Measurement of $\sigma(t\bar{t})$ @ DØ using b-tagging

Florent CHEVALLIER
LPSC (Grenoble, FRANCE)

Introduction
- Motivations
- Signal & backgrounds

$\sigma(t\bar{t})$ measurement using b-tagging
- b-tagging algorithms
- Analyses overview

Results
Conclusion
Motivations for $\sigma(t\bar{t})$ studies

Tests of QCD
- *Production via strong interaction*
 \[\sigma^{NLO}(t\bar{t}) = 6.77 \pm 0.42 \text{ pb} \ (m_{top}=175 \text{ GeV/c}^2) \]
 Dominant process at TeVatron: $q\bar{q} \rightarrow t\bar{t}$ (85%)
- Spin correlation studies

Tests of EW & Higgs sector
- *Probe top quark decays via $|V_{tb}|$ measurement*
 b-jet tagging methods assume $\text{BR}(t \rightarrow Wb)=1$;
 Topological method is free of this assumption
- *Probe W boson decays*
 Using dilepton to $l+\text{jets}$ cross sections ratio
- $\sigma(t\bar{t})$ sensitivity to m_{top}
 Provides indirect m_{top} measurement

New physics searches
- *Exotic top decays*
 light H^\pm, stop, ...
- *New production diagrams*
 additional bosons, $t\bar{t}$ resonances, bound states, ...

Florent CHEVALLERER
Signal & backgrounds

Signal properties
- **Particle level**
 \[\bar{t}t \rightarrow (Wb) (Wb) \rightarrow (lv b) (qq b) \quad l=e, \mu \]
- **Reconstructed level**
 - 1 high energy isolated lepton
 - High missing \(E_T \)
 - \(\geq 3 \) high energy jets
 - \(\geq 1 \) b-tagged jet

Backgrounds
- **With fake lepton**
 - QCD
- **With isolated lepton**
 - \(W + \text{jets} \)
 - \(Z + \text{jets} \)
 - Diboson : WW, WZ, ZZ
- **With top quarks**
 - Strong production : \(tt \rightarrow ll' \)
 - Electroweak production

Event preselection
- **Lepton & \(mE_T \)**
 - Isolated lepton \(|\eta^e|<1.1, \quad |\eta^\mu|<2, \quad p_T>20 \text{ GeV/c} \)
 - Veto against 2\(^{nd}\) isolated high energy lepton
 - \(mE_T>20 \text{ GeV} \)
 - Triangular cuts in \((E_T, \Delta\Phi(\vec{E}_T, \vec{l})) \)
- **Jets**
 - \(\geq 3 \) jets, cone algorithm \(R=0.5 \)
 - Energetic jets, \(|\eta|<2.5 \)

Selection
- **b-tagging**
Why b-tagging?

- Discriminate $\bar{t}t$ signal from backgrounds
 - 2 central & high energy b-hadrons in $t\bar{t}$ decays
 - Few backgrounds with b quarks
 - S/B enhancement

b quarks properties

- High mass
- Harder fragmentation than lighter quarks

- Weak decays: $b \rightarrow W c/u$
 - Long b-lifetime $\tau \sim 10^{-12}$s
 - $L_{xy} \sim$ several mm in the detector

Semileptonic decays

2 tagging methods used here

- Soft lepton tagger
 - $\geq 1 \mu$ in the jet
- Secondary vertex tagger (SVT)
 - L_{xy} reconstruction
 - Leptons in jets

Higher vertex mass
- More tracks from the PV
- Wider jets

Tracks with large impact parameter
- Explicit secondary vertex reconstruction
- Leptons in jets
The SVT algorithm

Description
- **Reconstruct track-jets w.r.t PV**
 Good track selection & clustering into track-jets
- **Find secondary vertices for every track-jet**
 Create 2ndary vertices from tracks with $dca/\sigma_{dca} > 3.5$
 2ndary vertex selection : ≥ 2 tracks & $|L_{xy}| > 7 \sigma_{L_{xy}}$
- **Tag calorimeter jets**
 ≥ 1 secondary vertex within $\Delta R < 0.5$

b-tagging efficiency in data
- **Measured from a high p_T^{rel} μ-in-jet enriched sample**
- **Uses positive-tagged jets ($L_{xy}>0$)**
- **MC-based corrections**
 Inclusive b decays

Light jets mistag rate in data
- **Uses negative-tagged jets ($L_{xy}<0$)**
- **MC-based corrections**
 Long-lived particles
 Heavy flavour contamination
Analysis overview with Soft Lepton Tag

Sample composition estimation before tagging
- **QCD**
 Determined directly from data
- **W+jets, Z+jets**
 Absolute normalization from data
- **Other backgrounds**
 Rely on MC

Sample composition estimation after b-tagging
- **QCD**
 Determined directly from data
- **Other backgrounds**
 ε^{tag} evaluated from MC according to jet flavour
 ε^{tag} corrected with data

Cross-section extraction
- **Compute $N(bkg)$**
- **Compute cross-section**
 Standard method

$$\sigma(t\bar{t}) = \frac{N^{\text{observed}} - N^{bkg}}{L \cdot \varepsilon^{\text{trigger}} \cdot \varepsilon^{\text{selection}} \cdot \varepsilon \cdot B R}$$

Control bins

$L = 365 \text{pb}^{-1}, \sigma_{tt} = 7.7 \text{pb}$
Sample composition estimation before tagging
- **QCD**
 - Determined directly from data
- **W+jets**
 - Absolute normalization from data
 - Jet flavor composition from MC
- **Other backgrounds**
 - Rely on MC

Sample composition estimation after b-tagging
- **QCD**
 - Determined directly from data
- **Other backgrounds**
 - $\varepsilon_{tag} = f(\text{jet flavour})$
 - ε_{tag} from MC & corrected with data

Cross-section extraction
- **Separate #jets, #b-tags, channels**
 - 8 different analyses
- **Compute cross-section**
 - Maximum likelihood fit

$$L = \text{Proba}(N_{\text{observed}}, N_{\text{predicted}}, \sigma(t\bar{t}) | \text{# jets, #b-tags, channel})$$

Florent CHEVALLIER ER
APS 2006, Apr. 24th
Results & systematics

\[SVT: \sigma(\bar{t}t)_{m_{top}=175\text{GeV/c}^2} = 8.1^{+1.3}_{-1.2} (\text{stat} + \text{syst}) \pm 0.5(\text{lumi}) \text{ pb} \]

\[\Rightarrow \text{DØ's most precise measurement with } \mathcal{L} = 365 \text{ pb}^{-1} \]

\[SLT: \sigma(\bar{t}t)_{m_{top}=175\text{GeV/c}^2} = 7.7 \pm 1.7(\text{stat}) \pm 1.2(\text{syst}) \pm 0.5(\text{lumi}) \text{ pb} \]

Uncertainties on } \sigma(\bar{t}t) / SVT

- **Statistics**: 11 %
- **Systematics**
 - W+jets estimation: 5.9 %
 - b-tag \(\varepsilon\) in data: 4.9 %
 - JES: 3.0 %
 - Jet reco*ID: 3.0 %
 - \(\mu\) preselection: 2.2 %
 - e preselection: 2.2 %
 - b-tag \(\varepsilon\) in MC: 2.0 %
 - Matrix method: 1.8 %

Florent CHEVALLIER ER

APS 2006, Apr. 24th
Results & systematics

$SVT: \sigma(t\bar{t})_{m_{top}=175 GeV/c^2} = 8.1^{+1.3}_{-1.2} (\text{stat} + \text{syst}) \pm 0.5 (\text{lumi}) \text{ pb}$

⇒ DØ’s most precise measurement with $\mathcal{L} = 365 \text{ pb}^{-1}$

$SLT: \sigma(t\bar{t})_{m_{top}=175 GeV/c^2} = 7.7 \pm 1.7 (\text{stat}) \pm 1.2 (\text{syst}) \pm 0.5 (\text{lumi}) \text{ pb}$

Uncertainties on $\sigma(t\bar{t}) / SLT$

- **Statistics**: 22 %
- **Systematics**
 - Light jet b-tag ε: 12 %
 - $W+$jets estimation: 6 %
 - $Z+$jets estimation: 4 %
 - JES: 3 %
 - Jet reco*ID: 3 %
 - μ preselection: 2 %
 - e preselection: 2 %
 - Matrix method: 2 %
Conclusion

tt cross-section measurement
- *l+jets final states* (*e, μ* separately)
- *365 pb⁻¹ of DØ TeVatron Run II data*

Results

- *SVT:* $\sigma(t\bar{t})_{m_{top}=175 GeV/c^2} = 8.1^{+1.3}_{-1.2} (\text{stat + syst}) \pm 0.5 (\text{lumi}) \text{ pb}$
- *SLT:* $\sigma(t\bar{t})_{m_{top}=175 GeV/c^2} = 7.7 \pm 2.1 (\text{stat + syst}) \pm 0.5 (\text{lumi}) \text{ pb}$

 - Good agreement with SM expectations
 - Statistics limited results

On-going l+jets analyses

- *Different tt selection criteria*
- Secondary Vertex Tagger
- Soft Lepton Tagger
- Topological method
- *Optimizations in progress*

New analyses

- *Statistics x3*
- *Systematics reduced*
 - *New era of precision measurements*