm).
- A triangular cut in $\Delta \Phi(l, MET)$ vs MET
- A veto on a second high p_T lepton.
- Kinematic fit converges
B-tagging

- B hadrons’ lifetime: $c\tau \sim 450$ μm
- B hadrons travel $L_{xy} \sim 3$ mm before decay

![Diagram of track selection and 3D secondary vertex reconstruction]

- **Track Selection**
 - (quality cuts, remove V0s)

- **3D secondary vertex reconstruction**

- $\frac{l}{\sigma_l} > 7$

- **Graph**
 - p_T vs. Jet p_T (GeV)
 - $D\bar{O}$
 - b-jet efficiency
 - c-jet efficiency
 - mis-tagging rate ($\times 10$)
The Main Backgrounds

SM top pairs \((l+\text{jets})\)
- Same signature → dominant background
- A lepton with high \(p_T\)
- A neutrino \(\rightarrow\) MET
- \(\geq 4\) jets

W → lν + \(\geq 4\) jets

Multi jet events
- Fake isolated lepton (often \(b\rightarrow lX\))
- Misreconstructed MET
Multi jet Background Estimation

The efficiencies of μ-isolation & e-id are:

- Very different for real leptons and for multi jet events
- Well understood in the signal simulation

This makes them ideal for the matrix method:

\[
N_{\text{loose}} = N^{W+tt} + N^{QCD}
\]
\[
N_{\text{tight}} = \varepsilon_{W+tt} N^{W+tt} + \varepsilon_{QCD} N^{QCD}
\]

$\varepsilon_{W+tt} \approx 85\%$, $\varepsilon_{QCD} \approx 10-16\%$

Derived from a similar “untagged” data sample depleted in true leptons
W+jets Background Estimation

Flavor composition fractions
(for each jet multiplicity)

B-tagging efficiencies per jet, by flavor

Estimated contribution to the untagged sample

From simulation

Trigger effects

Estimated W+jets background

From data

B-tagging efficiencies per event
(for each jet multiplicity and flavor composition)
This procedure chooses the right permutation ~65% of the time.
Simulated a Z’-like X using PYTHIA:

- spin=1
- produced in $q\bar{q} \rightarrow X$

- Forced to decay to a top pair.
- $\Gamma_X = 0.012 M_X$

1. Two partons end up in one jet, and an additional gluon jet is picked up instead.
2. Many hard jets \Rightarrow Inferior MET
3. PDFs enhance low mass production
Systematic Uncertainties

Effects on the overall normalization of SM contributions.

<table>
<thead>
<tr>
<th>source</th>
<th>rel. syst. uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ^+</td>
</tr>
<tr>
<td>Top quark mass (includes effect on $\sigma_{t\bar{t}}$)</td>
<td>+8.7</td>
</tr>
<tr>
<td>Signal subtraction from W+jets background estimate</td>
<td>+0.0</td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>+5.6</td>
</tr>
<tr>
<td>Luminosity</td>
<td>+4.6</td>
</tr>
<tr>
<td>Theoretical uncertainty on $\sigma_{t\bar{t}}$</td>
<td>+4.2</td>
</tr>
<tr>
<td>W+jets flavor composition</td>
<td>+2.9</td>
</tr>
<tr>
<td>Jet energy calibration</td>
<td>+2.7</td>
</tr>
<tr>
<td>b-tagging rate</td>
<td>+2.6</td>
</tr>
<tr>
<td>MC-to-data correction factors</td>
<td>+2.5</td>
</tr>
<tr>
<td>Theoretical uncertainty on $\sigma_{singletop}$</td>
<td>+0.2</td>
</tr>
<tr>
<td>Total</td>
<td>+13.2</td>
</tr>
</tbody>
</table>
Observed Mass Distribution

DØ Run II Preliminary ($L = 370 \text{ pb}^{-1}$)

- data
- $\bar{t}t$
- W+jets
- multijet
- single top
- total systematic error

Used (NNLO) top pair cross section $6.77 \pm 0.42 \text{ pb}$

Number of events expected: $89.2^{+11.8}_{-13.3}$

Observed: 108

(in both channel combined)
Upper Limits

DØ Run II Preliminary (L = 370 pb⁻¹)

- prediction for topcolor Z'
 with $\Gamma_{Z'} = 1.2\% M_{Z'}$
- expected limit at 95% C.L.
- observed limit at 95% C.L.

Exclusion for the leptophobic Z' boson (part of a topcolor model) in Harris, Hill, Parke, hep-ph/9911288: $M_{Z'} > 680 GeV$
Conclusions

Performed a search for a narrow top pair resonance in the lepton + jets channel using 370 pb\(^{-1}\) of integrated luminosity.

No evidence for resonant top pair production.

Set a limit on a leptophobic Z': \(M_{Z'} > 680 GeV \)