Single Top Quark Physics

Reinhard Schwienhorst

MICHIGAN STATE UNIVERSITY

Outline

• Introduction
• Single top quark production
• Searches at the Fermilab Tevatron
• Outlook
 – Tevatron future
 – LHC prospects
• Conclusions
Introduction

What is Single Top?
Reinhard Schwienhorst, Michigan State University
Higgs coupling

Electroweak charged-current coupling

 electroweak symmetry breaking

Reinhard Schwienhorst, Michigan State University
Top quark electroweak charged current interaction

top quark decay
SM single top quark production

\[q \rightarrow W^{-} t \chi^{-} \]

\[q' \rightarrow W^{+} t \chi^{+} \]

\[W^{-} b \]

\[W^{+} t \]

\[g \rightarrow tW \]

\[t \rightarrow Wb \]

TeV:
\[\sigma_{\text{tot}} = 3 \text{ pb} \]

LHC:
\[\sigma_{\text{tot}} = 326 \text{ pb} \]
New physics

New heavy boson

s-channel

\[q \rightarrow W' \rightarrow t \]
\[\bar{q}' \rightarrow b \]

t-channel

\[q \rightarrow Z, \gamma \rightarrow q \]
\[c \rightarrow t \]

Associated production

\[g \rightarrow t \rightarrow W \]
\[b \]

Flavor Changing Neutral Current

Modified Wtb coupling
Single Top
Single Top at LEP and Hera: FCNC

- **LEP:**
 \[e^+ e^- \rightarrow tc \]

- **Hera:**
 \[ep \rightarrow et \]
Single Top Goals

Tevatron
- Observe single top production
- Measure production cross section
- Look for new physics
 - New particles, new couplings
- Observe top quark spin correlations
- Background to Higgs searches

LHC
- Observe single top production
- Measure production cross section precisely V_{tb}
- Look for new physics
 - New particles, new couplings
 - Modified Wtb coupling
- Study top quark properties
 - Spin, mass, charge, ...
- Background to many new physics searches
Current Tevatron Run II Results

Precious data!
Top quark pair production

\[
q \quad \text{gluon} \quad t \\
\bar{q} \quad \bar{t}
\]

\[\sigma \sim 7 \text{ pb}\]

Single top quark production

\[
q \quad W \text{ boson} \quad t \\
\bar{q}' \quad \bar{b}
\]

\[\sigma \sim 1 \text{ pb (s-channel)}\]
Single top quark event

High-momentum lepton

Missing (unbalanced) energy
Event Sample Composition

Leptons: \((e, \mu)\) \(E_T > 15\) GeV, \(\not{E}_T > 15\) GeV
Jets: \(2 \leq n_{jets} \leq 4\), \(E_T\)\((jet)>15\) GeV, \(\geq 1\) b-tag

- **Background count** \(\sim 1\) event \(\times\) pb
- **Signal count** \(\sim 0.05\) event \(\times\) pb
- **Signal/Background** \(\sim 1/20\)
Discriminating Variables

Kinematic distributions

- Object kinematics
- Event kinematics
- Top quark reconstruction
- Angular correlations

Data-background comparison

DØ Run II, 230pb⁻¹

- t-channel
- t̅t
- W+jets

Event Yield vs. $p_T(\text{jet}_1 \text{ untagged})$ [GeV]

Normalized to unit area

$\cos(\Theta_{i,q})$
Optimized Event Analysis

Input:
discriminating variables

- Event energy
- Quark jet angle
- Reconstructed top mass
- Reconstructed top spin

Method:
multivariate analysis

Output:
signal probability

\[P(\text{signal}) \]

Cut-Based Likelihoods Decision Trees Neural Networks Matrix Elements
Analysis Strategy

- Maximize signal acceptance
 - E_T (leptons, jets) > 15 GeV
 - $2 \leq n_{jets} \leq 4$

Event Analysis

- full dataset
 - electron
 - 1 tag
 - 2 tags
 - muon
 - 1 tag
 - 2 tags

s-channel t-channel

result

DØ Run II Preliminary, 370 pb⁻¹

Reconstructed top mass using the leading b-tagged jet (GeV)
Neural Network

Reinhard Schwienhorst, Michigan State University

Likelihood

DØ Run II Preliminary, 370 pb⁻¹

95% CL cross section limits:

\[\sigma_s < 5.0 \text{ pb} \]

\[\sigma_t < 4.4 \text{ pb} \]

370 pb⁻¹

PLB 622, 265 (2005)
Analysis Strategy

- electron+muon combined
 - $E_T > 20$ GeV
 - $\equiv 2$ jets
- Kinematic fit
 - Identify top quark decay products
- NN b-tagging
Likelihood Analysis

95% CL cross section limits:

\[\sigma_s < 5.1 \text{ pb} \]
\[\sigma_t < 2.9 \text{ pb} \]
\[\sigma_{s+t} < 4.3 \text{ pb} \]
Neural Network Analysis

- Separate networks for s-, t-channel, s+t
- 14 discriminating variables
 - Object kinematics
 - Event kinematics
 - Kinematic fitter output
 - NN b-tagger output
- Bayesian limit setting

95% CL cross section limits:

- $\sigma_s < 3.2$ pb
- $\sigma_t < 3.1$ pb
- $\sigma_{s+t} < 3.4$ pb
Tevatron Summary

NLO cross section

<table>
<thead>
<tr>
<th>Channel</th>
<th>DØ NN (230 pb$^{-1}$)</th>
<th>DØ Likelihood (370 pb$^{-1}$)</th>
<th>CDF Likelihood (700 pb$^{-1}$)</th>
<th>CDF NN (700 pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-channel</td>
<td>6.4</td>
<td>5.0</td>
<td>5.0</td>
<td>3.2</td>
</tr>
<tr>
<td>t-channel</td>
<td>5.0</td>
<td>4.4</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>s+t</td>
<td>5.1</td>
<td>4.3</td>
<td>2.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>

95% CL upper cross section limits [pb]

- DØ NN: 6.4 pb, 5.0 pb, 5.1 pb
- DØ Likelihood: 5.0 pb, 4.4 pb, 4.3 pb
- CDF Likelihood: 5.0 pb, 2.9 pb, 3.4 pb
- CDF NN: 3.2 pb, 3.1 pb, 3.4 pb

- Reinhard Schwienhorst, Michigan State University

- 23
New Physics: extra heavy boson?

\[\text{M}(W') > 650 \text{ GeV} \]

\[\text{M}(W') = 600 \text{ GeV} \]

DØ Run II Preliminary, 230pb\(^{-1}\)

- Data
- Wprime (<10)
- tb + tqb
- t\(\bar{t}\)
- W+jets
- Multijet

\(\sqrt{s} [\text{GeV}]\)

Events

DØ Run II preliminary 230 pb\(^{-1}\)

- 95% C.L. limit
- W', SM-like coupl.

\(\text{M}(W') > 650 \text{ GeV}\)
Tevatron Single Top Future

- s+t combined
- Cut on NN output
- No systematics

Prospects

- Observe single top production in Run II
 - Discover new physics (if it's there)
- Measure $|V_{tb}|$ to $\sim 10\%$
Future Energy Frontier: LHC
Single Top future: LHC

s-channel: 10.7 pb
\[q \rightarrow W^+ t \]
\[\bar{q}' \rightarrow W^- \bar{b} \]

\[t \]

\[u \rightarrow t d W^- \]

\[g \rightarrow t b W^- \]

\[\text{t-channel: 247 pb} \]

\[\text{associated production: 68 pb} \]

Observe three single top production modes separately
- t-channel: easy
- s-channel and assoc. prod: harder

Observe new physics *(if it can be seen)*

Measure \(V_{tb} \) to few %

Study spin correlations
- Backgrounds are similar to Tevatron, yet different
 - W+jets less important
 - t\bar{t} more important
- t-channel observation early
 - Large cross section
- s-channel and Wt with 30 fb\(^{-1}\)
 - Separate by b-tag and jet multiplicity
Supersymmetry: Heavy H^+

$\begin{align*}
q & \rightarrow H^+ \\
q' & \rightarrow b \\
t & \rightarrow q' \\
t & \rightarrow b
\end{align*}$

Light H^+:

$\begin{align*}
t & \rightarrow H^+ \\
b & \rightarrow W^+
\end{align*}$

FCNC:

$\begin{align*}
q & \rightarrow q \\
c & \rightarrow Z, \gamma, g \\
t & \rightarrow t
\end{align*}$

Top-Higgs Yukawa coupling measurement

$\begin{align*}
g & \rightarrow g \\
t & \rightarrow t \\
\bar{t} & \rightarrow g
\end{align*}$
Conclusions

• The top quark is a key to understanding electroweak symmetry breaking

• We are close to observing electroweak top quark production at the Tevatron
 – Already ruling out many new physics scenarios
 – Advanced analysis methods to maximize sensitivity

• This is just the beginning
 – Tevatron dataset will increase \(\times 20 \) in next 4 years
 – LHC is just around the corner
Backup Slides
Tevatron Analysis Sensitivity

s-channel t-channel s+t

NLO cross section 0.88 pb 1.98 pb 2.86 pb

equipped 95% CL upper cross section limits [pb]

<table>
<thead>
<tr>
<th></th>
<th>DØ NN (230 pb⁻¹)</th>
<th>DØ Likelihood (370 pb⁻¹)</th>
<th>CDF Likelihood (700 pb⁻¹)</th>
<th>CDF NN (700 pb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.5</td>
<td>3.3</td>
<td>5.9</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td>4.3</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
</tr>
</tbody>
</table>
Likelihood Analysis

- 12 discriminating variables
 - Object and event E_T
 - Angular correlations
 - Top quark reconstruction

Reinhard Schwienhorst, Michigan State University
– Systematic uncertainties
 • Bkg normalization ~ 20%
 • b-tag modelling 6% - 17%
 • Particle ID ~ 5%
 • Trigger modeling ~ 5%

– Bayesian limit setting
 • Combining all channels

95% CL cross section limits:

\[\sigma_s < 5.0 \text{ pb} \]
\[\sigma_t < 4.4 \text{ pb} \]
Systematics and Event Selection Efficiencies

CDF takes uncertainties on shape systematics.

CDF II 695 pb$^{-1}$ Preliminary

<table>
<thead>
<tr>
<th>Source</th>
<th>t-channel</th>
<th>s-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES</td>
<td>1.8%</td>
<td>1.2%</td>
</tr>
<tr>
<td>ISR</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>FSR</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>PDF</td>
<td>2.5%</td>
<td>2.2%</td>
</tr>
<tr>
<td>MC</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>ϵ_{evt}</td>
<td>10.3%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Events detection efficiency$^{(*)}$

- **s-channel**: $1.87 \pm 0.15\%$
- **t-channel**: $1.21 \pm 0.17\%$

$^{(*)}$ Including $W \rightarrow \text{leptons} \text{ BR}$
To the network 2D output, maximum likelihood fit is applied and the best fits for t- /s- channel:

t-channel:

\[
\sigma_{t-ch} = 0.6^{+1.9}_{-0.6}(stat)^{+0.1}_{-0.1}(syst)\text{ pb}
\]

s-channel:

\[
\sigma_{s-ch} = 0.3^{+2.2}_{-0.3}(stat)^{+0.5}_{-0.3}(syst)\text{ pb}
\]

Expected upper limits:

- **t-channel:** \(\sigma < 4.2 \text{ pb} \)
- **s-channel:** \(\sigma < 3.7 \text{ pb} \)

\(\sigma < 3.1 \text{ pb} \) @ 95\% C.L. (OBSERVED)

\(\sigma < 3.2 \text{ pb} \) @ 95\% C.L.
Discriminating Variables

- **Object kinematics**
 - Jet p_T for different jets
 - Tagged, untagged,...

- **Event kinematics**
 - H (total energy)
 - H_T (transverse energy)
 - M (invariant mass)
 - M_T (transverse mass)
 - Summing over various objects in the event

- **Angular variables**
 - Jet-jet separation
 - Jet pseudorapidity (t-channel)
 - Top quark spin
 - Sphericity, aplanarity

25 variables total
Neural Networks

Input Nodes: One for each variable x_i

- $M_T (\text{jet1, jet2})$
- $M (\text{all jets})$
- $p_T (\text{jet1, jet2})$
- $p_T (\text{not best2})$
- $p_T (\text{not best1})$
- $\cos(\Theta_{(j_k)} \times z_{\text{best1}})$
- $M (W, \text{best})$
- $M (W, \text{lag1})$
- $\Delta R (\text{jet1, jet2})$
- \sqrt{s}
- $p_T (\text{tag1})$

Hidden Nodes: Each is a sigmoid dependent on the input variables

$$n_k(\vec{x}, \vec{w}_k) = \frac{1}{1 + e^{-\sum_w w_{ik} x_i}}$$

Output Node: linear combination of hidden nodes

$$f(\vec{x}) = \sum w'_k n_k(\vec{x}, \vec{w}_k)$$

Sigmoid
Neural Network Output

Neural Network Output

e+μ ≥ 1 tag

Neural Network Output

e+μ ≥ 1 tag

Neural Network Output

e+μ ≥ 1 tag

Neural Network Output

e+μ ≥ 1 tag
Single Top Phenomenology Connection

• NLO calculations exist for the single top signal

 – Fully differential distributions, including top quark decay

 – s-channel } Harris, Laenen, Phaf, Sullivan, Weinzierl, PRD66, 054024 (2002); Sullivan, PRD 70 (2005); Cao, RS, Yuan, PRD74, 054023 (2005); Cao, RS, Benitez, Brock, hep-ph/0504230 (2005); Ellis, Campbell, Tramontano, PRD 70, 094012 (2004)

• Several parton-level studies have been done

 – Exploiting asymmetries to discover single top

 – Studying angular correlations at NLO (t-ch, s-ch, and Wjj)
 Sullivan, hep-ph/0510224

• W + 2 jets background at NLO
 Campbell, Ellis, Rainwater PRD68, 094021 (2003)
Conclusions

• We are on a quest to reveal the origin of electroweak symmetry breaking and particle mass
• Understanding the top quark is an important step
 – In particular its electroweak interaction
• The top quark is a central focus at the Tevatron
 – Run II is now producing many results
 – Single top quark search is close to SM sensitivity
• This is just the beginning
 – Analyzing ×4 dataset now
 – LHC is just around the corner

Dawn of Discoveries
b quarks as a tool: b-tagging

- Identification of b-quark jets
 2 possible methods:
 - Identify muon inside jet
 ~20% of all b-quark jets
 - Identify long-lived decay
 ~35% of all b-quark jets

Probability to tag a jet in a top event:
- b-quark jet: ~55%
- light-quark jet: ~0.5%
Reinhard Schwienhorst, Michigan State University

Tevatron Single Top Future

- s+t combined
- NN search
- Cut on NN output (event counting)
- No systematics

Improvements
- b-tagging
 - More signal
- Jet energy resolution
 - Better top mass reconstruction

Prospects
- Observe single top production in Run II
 - Discover new physics (if it's there)
- Measure $|V_{tb}|$ to $\sim 10\%$

CDF II preliminary

<table>
<thead>
<tr>
<th>significance S / \sqrt{B}</th>
<th>integrated luminosity [1/fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>today 2007 2009</td>
<td></td>
</tr>
</tbody>
</table>

Reinhard Schwienhorst, Michigan State University
We assume but don't actually know:

- Charge, Spin
- Electroweak interactions
 - Charged current (W boson)
 - Total width
 - CKM matrix
 - Neutral current (Z boson)

Really don't know:

- Coupling to Higgs?
- Modified weak coupling?
- SUSY? New physics?
Tevatron s-channel signature

\[q \rightarrow W \rightarrow t \rightarrow b \nu \]

Cao, RS, Yuan PRD71, 054023 (2005)
Tevatron t-channel signature

Cao, RS, Benitez, Brock, Yuan, PRD72, 094027 (2005)
Single top cross section limit

Reinhard Schwienhorst, Michigan State University

Published in PLB 622, 265 (2005)
Particle production at the LHC

production cross-section (femtobarns)

particles produced in first LHC year

\(10^2\) \(10^4\) \(10^6\) \(10^8\) \(10^{10}\) \(10^{12}\) \(10^{14}\)

TeV LHC

total inelastic

bottom quark pairs

\(W\) bosons

\(Z\) bosons

top quarks

SM Higgs bosons (\(\@150\) GeV)

SUSY (\(\@1\) TeV)
Tevatron luminosity projection

Note:
- Single experiment
- No systematics
- Expect further improvements

Separate s-channel from t-channel

Observation of single top

“Evidence for” single top

Date

Luminosity [fb⁻¹]

8.2 fb⁻¹

5.1 fb⁻¹

4.1 fb⁻¹

9/29/03 9/29/04 9/30/05 10/1/06 10/2/07 10/2/08 10/3/09

Reinhard Schwienhorst, Michigan State University
Analysis Strategy

full dataset

- **electron**
 - $=1$ b-tag
 - ≥ 2 b-tags

- **muon**
 - $=1$ b-tag
 - ≥ 2 b-tags

Event Analysis

- **s-channel**
 - Wbb
 - tt

- **t-channel**
 - Wbb
 - tt

2d histograms, Wbb vs tt filter

- tt
 - **s-channel**
 - Wbb

- tt
 - **t-channel**
 - Wbb

binned likelihood

result
Neural Network Result

- Dominant systematics
 - Jet energy scale, b-ID: 10%
 - Background norm: 15-20%
 - Object ID: 5%
- Total systematic

\[\sigma_t < 5.8 / 5.0 \text{ pb} \]
\[\sigma_s < 4.5 / 6.4 \text{ pb} \]

Signal acceptance 15% 25%
Background sum 10% 26%

Expected/Observed limit:

- Published in PLB 622, 265 (2005)

Reinhard Schwienhorst, Michigan State University
Event selection result

10,000 events with lepton, neutrino, ≥ 2 jets
expect ~250 top quarks

Backgrounds

Top quark pairs

In 360pb⁻¹, lepton+jets
Top Quark Events

=1 b-tag: 367 events

=2 b-tags: 76 events

Top quark pairs
Backgrounds
Dataset used in latest analysis
0.37 fb⁻¹

Publication with 0.24 fb⁻¹

19 April 2002 - 5 January 2006

Delivered
Recorded