Measurement of the Top Quark Charge at DØ

April Meeting 2006 APS
Sunday, April 23, 2006
Session I13 DPF
Top Quark Properties

On behalf of the DØ Collaboration
What is the top quark?

- Discovered in 1995 by both the CDF and DØ collaborations at the Fermilab Tevatron proton-antiproton collider.
- The top quark is one of the fundamental fermions of Nature.
- The production cross section and mass have been well measured.
- Other properties (not well known):
 - Spin
 - Electric Charge (SM top quark has charge 2/3)
Top quark physics

- W decay modes are used as labels for the top quark final state:
 - $Br (t \rightarrow Wb) \cong 100\%$
 - Lepton (e or μ) + jets
 - One W boson decays leptonically, the other decays hadronically
 - BR = 34%
 - Background: Multijet, W+jets
Fermilab and the Tevatron

- Uses superconductive magnets to collide protons and antiprotons.
- Situated in four mile long underground tunnel.
- Center of mass energy of 1960 GeV.
- Highest energy accelerator in the world!
- World record for hadron collider peak luminosity of $L=171 \times 10^{30} \text{ cm}^{-2}\text{s}^{-1}$!
 - Previous record held by CERN Intersecting Storage Ring (ISR) of $140 \times 10^{30} \text{ cm}^{-2}\text{s}^{-1}$.
The DØ Collaboration

- 19 countries, 80 institutions, 670 physicists
The DØ Detector

- High precision tracking detector:
 - Silicon vertex detector.
 - Central fiber tracker.
- Solenoid magnetic field of 2 T.
- Liquid argon calorimeter:
 - Electron/jet identification.
- Drift chambers for muon identification.

Silicon Microstrip Tracker

DØ Control Room

End view of calorimeter

+ New Electronics, Trig, DAQ
A True Masterpiece

20m/66ft

14m/46ft
Tevatron and DØ Performance

Run II Integrated Luminosity

19 April 2002 - 19 February 2006

ε = 84%

370 pb⁻¹

Delivered

Recorded
Analysis strategy

- The measurement of the charge occurs in 4 steps:
 - Selection of a pure sample of top quark events
 - Use lepton plus jets final states
 - Large statistical sample
 - Large signal to background ratio
 - Use b-quark tagging to enhance purity
 » Require 2 b-tagged jets in each event
 - Assignment of the correct jet and leptons
 - Two-fold ambiguity in assignment of lepton with b-quark jet
 - Use a constrained kinematical fit:
 - Masses of the W boson and top quarks are used as physical constraints
 - Determine the charge of the b-jet
 - Use convolution of charges of the tracks from the b hadron decay
 - Construct the observables Q_1 and Q_2
 - Use charge templates for the standard model (2/3) and exotic case (4/3) to determine which the data prefers
What does one look for?

Standard Model Top Quark

- One high P_T lepton: $P_T > 15$ GeV
- Missing transverse energy: $E_T > 15$ GeV
- Four or more jets: $P_T > 15$ GeV

Form two observables:

$$Q_1 = | q_{\text{lepton}} + q_b (q_{\overline{b}}) |$$

$$Q_2 = | - q_{\text{lepton}} + q_{\overline{B}} (q_B) |$$

Each scenario has two bottom quarks!

Exotic Top Quark

$$Q_1 = 4/3, Q_2 = 4/3$$

PRD 59, 091503 & PRD 61, 037301

- One high P_T lepton: $P_T > 15$ GeV
- Missing transverse energy: $E_T > 15$ GeV
- Four or more jets: $P_T > 15$ GeV

Form two observables:

$$Q_1 = | q_{\text{lepton}} + q_b (q_{\overline{b}}) |$$

$$Q_2 = | - q_{\text{lepton}} + q_{\overline{B}} (q_B) |$$
Finding bottom quarks

- A bottom quark is present in all top quark decays.
- The bottom quark forms a B hadron that propagates away from the primary vertex and then decays.
 - Look for tracks that form another vertex separate from the primary vertex.
 - Measure the track’s impact parameter.
- Mistag rate, i.e. the probability to tag a jet that did not originate from a bottom quark is 0.025%.
- Efficiencies and mistag rates are determined from data

<table>
<thead>
<tr>
<th></th>
<th>W+jets</th>
<th>t-tbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥4j, 1 tag</td>
<td>4%</td>
<td>44%</td>
</tr>
<tr>
<td>≥4j, 2 tag</td>
<td>0.4%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Jet Charge Algorithms

\[Q_{jet} = \frac{\sum_i q_i \cdot p_{T_i}^a}{\sum_i p_{T_i}^a} \]

- p_T weighted sum of charged tracks
- Applied only to b-tagged jets
- Optimization of parameters from $t\bar{t}$ simulated events (Monte Carlo)
 - $a = 0.6$
- Use only tracks with:
 - $p_T > 0.5$ GeV
 - $\Delta R < 0.5$ (jet, track)
Calibrating Q_{jet} on data

- Use a sample of multijets that are back-to-back:
 - Both are b-tagged
 - One has a muon to determine charge of jet
 - Calibration derived from second jet

- Correct charge assignment for:
 - B hadron oscillation
 - Cascade decay $b \rightarrow c \rightarrow \mu$
 - Charm pair production background
Templates and Data

17 fitted double b-tagged events

Charge templates for the standard model and exotic top quarks

DØ Run II Preliminary

$\mathbf{L = 370 \text{ pb}^{-1}}$

April Meeting 2006 APS

Leonard Christofek, KU
Limits

\[\Lambda = \frac{\prod_i p^{sm}(q_i)}{\prod_i p^{ex}(q_i)} \]

- Form a likelihood ratio
- \(p^{sm}(q) \) is the probability to observe top quark charge in standard model
- \(p^{ex}(q) \) is the probability to observe top quark charge in exotic scenario
- Rule out 4/3 or exotic model at 93.7%

\(\Lambda_{\text{data}} = 11.4 \)

DØ Run II Preliminary

Number of Ensembles

0 10 20 30 40

\(\Lambda \)
Summary

- DØ has made a measurement of the top quark charge at the Fermilab Tevatron.
- Using a sample of top quark events in the lepton plus jets channel, with an integrated luminosity of 370 pb^{-1}, we find 17 events with two b-tagged jets.
- Using a likelihood ratio, we find the data are in good agreement with a standard model top quark charge of $2/3$.
- The exotic quark hypothesis with charge $4/3$ is excluded at a 94% confidence level.