
Recommendations Regarding Common

Analysis Format Content

D0 Data Format Working Group

August 29, 2005

DØ Note 4647
Version 1.0

Contents

1 Introduction 3

2 Overview of Tmb_tree 3
2.1 Executable, framework packages and rcps 3

2.1.1 Structure of TMBAnalyze_x 4
2.1.2 Overview of tmb_tree Content 4

3 General Considerations Regarding Root Data Formats 6
3.1 Redundant Attributes . 6
3.2 CAF Data Model and Standard Root Classes 6

3.2.1 TObject . 6
3.2.2 Root collections: TObjArray and TClonesArray 7
3.2.3 Smart Pointers: TRef and TRefArray 8
3.2.4 TMBLorentzVector . 8

3.3 Schema Evolution . 9

4 Speci�c Branches 9
4.1 Global Event Data . 9

4.1.1 TMBGlobal � Global Event Object 9
4.1.2 TMBEventFlags � Event Flags 9
4.1.3 TMBHistory � Processing History 9

1

4.1.4 TMBTrigger � Fired Triggers 11
4.2 Monte Carlo Information . 11

4.2.1 TMBMCpart � Monte Carlo Particles 12
4.2.2 TMBMCvtx � Monte Carlo Vertices 12
4.2.3 TMBMCevtInfo � Global Monte Carlo Information . . 13
4.2.4 Particle and Parton Jets 13

4.3 Reconstructed Physics Objects 14
4.3.1 TMBTrack and TMBIsoTrack � Charged Particles . . 14
4.3.2 TMBVertex � Vertices 17
4.3.3 TMBEMCluster � Electrons and Photons 20
4.3.4 TMBEmCells � Calorimeter Cells 32
4.3.5 TMBMuon � Muons 34
4.3.6 TMBJets � Jets . 37
4.3.7 TMBLeBob � Unclustered Energy 40
4.3.8 TMBTaus . 40
4.3.9 TMBMet � Missing ET 42
4.3.10 TMBCps � Central Preshower 43
4.3.11 TMBFps � Forward Preshower 47
4.3.12 TMBLum and TMBLumV - Luminosity Monitor . . . 48
4.3.13 TMBTRefs � Overlapping Physics Objects 48

4.4 B-Tagging . 48
4.4.1 Primary Vertices for b-tagging 52
4.4.2 V 0's . 53
4.4.3 Track Jets . 53
4.4.4 Secondary Vertices . 54
4.4.5 b-Tagging Results . 54

4.5 Trigger Results . 57
4.6 Branch and Class Names . 57

2

Table 1: Framework packages in TMBAnalyze_x.
CVS Package Framework Package
tmb_tree_maker TMBTreePkg
tmb_tree_maker TMBCorePkg
tmb_bcjet TMBBCJetPkg
mc_analyze TMBTreeMCPkg
tmb_analyze TMBTRefsPkg
tmb_tree_trigger_maker TMBTriggerPkg

1 Introduction

The Report of the DØ Data Format Working Group [1] recommended, among
other things, that the proposed Common Analysis Format (CAF) be based
on the tmb_tree. The basic reasons for this recommendation were that the
tmb_tree is general purpose and object-oriented. The report further recom-
mended a review of the contents of the tmb_tree without any requirement
of backward compatibility of the CAF with respect to the current tmb_tree.
This document contains the result of this review. Here we give our recom-
mendation of what the content of the CAF should be.

2 Overview of Tmb_tree

This section contains an overview of the existing (pre-CAF) tmb_tree, its
organization, branches, framework and cvs packages, and relationship to the
DST and TMB.

2.1 Executable, framework packages and rcps

Tmb_tree root �les are built by the executable TMBAnalyze_x executable,
which is part of cvs package tmb_analyze. The top level rcp is called
runTMBTreeMaker[SAM][_MC].rcp. The packages invoked by the standard
top level rcp (i.e. those that are speci�cally related to making the tmb_tree)
are shown in Table 1. The �rst package, TMBTreePkg, is the overall guid-
ing package (it somewhat resembles the standard framework Controller
package). The remaining packages are concerned with �lling one or more
branches.

3

2.1.1 Structure of TMBAnalyze_x

Before moving on to a consideration of the content of the tmb_tree, we in-
clude here a brief commentary on the structure and design of TMBAnalyze_x.

The branch-�lling packages construct one or more branch-�lling �maker�
objects (base class TMBMaker), which register themselves with the single
TMBTreePkg instance using static/global methods. This design is good in
the sense that it allows the content of tmb_tree to be extended without
changing any existing code (this is one of the requirements for the CAF).
However, there are some negative aspects and missing features in the current
design. For example:

1. The fact that TMBTreePkg is a singleton means that it is not possible to
write more than one tmb_tree at a time. It should be possible to write
multiple tmb_tree's, each with di�erent branches and event selection.

2. The current TMBAnalyze_x does not generate metadata for storing
tmb_tree's in sam.

3. The current TMBAnalyze_x only runs on d0om data, and the maker
objects only have access to data stored in edm chunks. It would be
useful for TMBAnalyze_x to run on either d0om or root data, and for
maker objects to have access to both edm chunks and root branches.

The Data Format Working Group intends to address these limitations,
however the proposed solutions are not the subject of this document.

2.1.2 Overview of tmb_tree Content

The branches of the current tmb_tree are summarized in Table 2.
The largest framework package is TMBCorePkg, which �lls branches for

reconstructed physics objects and raw data. Package TMBTreeMcPkg �lls
Monte Carlo information. Package TMBBCJetPkg is obsolete, having been
replaced by d0root-based b-tagging algorithms. TMBBCJetPkg is commented
out of the standard runTMBTreeMaker.rcp in the latest test releases, but
is still present by default in the p14 and p16 versions of tmb_analyze. We
will have nothing further to say about TMBBCJetPkg in this document, but
we are proposing a replacement (see Sec. 4.4). The trigger branches created
by package TMBTriggerPkg are likewise in need of major revision. We are
proposing a replacement based on the TrigSimCert package (see Sec. 4.5).

4

Table 2: Branches in tmb_tree.

Framework Branch Tree DST Chunk(s)
Package Object Object
TMBCorePkg Trks TMBTrks ChargedParticle ChargedParticleChunk

IsoTrks TMBIsoTrks ChargedParticle ChargedParticleChunk
Vrts TMBVrts Vertex VertexCollChunk
Emcl TMBEmcl EMparticle EMparticleChunk
EmCells TMBEmCells EMparticle EMparticleChunk
Muon TMBMuon MuonParticle MuonParticleChunk
Jets TMBJets Jet JetChunk
LeBob TMBLeBob LeBob JetChunk
Taus TMBTaus Tau TauChunk
Met TMBMet MissingET MissingETChunk
Glob TMBGlob TMBTriggerChunk
Trig TMBTrig L1L2Chunk, L3Chunk
Hist TMBHist HistoryChunk
CalQual TMBCalQual CalDataChunk

Calt42Chunk
Calt4_25Chunk

Fps TMBFps FPSClusterChunk
Cps TMBCps CPSClusterChunk
Lum TMBLum LMDigiChunk
LumV TMBLumV LMDigiChunk

TMBBCJetPkg BCJets TMBBcJet bcJet bcJetChunk
TMBTreeMcPkg MCpart TMBMCpart MCKineChunk

MCvtx TMBMCvtx MCKineChunk
MCevtInfo TMBMCevtInfo MCKineChunk

TMBTrefsPkg TRefs TMBTRefs LinkedPhysObjChunk
TMBTriggerPkg L1CalTile TMBL1CalTower L1L2Chunk

L1CalTwr TMBL1CalTower L1L2Chunk
L1CalEMTwr TMBL1CalTower L1L2Chunk
L1Muon TMBL1Muon L1L2Chunk
L1AndOr TMBL1AndOr L1L2Chunk
L2Jet TMBL2Jet L1L2Chunk
L2EM TMBL2EM L1L2Chunk
L2Muon TMBL2Muon L1L2Chunk
L3ToolsResults TMBL3ToolsResults L3Chunk

5

Apart from these major revisions, we believe the existing branches of the
current tmb_tree can provide a reasonable basis for the CAF.

3 General Considerations Regarding Root

Data Formats

3.1 Redundant Attributes

The current tmb_tree classes are shot through with redundant attributes.
A common situation that arises is storing the 3-momentum of physics ob-
jects in both Cartesian coordinates (px, py, pz) and Cylindrical coordinates
(pT , η, φ). Given that it is faster to do a recalculation, even one involving
a transcendental function call, than it is to read four bytes of data from
disk, we recommend that in most cases these redundant attributes should be
eliminated. The dropped attributes can be replaced by methods, if necessary.

The only concrete advantage of keeping redundant attributes, that we
know of, is having interactive access to these quantities through the root
browser. Thanks to Axel Naumann, the root browser has been extended
to allow browsing of const methods that can be called with zero arguments
(as is already the case using method TTree::Draw), e�ectively removing this
incentive to keeping redundant attributes. The only caveat is that the classes
involved must be known to root (shared library loaded, etc.).

The speci�c case of storing the 4-momentum of physics objects will be
handled by class TMBLorentzVector (see Sec. 3.2.4), which will be used a a
base class for objects for which this makes sense.

3.2 CAF Data Model and Standard Root Classes

This section describes the basic requirements for CAF classes.

3.2.1 TObject

TObject is the standard root base class. TObject provides a standard set of
features for all root objects. TObjects can be printed (TObject::Print),
drawn (TObject::Draw), persisted (TObject::Streamer, TObject::Write),
cloned (TObject::Clone), stored in root collections (TObjArray,

6

TClonesArray), and pointed to by root smart pointers (TRef). De-
fault implementations of most standard TObject methods are supplied by
the root precompiler rootcint. It is a basic requirement that the top level
class of a root tree branch inherit from TObject.

Each TObject carries a two-word overhead of persistent data (before com-
pression), namely, a unique id. and a status bit word. Since both words are
integers, compression of the TObject overhead tends to be good. Because
of the TObject overhead, it is normally preferred not to use root classes as
internal persistent attributes inside branch classes, unless there is a speci�c
reason for doing so.

3.2.2 Root collections: TObjArray and TClonesArray

Root has several di�erent kinds of collection classes, including its own ver-
sions of most of the STL collection classes. Except for the top level collec-
tion of a tree branch, which is always TClonesArray for array-type branches,
there is little reason to be concerned about root collections, or to prefer root
collections to STL collections.

One thing that all root collections have in common is that they inherit
from base class TCollection. This base class provides standard ways of
iterating all root collections, for example, as well as inheriting from TObject.
Another thing that all root collections have in common is that they hold
the objects they contain by reference (as TObject*), rather than by value,
as in the case of STL collections. Since root collections are not templated,
extracted objects must be cast to the correct type.

Root collections may or may not own the objects they contain (ownership
can be controlled by method TCollection::SetOwner). Root provides some
features and tools to automate memory management. Memory management
in root nevertheless remains complicated and error prone (as is true of C++
generally).

The basic variable size array collection is called TObjArray, which cor-
responds roughly to the STL collection vector<TObject*>. Root collection
TClonesArray inherits from TObjArray and has the same general structure,
but can only be used for identically typed objects (TObjArray has no such
restriction). As compared to TObjArray, TClonesArray has several optimiza-
tions and restrictions, the main optimization being that di�erent attributes
are streamed in separate bu�ers, allowing (usually) greater compression.

7

3.2.3 Smart Pointers: TRef and TRefArray

TRef is the root smart pointer class, which can be used to point to any
object that inherits from TObject. TRef is dereferenced by calling method
TRef::GetObject. As with root collections, TRef is not templated, so a cast
to the correct type is required when dereferencing.

TRef inherits from TObject, and has a persistent size of three words (be-
fore compression), with two of the persistent words coming from the TObject
base class. In the case of TRef, the unique id. part of the TObject stands for
the object being pointed to, rather than to the TRef itself.

Class TRefArray is a special type of collection for TRefs only. TRefArray
has a per-element overhead of only two persistent words, as compared to
three words for a single TRef. The per-element overhead consists of the
TObject part of the stored TRefs, the non-TObject part being shared by all
of the elements in the collection. Thus, TRefArray is preferred to any other
way of storing a collection of TRefs (root collection, STL collection, or bare
C++ array).

3.2.4 TMBLorentzVector

The standard root 4-vector class TLorentzVector was considered and re-
jected as a common base class for physics objects, mainly because its meth-
ods are not virtual. The data format group decided to develop our own
4-vector class TMBLorentzVector as the standard base class for physics
objects that have a 4-momentum. TMBLorentzVector is similar to root's
TLorentzVector, but has mostly virtual methods. Another optimization of
TMBLorentzVector as compared to TLorentzVector is the use of mass rather
than energy as the fourth component in the persistent representation. This
representation give better compression, since DØ tree data often consists of
many objects with identical masses.

8

3.3 Schema Evolution

4 Speci�c Branches

4.1 Global Event Data

This section describes global event produced by d0reco in the tmb_tree. This
information is very simple, and not very big.

4.1.1 TMBGlobal � Global Event Object

Branch Global (class TMBGlobal, formerly TMBGlob) is the main repository
for �global event data.� The global event data stored in this branch mainly
originates in the Global object stored in TMBTriggerChunk. The header
Global.hpp can be found in d0library package config_base. The contents
of TMBGlobal are shown in Table 3.

TMBGlobal will be expanded by the addition muon and calorimeter qual-
ity words. Muon quality information consist of six ints which come from
the Global object. Calorimeter quality information consists of four bools
(�missing crate,� �coherent noise,� �ring of �re,� and �noon noise�), which
are calculated based on information stored in CalDataChunk, Calt42Chunk,
and/or Calt4_25Chunk.

4.1.2 TMBEventFlags � Event Flags

Branch EventFlags (class TMBEventFlags) stores the event �ags used for
fast skimming. In the thumbnail, event �ags are stored in the Global object
and in the evpack header. In TMBEventFlags, event �ags are identi�ed by
either an enum or a character string. The phsyical representation of the event
�ags is a bit mask consisting of four ints.

4.1.3 TMBHistory � Processing History

Branch History (class TMBHistory, formerly TMBHist) stores processing his-
tory from HistoryChunks. The contents of TMBHistory are shown in Table 4.
We do not recommend any changes.

9

Table 3: Attributes of TMBGlobal.
Attribute(s) Keep?
Run number (int) Yes
Event number (int) Yes
Store number (int) Yes
Luminosity block (int) Yes
Tick number (int) Yes
Solenoid polarity (int, 0=forward, 1=reverse) Yes
Toroid polarity (int, 0=forward, 1=reverse) Yes
Solenoid current (�oat) Yes
Toroid current (�oat) Yes
Muon quality (6 ints) Add
Calorimeter missing crate �ag Add
Calorimeter coherent noise �ag Add
Calorimeter ring of �re �ag Add
Calorimeter noon noise �ag Add

Table 4: Attributes of TMBHistory.
Attribute(s) Keep?
Number history chunks (int) Yes
Program name (string) Yes
Program version (string) Yes

10

Table 5: Attributes of TMBTrigger.
Attribute(s) Keep?
Number of triggers (int) Yes
Trigger name (string) Yes
L3 pass �ag (bool) Yes
L2 pass �ag (bool) Yes
L1 pass �ag (bool) Yes
L3 unbiased �ag (bool) Yes
L2 unbiased �ag (bool) Yes
L2 bit number (int) Yes
L1 bit number (int) Yes
L1L2Chunk �ag (bool) Yes

4.1.4 TMBTrigger � Fired Triggers

Branch Trigger (class TMBTrigger, formerly TMBTrig) stores the list of �red
triggers. This branch is intended to provide event selection based on trigger.
The contents of TMBTrigger are shown in Table 5. This branch gets its data
either from L1L2Chunk and L3Chunk (if present), or TMBTriggerChunk. We
do not recommend any changes.

4.2 Monte Carlo Information

The information in the three Monte Carlo branches mirrors information in
MCKineChunk. Dst or thumbnail �les have several MCKineChunks, one for each
generated event (usually one hard scatter and several minimum bias events),
plus one MCKineChunk that is added by geant. The Monte Carlo branches
contain the union of the various MCKineChunks, and also retain enough infor-
mation to determine which MCKineChunk each particle and vertex originated
from.

Due to the large number of Monte Carlo particles in a typical MC event,
the MC particle and vertex branches are important contributors to the overall
size of MC tmb_trees. Therefore, it is important not to waste space for these
branches.

11

Table 6: Attributes of TMBMCpart.
Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum Yes (TMBLorentzVector)
pT , η, φ Cylindrical 3-momentum No
E Energy Yes (TMBLorentzVector)
q Charge Yes
id Particle type (pdg id.) Yes
Associations Initial vertex (TRef) Yes

Final vertex (TRef) Yes

4.2.1 TMBMCpart � Monte Carlo Particles

Monte Carlo particles are stored in branch MCpart. The attributes of
TMBMCpart are shown in Table 6. Currently, TMBMCpart stores two redundant
representations of the 3-momentum, one of which should be removed. The
mass and charge of the particle can be obtained from the pdg id. via built in
root class TParticlePDG. However, the energy attribute needs to remain to
handle the case of o�-shell or wide particles. The charge attribute could be
eliminated, but we recommend keeping it because it should be highly com-
pressible, and because of the possibility of particles with pdg ids. unknown
to root.

Another change that might be considered is eliminating some of the TRefs.
Currently, bidirectional associations exist between Monte Carlo particles and
vertices. One might consider replacing some of these bidirectional associa-
tions with unidirectinoal (forward only) associations. However, we recom-
mend that the bidirectional associations be retained, as there can be a need
to traverse the MC particle-vertex tree backward as well as forward (exam-
ple: Did a Monte Carlo muon arise from the decay of a b quark-containing
hadron?).

4.2.2 TMBMCvtx � Monte Carlo Vertices

Monte Carlo vertices are stored in branch MCvtx. The attributes of TMBMCvtx
are shown in Table 7. We do not recommend any changes in this class.

12

Table 7: Attributes of TMBMCvtx.
Attribute(s) Description Keep?
x, y, z Cartesian position Yes
ct Time Yes
Associations Parent particles (TRefArray) Yes

Daughter particles (TRefArray) Yes

Table 8: Attributes of TMBMCevtInfo.
Attribute(s) Description Keep?
r, e Run & event number Yes
nR Reaction number Yes
σ Cross section Yes
w Event weight Yes
q̂2, ŝ, t̂, û Relativistic invariants Yes
Nchunk Number of MCKineChunks Yes
NPi Number of particles in chunk i Yes
NV i Number of vertices in chunk i Yes

4.2.3 TMBMCevtInfo � Global Monte Carlo Information

Monte Carlo global information is stored in branch MCevtInfo. The at-
tributes of TMBMCevtInfo are shown in Table 8. Since there is only one copy
of this class in an event, it is insigni�cant in terms of its total contribution
to the size of tmb_tree. We do not recommend any changes.

4.2.4 Particle and Parton Jets

Monte Carlo particle and parton jets are found by d0reco and stored in
JetChunk along with calorimeter jets. In the old tmb_tree, particle and
parton jets stored in JetChunk were stored in the TMBJets branch along
with calorimeter jets. In the CAF, particle and parton jets will still be
stored, except that the old TMBJets branch will be split by jet algorithm,
meaning that particle and parton jets will have their own branches.

13

4.3 Reconstructed Physics Objects

4.3.1 TMBTrack and TMBIsoTrack � Charged Particles

Charged particle (track) objects are stored in branches Track and IsoTrack
(renamed from Trks and IsoTrks). The former branch stores data for all
tracks in an event, while the latter holds information for a subset of tracks
that pass minimum pT and isolation cuts. The Track/IsoTrack split mirrors
the split between thumbnail objects ChTmbObj and ChIsoTmbObj, which is
made already by d0reco. The cuts that determine which tracks qualify as
high-pT and isolated are included in the charged particle reconstruction rcp
�le <chpart_reco ChPartReco>.

The attributes of the current TMBTrack object are shown in Table 9. If we
look at the variables in TMBTrack, we see that the most important variables
are the trf track parameters and error matrix. Other obviously useful vari-
ables are the hit mask, track chisquare, and energy loss in the smt (the energy
loss in the cft is currently unimplemented in d0reco and is of limited useful-
ness in any case). There are two representations of the track 3-momentum,
in addition to the trf track parameters (for a total of three di�erent rep-
resentations of the 3-momenta). We recommend keeping the the Cartesian
3-momentum (as part of the TMBLorentzVector base class), and losing the
the cylindrical 3-momentum and the last three trf track parameters, which
are just another representation of the 3-momentum (however, the trf track
parameters should be continue to be available as methods, since they will
be needed for any �tting or propagation). Everything else except charge can
be gotten rid of. There are several attributes having to do with the rela-
tionship of a track to primary and secondary vertices. We feel that these
vertex-oriented attributes should be dropped due to the fact that tracks are
logically prior to vertices. Quite often, the �rst thing that people do when
analyzing tmb_tree's is to throw away any existing vertices and re-�nd ver-
tices. Therefore, the proper way to store the association between tracks and
vertices is a one-way TRef from the vertex object to the track object.

The attributes of the current TMBIsoTrack object are shown in Table 10.
There are several attributes relating tracks to preshower clusters. The asso-
ciations, which are made in d0reco (in ThumbNailPkg), and which associa-
tion is one of the criteria for retaining preshower clusters in the thumbnail,
should be kept. The track-preshower residual and chisquare are calculated
in d0reco, not based on a true propagation to the preshower, but based on

14

Table 9: Attributes of TMBTrack.
Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum Yes (TMBLorentzVector)
pT , η, φ Cylindrical 3-momentum No
E Energy assuming mπ+ Yes (TMBLorentzVector)
q Charge Yes
h Hit mask (96 bits, 3 ints) Yes
r Radius (?) � not �lled No
∆r, σr, ∆z, σz I.P. & error to best vertex No
rS, z, φD, tan λ, q/pT Trf track parameters Keep rS, z
σ2

ij Trf error matrix (15 �oats) Yes
χ2/dof Track chisquare/dof Yes
∆E, σ∆E Energy loss, error in cft, smt Keep smt, drop cft
χ2

PV χ2 wrt two pri. vertices No
χ2

SV χ2 wrt two sec. vertices No
(x, y, z)PS Position at preshower Add
(px, py, pz)PS Momentum at preshower Add
Bz(0, 0, 0) Magnetic �eld at origin Add
Associations TMBIsoTrack (one TRef) Yes

Pri. vertices (TRefArray) No
Sec. vertices (TRefArray) No

15

Table 10: Attributes of TMBIsoTrack.
Attribute(s) Description Keep?
r, φ, z Position at preshower To TMBTrack
∆η, ∆φ PS clus. sep. Yes
χ2

PS χ2 wrt PS cluster Yes
ETi, Ni Track ET , mult. in cone i No
x, y, z Position near vertex No
MTC Cal. MTC data (15 �oats, 1 int) Yes
E33 and E55 Calorimeter energy Yes
Associations TMBTrack (one TRef) Yes

CPS clusters (TRefArray) Yes
FPS clusters (TRefArray) Yes

an approximate propagation plus some ad-hoc corrections. These are kept in
TMBIsoTrack, but the results of a proper propagation are added to TMBTrack,
as it is di�cult to do a proper propagation in root.

Another set of attributes has to do with calorimeter and tracking energy
�ow type information. This is the type of information that would poten-
tially be useful for doing, say, lepton identi�cation. The lepton branches
have their own versions of the quality information they need, of course. But
the information in TMBIsoTrack could potentially be useful for doing track-
seeded lepton identi�cation where no lepton object was found by d0reco.
One example of track-based lepton identi�cation is the third lepton in trilep-
ton analyses. The purely track-based energy �ow (track-energy in cones) can
be safely dropped, as it can be easily recalculated. However, the calorimeter
MTC and energy �ow information should be kept.

The remaining attributes of TMBIsoTrack are purely kinematic. One
of these is the position of the track where is passes close to a vertex (we
think). This can be dropped as it is easily recalculated by a short-distance
propagation.

Track propagation at the Tree Level It would be quite di�cult to
do a proper track propagation (e.g. using D0Propagator) at the tree level,
as this would require bringing in a great deal of d0library code (magnetic
�eld map, detector geometry, etc.), and would be slow as well. This is why
we recommend storing the track parameters at the preshower in the track

16

branch.
It is much easier to do a short-distance propagation with acceptable ac-

curacy. A common instance of this is propagating the track parameters from
the (0,0) dca surface, where they are calculated by d0reco, to a vertex (that
is, to the (xV , yV) dca surface). Class TMBTrack should provide a method
to do this (it doesn't currently). Such a method could be specialized for a
dca surface, assume a uniform axial magnetic �eld, and make short-distance
approximations. It need not import any trf code from d0library. The axial
magnetic �eld is added to TMBTrack as an aid to propagation. Since the
magnetic �eld does not vary from track to track or event to event, it should
compress to very small size.

The Track-Vertex Measurement Problem Another problem that
should be solved by a method (not by additional attributes) is the track-
vertex measurement problem. That is, one should be able to calculate the
2D impact parameter and error matrix of any track with respect to any ver-
tex. Note that 99% of the solution of this problem consists of propagating
the track parameters and error matrix to the vertex dca surface, since, apart
from a z o�set, the �rst two trf dca track parameters are precisely the radial
and z impact parameters, and the impact parameter error matrix is precisely
the 2× 2 upper left corner of the track parameter error matrix.

Vertex-Constrained Tracks A third method that we recommend adding
to TMBTrack is a method to re�ne the estimate of track parameter by the
use of vertex information. Equivalently, this can be thought of as constrain-
ing a track to a vertex or applying the Kalman smoothing algorithm to the
vertex reconstruction problem (assuming that the vertex was originally re-
constructed using a Kalman �t type of algorithm).

4.3.2 TMBVertex � Vertices

Reconstructed vertices are stored in class TMBVertex (formerly TMBVrts).
The attributes of TMBVertex are shown in Table 11. One of our recommen-
dations is that class TMBVertex remain as a base class for di�erent kinds of
vertices, and that derived classes be added for primary vertices, secondary
vertices, and V 0's.

As far as additions, we recommend adding attributes for the total 4-
momentum of the constituent tracks (via base class TMBLorentzVector) and

17

total charge. This is mainly of interest for secondary vertices and V 0's, but
is not totally without interest for primary vertices, so we recommend adding
this attribute to the base class.

The vertex class currently has a vertex-type attribute, which currently is
only used to distinguish primary and secondary vertices (currently, secondary
vertices are not present in tmb_tree because they are not implemented in
the framework). In the future, there is the possibility to have multiple pri-
mary or secondary vertex algorithms. Our recommendation is to split the
vertex branch according to algorithm, making this attribute unnecessary, so
it should be dropped.

Another attribute that could be a candidate for dropping is the number
of degrees of freedom, which is redundant with the size of the TRefArray.
However, it makes sense to keep this attribute (or equivalent), so that the
analyzer has the option of not reading in the TRefArray, which can be large
compared to the rest of the vertex branch. We think that it is preferable
to save this information in the form of the number of tracks rather than the
number of degrees of freedom, which we feel is a more intrinsically interesting
variable.

For the primary vertex class TMBPrimaryVertex (see Table 12), our rec-
ommendation is to add an attribute for the minimum bias probability, in
addition to the base class attributes.

For secondary vertices (class TMBSecondaryVertex, see Table 13), we
recommend adding as an attribute a reference to the associated primary
vertex. The decay length and decay length signi�cance should be available
as methods.

Neutral V 's are a special case of secondary vertices. Class TMBV0 should be
derived from TMBSecondaryVertex, with an additional attribute for the pdg
id. (see Table 14). In this case, it is desirable that the 4-momentum stored in
the base class be calculated including a mass and primary vertex constraint.
Note that the class TMBV0 being proposed here is not a full-�edged system
for dealing with fully reconstructed or identi�ed particles, but is intended
to solve the more limited problem of �nding long-lived two-prong neutral
V 's, namely, K0

S's and Λ's. The K0
S//Lambda case is somewhat special in

the sense that the identity of the daughter particles (i.e. the tracks) can be
unambiguously inferred from the identity of the parent, which is not true
in the general case. A general system for dealing with identi�ed or fully
reconstructed particles (including, for example, B and D measons), would
need a way of attaching identity hypotheses to the constituent particles.

18

Table 11: Attributes of TMBVertex.
Attribute(s) Description Keep?
px, py, pz, E 4-momentum Add (TMBLorentzVector)
q Total charge Add
T Vertex type No (split branch by type)
x, y, z Position Yes
σ2

ij Position error matrix Yes
χ2 Chisquare Yes
Ndof Degrees of freedom Yes (→ # of tracks)
Associations Tracks (TRefArray) Yes

Table 12: Attributes of TMBPrimaryVertex.
Attribute(s) Description Keep?
TMBVertex base class Yes
PMB Minimum bias probability Add

Table 13: Attributes of TMBSecondaryVertex.
Attribute(s) Description Keep?
TMBVertex base class Yes
Associations Primary vertex (TRef) Add

Table 14: Attributes of TMBV0.
Attribute(s) Description Keep?
TMBSecondaryVertex base class Yes
PDGID Particle type Add

19

Table 15: Data Types Referenced in Tables 17 and 18.
Type Type Description
F Float_t
I Int_t
S TString
R TRef
RA TRefArray
B Bool_t
AF Array of Float_t
AI Array of Int_t

Table 16: Source Classes Referenced in Tables 17 and 18.

Orig Package Name Class
EMP em_evt EMParticle
EMQ em_evt EMQualityInfo
EMC em_evt EMCluster
EMCH em_evt EMParticleChunk
CC caldata CalCell
TT tmb_tree TMBTrack
QC Calculated in TMBEmclMaker using EMQ

4.3.3 TMBEMCluster � Electrons and Photons

This section describes the variables found in the CAF TMBEMCluster class.
The variables in this class are described in table 18. The old TMBTree class
(TMBEmcl) variables are described for a comparison in table 17. Tables 15
and 16, describe the details of the Type and Origin keys gven in tables 18
and 17
Documentation on the EMParticle Class from the em_evt package may be
found here:
www-d0.fnal.gov/phys_id/emid/d0_private/EM_Particle_Documentation_EMID.html

20

Table 17: Original Attributes of TMBEmcl.

Type Variable Description Origin
F _E Energy of EM Particle EMP
F _pT Transverse Momentum EMP
F _eta eta of particle EMP
F _phi phi of particle EMP
F _pxyz[3] Momentum Vector EMP
F _q Charge from track from CHP with best χ2 CHP

matched to this EMP
I _id particle Id EMP
F _iso Isolation of EMParticle EMQI
F _EisoCore Energy Used for isolation computation
I _isol Isolation of EMParticle EMP
I _nb_CPS Number of CPS clusters EMP
I _nb_FPS Number of FPS clusters EMP
F _�oorE[6] Energy in a given Calorimeter Layer EMC

index 0 is the preshower, index 1 = EM1,
and index 5 is FH1

F _�oorX[6] X position of a given calorimeter layer EMC
in detector coordinate system

F _�oorY[6] Y position of a given calorimeter layer EMC
in detector coordinate system

F _�oorZ[6] Z position of a given calorimeter layer EMC
in detector coordinate system

F _�rS1[6] (ClusterWidth)2 in EMC
r × phi space in layer i,
where i=0, ..., 5 for PS,
EM1, EM2, EM3, EM4, FH1

F _�rS2[6] (ClusterWidth)2 in Z EMC
(CC) or r (EC) space in
layer i, where i=0 5
layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�rC[6] slrS1/�rS2 correction in EMC
layer i, where i=0 5

21

for PS, EM1, EM2, EM3,
EM4, FH1

I _�rNch[6] # of channels in layer i EMC
where i=0, ..., 5 for PS,
EM1, EM2, EM3, EM4, FH1

F _EMfrac; Electromagnetic Fraction EMC
F _HA Energy in Hadronic Layers EMC

(including FH1)
F _HMx7 7x7 HMatrix χ2 (broken) EMP
F _HMx8 8x8 HMatrix χ2 (broken) EMP
F _HMx41 41x41 HMatrix χ2 (broken) EMP
F _elk8 Electron likelihood using EMQ

7 variables χ2

F _elk41 Electron likelihood using EMQ
7 variables plus the CPS χ2

F _Excess Energy Beyond FH1 EMC
F _rRC[5] Longitudinal energies in road 1 EMQ

in a given Cal Layer
F _rR1[5] Longitudinal energies in road 2 EMQ

in a given Cal Layer
F _rR2[5] Longitudinal energies in road 3 EMQ

in a given Cal Layer
S _algoname Algorithym used for Cluster EMCH

reconstruction as set in emreco rcp
R _chptr Index to Charged Particles EMP
R _vtxref Index to vertices EMP
RA _cpsptr Index to CPS clusters EMP
RA _fpsptr Index to FPS clusters EMP

_container _ecells, and _container EMC
seem to work together to
link the cells in the
calorimeter to the
EMParticle, and the
information comes
indirectly through
EMCluster

RA _ecells EMC

22

New variables from p14.05.00
B _is_in_�ducial If particle is in eta, EMP

and phi �ducial volumes
B _is_in_phi_�ducial if |Z| > 150 cm then EMP

X2 + Y 2 < 85 cm
else Z < 115 cm

B _is_in_eta_�ducial if |Z| > 150cm or EMP
Cluster is 0.02 cm from
the module division

F _Calpx x component of momentum EMP
from the calorimeter

F _Calpy y component of momentum EMP
from the calorimeter

F _Calpz z component of momentum EMP
from the calorimeter

F _Calpt Transerve momentum from EMP
the calorimeter

F _CalE Energy Deposited in EMP
Calorimeter

F _CalPhi Phi wrt Vertex Position EMP
F _CalEta Eta wrt Vertex Position EMP
F _CalDetectorPhi Detector Phi EMP
F _CalDetectorEta Detector Eta EMP
F _sigE; EM Energy error EMC
R _CpsBest Pointer to Best matched CPS cluster EMP
F _CpsFitZVtx Fitted z of primary EMQ

vertex using CAL-CPS
spatial-matching

F _CPSFitZVtxErr Fitted error of primary EMQ
vertex using CAL-CPS
spatial-matching

F _CPSFitDCA Fitted DCA using CAL-CPS EMQ
spatial-matching

F _CPSFitDCAErr Fitted error of DCA using EMQ
CAL-CPS spatial-matching

F _CPSChi2Match χ2 of CAL-CPS spatial- EMQ
matching

23

F _LhoodIso8 Electron likelihood with EMQ
isolation and HMx8 χ2

F _Lhood8 Electron likelihood with EMQ
HMx8 χ2

B _has_track_match true is particle has a track match EMP
F _TrMatchChi2ProbBest χ2 probability of EMP

a track match (spacial + E/p)
F _SpatialTrMatchChi2ProbBest χ2 probability of a EMP

track match (spacial only)
R _chptrBest Pointer to the Best EMP

associated charged particle
I _nChPart size of em_objptr-> EMP

chpindices
RA _ChPart Pointers to associated EMP

charged particles
AF _TrMatchChi2Prob χ2 probability between EMP

EM and track for each
charged particle (spatial
+ E/p)

AF _SpatialTrMatchChi2Prob χ2 probability between EMP
EM and track for each
charged particle (spatial)

AF _CPSFitChi2Match Fitted z of primary EMQ
vertex using CAL-CPS
spatial-matching (each 3D
CPS cluster)

AF _CPSFitZVtx Fitted z of primary EMP
vertex using CAL-CPS
spatial-matching (each
CPS 3D cluster)

AF _CPSFitZVtxErr Fitted error of primary EMP
vertex using CAL-CPS
spatial-matching (each
CPS 3D cluster)

AF _CPSFitDCA Fitted DCA using CAL-CPS EMP
spatial-matching (each
CPS 3D cluster)

AF _CPSFitDCAErr Fitted error of DCA using EMP

24

CAL-CPS spatial-matching
(each CPS 3D cluster)

New variables for p17 photon/electron ID
F _bestPSz Z position of Preshower EMP

cluster best associated
with EM Object

AF _PSz Array of Z positions of EMP
all PS clusters Associated
with EM Object

I _has_cps_match return true if EM object EMP
is matched with a CPS
object

AI _cps_match return distance in EMP
resolutions (�,z)
between CPS and EM
projected onto CPS

F _bestcps_match_chi2 EMP
AF _cps_match_chi2 EMP
I _nEMLikeCPSClusters number of EM-like

CPS clusters EMP
F _diphoton_p4v[4] 4 vector of di-photon

candidate (E, px, py, pz)
from EMParticle->
getDiPhoton4(vtx[2]) -z
position of vertex

Persistent methods for p17 TMBs only
all below are From EMQualityInfo Hitsontheroad

I _emhits_cpsUsed No. of used CPS cluster for road EMQ
de�nition EMQ

I _emhits_cftA[2] No. of hits per road in EMQ
the CFT Axial EMQ

I _emhits_cftS[2] same as above for CFT EMQ
Stereo EMQ

I _emhits_smtA[2] same as above for SMT EMQ
(phi info) EMQ

I _emhits_smtS[2] same as above for SMT EMQ
(z info)

25

F _emhits_cftA_chi2[2] χ2 of the hits �t EMQ
to the road (Axial CFT) EMQ

F _emhits_cftS_chi2[2] As above but Stereo CFT
F _emhits_smtA_chi2[2] χ2 of hits �t EMQ

to the road (Axial SMT)
F _emhits_smtS_chi2[2] as above but Stereo SMT EMQ
F _emhits_trackmatch_prob probability that EM EMQ

object is an electron
F _emhits_NOtrackmatch_prob probability that EM EMQ

object is a fake/photon
F _emhits_e_f_discriminant discriminant for EMQ

electron/fake separation

Table 18: CAF Attributes of TMBEMCluster.

type Variable Description Origin
F _uncorrE raw energy (energy from CC

all EM cells that belong
to this EM cluster, no
energy correction applied

F _q Charge TT
I _id 10, 11 founded by cluster EMP

algorithm, 10011,20011
and 30011 founded by SEM
algorithm, 0 unde�ned

F _iso isolation variable EMQ
F _EisoCore energy used for isolation EMQ

computation
I _isol EMparticle isolated if EMP

iso<0.2
I _nb_CPS # of CPS cluster EMP
I _nb_FPS # of FPS clusters EMP
F _EMScalarEt Scalar Et CC
F _�oorE[6] Cluster energy in layer i EMC

where i=0, ..., 5 for PS,
EM1, EM2, EM3, EM4, FH1

F _�oorX[6] Cluster X position in EMC

26

layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�oorY[6] Cluster Y position in EMC
layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�oorZ[6] Cluster Z position in EMC
layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�rS1[6] (Cluster Width)**2 in EMC
r*phi space in layer i,
where i=0, ..., 5 for PS,
EM1, EM2, EM3, EM4, FH1

F _�rS2[6] (Cluster Width)**2 in Z EMC
(CC) or r (EC) space in
layer i, where i=0 5
layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�rC[6] slrS1/�rS2 correction in EMC
layer i, where i=0 5
for PS, EM1, EM2, EM3,
EM4, FH1

F _�rNch[6] # of channels in layer i EMC
where i=0, ..., 5 for PS,
EM1, EM2, EM3, EM4, FH1

F _EMfrac EMFraction EMC
F _HA energy in all hadronic EMC

layers (include FH1)
F _HMx7 7*7 HMatrix χ2 EMP
F _HMx8 8*8 HMatrix χ2 EMP
F _Excess energy beyond FH1 EMC
F _rRC[5] Longitudinal energies in EMQ

Road 1
F _rR1[5] Longitudinal energies in EMQ

Road 2

27

F _rR2[5] Longitudinal energies in EMQ
Road 3

R _chptr Index to charged EMP
particles

R _vtxref Index to vertices EMP
RA _cpsptr Index to CPS clusters EMP
RA _fpsptr Index to FPS clusters EMP
R _container _ecells, and _container EMC

seem to work together to
link the cells in the
calorimeter to the
EMParticle, and the
information comes
indirectly through
EMCluster

RA _ecells
New variables from p14.05.00

B _is_in_phi_�ducial in �ducial region in phi EMP
if |Z| > 150 cm then
X2 + Y 2 < 85 cm
else Z < 115 cm

B _is_in_eta_�ducial in �ducial region in eta EMP
if |Z| > 150cm or
Cluster is 0.02 cm from
the module division

F _CalE Calorimeter pT (the EMP
shower direction
determined by the EM3
layer with regard to the
primary vertex)

F _CalPhi Calorimeter phi EMP
F _CalEta Calorimeter eta EMP
F _CalDetectorPhi Detector phi (detector EMP

angle measured to the
origin of the detector
coordinate system)

F _CalDetectorEta Detector eta (detector EMP

28

angle measured to the
origin of the detector
coordinate system)

F _sigE EM energy error EMC
F _LhoodCps Electron likelihood with EMQ

7 variables and CPS
F _Lhood3 Electron likelihood with EMQ

3 variables
F _Lhood4Iso Electron likelihood with EMQ

4 variables
F _Lhood4EOP Electron likelihood with EMQ

4 variables and E/P
F _Lhood8 Electron likelihood with EMQ

7 variables
F _TrMatchChi2ProbBest χ2 probability of track EMP

match (spatial + E/p)
F _SpatialTrMatchChi2ProbBest χ2 probability of track EMP

match (spatial only)
R _chptrBest Pointers to the �rst EMP

(best) associated charged
particle

I _nChPart # of associated charged EMP
particles

RA _ChPart Pointers to the EMP
associated charged
particles

AF _TrMatchChi2Prob χ2 probability between EMP
EM and track for each
charged particle (spatial
+ E/p)

AF _SpatialTrMatchChi2Prob χ2 probability between EMP
EM and track for each
charged particle (spatial
only)

The following variables are used for photon pointing
algorithm (developed by A. Askew et.al.)

CPS cluster is used as one spacial point and EM cluster

29

positions in 4 EM layers are used as additional four points
R _CpsBest Pointer to best matched EMP

CPS 3D cluster
F _CPSFitZVtxBest Fitted z of primary EMQ

vertex using CAL-CPS
spatial-matching (best
matched CPS 3D cluster)

F _CPSFitZVtxErrBest Fitted error of primary EMQ
vertex using CAL-CPS
spatial-matching (best
matched CPS 3D cluster)

F _CPSFitDCABest Fitted DCA using CAL-CPS EMQ
spatial-matching (best
matched CPS 3D cluster)

F _CPSFitDCAErrBest Fitted error of DCA using EMQ
CAL-CPS spatial-matching
(best matched CPS 3D
cluster)

F _CPSChi2MatchBest χ2 of CAL-CPS spatial- EMQ
matching (best matched
CPS 3D cluster)

AF _CPSFitChi2Match Fitted z of primary EMQ
vertex using CAL-CPS
spatial-matching (each 3D
CPS cluster)

AF _CPSFitZVtx Fitted z of primary EMQ
vertex using CAL-CPS
spatial-matching (each
CPS 3D cluster)

AF _CPSFitZVtxErr Fitted error of primary EMQ
vertex using CAL-CPS
spatial-matching (each
CPS 3D cluster)

AF _CPSFitDCA Fitted DCA using CAL-CPS QC
spatial-matching (each
CPS 3D cluster)

AF _CPSFitDCAErr Fitted error of DCA using QC

30

CAL-CPS spatial-matching
(each CPS 3D cluster)

New variables for p17 photon/electron ID
F _bestPSz z position of PS cluster EMP

with best match to EM object
AF _PSz Array of z positions of EMP

all PS clusters matched to EM
objects

I _has_cps_match return true if EM object EMP
is matched with most
energetic CPS cluster

AI _cps_match returns true is EM object EMP
is matched to a given CPS
cluster

F _bestcps_match_chi2 return distance in EMP
resolutions (phi,z)
between CPS and EM,
projected onto CPS

AF _cps_match_chi2 returns CPS-EM match for EMP
a given cluster

I _nEMLikeCPSClusters number of EM-like CPS EMP
clusters

F _diphoton_p4v[4] 4 vector of di-photon EMP
candidate (E, px, py, pz)

Persistent methods for p17 TMBs only Hits on the road for EM object
Algorithm developed by Oleksiy Atramentov to create a discriminant

to distinguish electron and other fakes (D0note 4444)
Use interaction point and EM cluster centroid (or CPS cluster position) to
determine two roads depending on the the sign of a track's curvature and
count # of �red CFT �bers or SMT pixels within 4sigma from the road

I _emhits_cpsUsed EMQ
I _emhits_cftA[2] number of hits for each EMQ

road in CFT Axial
I _emhits_cftS[2] above for CFT Stereo EMQ
I _emhits_smtA[2] as above for SMT (phi EMQ

info)
I _emhits_smtS[2] same as above for SMT EMQ

31

(z info)
F _emhits_cftA_chi2[2] χ2 of the hits �t to EMQ

the road for CFT Axial
F _emhits_cftS_chi2[2] χ2 of the hits �t to EMQ

the road for CFT Stereo
F _emhits_smtA_chi2[2] χ2 of the hits �t to EMQ

the road for SMT Axial
F _emhits_smtS_chi2[2] χ2 of the hits �t to EMQ

the road for SMT Stereo
F _emhits_e_f_discriminant discriminant for electron EMQ

/fake separation

4.3.4 TMBEmCells � Calorimeter Cells

The current version of TMBTrees optionally stores calorimeter cells for elec-
tromagnetic clusters. The code is part of TMBEmclMaker and, depending on
a boolean �ag, either produces a list of calorimeter cells which are part of a
cluster, or the clusters themselves with references to the cells.

Each TMBEmCells object inherits from TObject and stores its coordinates
(ieta, iphi, ilayer) as three integers and its energy as a �oat. The total size
of each cell object is 24 bytes. See table 19 for details.

The references between electromagnetic clusters and cells is stored as a
TRefArray in TMBEmcl.

The current implementation wastes a lot of space by having each cell
inherit from TObject and storing the coordinates as 32 bit integers despite
their restricted range. Some of this is compensated for by ROOT's compres-
sion algorithm. The TObject base class is needed for the TRef references
from the EM clusters.

The current implementation only stores cells for EM clusters, not for any
other physics object. It is not possible to store the full data chunk or killed
cells (e.g. by Nada and/or CalT42).

We suggest to change the structure of the calorimeter cell branch in the
following way:

• The cell class no longer inherits from TObject.

• The coordinates are stored as 3 bytes instead of 3 integers.

• An additional byte for �ags is added (see below).

32

Table 19: Attributes of TMBEmcells.
Type Attribute Description New Type
int ieta eta coordinate (-40..40) signed byte
int iphi phi coordinate (0..64) unsigned byte
int ieta layer (1..17) unsigned byte
�oat energy Energy �oat
NEW �ags Cell level �ags unsigned byte

• A new container class which inherits from TObject is introduced. It
contains a vector of all cells that have been stored for this event. A
cell is identi�ed by a 16 bit index in this container. The container is
�lled dynamically: as new cells are added they are either assigned a
new index, or an existing index is returned. Every cell is stored only
once.

• Every physics object that wants to store a list of cells, stores a list of
cell indices instead of a TRefArray. It only references the container
object, not every single cell. The combination of the container object
plus the index is enough to �nd a pointer to a given cell.

The new cell size will be 8 bytes instead of 24. The size of the information
in a physics object is roughly 2 bytes times the number of cells.

There should be additional RCP �ags which can be enabled during tree
generation for experts. The default will be to not generate the full data
chunk or any of the Nada or CalT42 cells.

• bool doCalData - add cells from full CalDataChunk

• bool doCalNada - add cells from CalNadaChunk

• bool doCalT42 - add cells from Calt4_25Chunk

Cells which do not come from the normal CalDataChunk will have an
additional �ag set, giving information on why they have been killed.

Additional physics objects apart from TMBEmcl can implement the option
to store associated calorimeter cells using the same mechanism.

33

Table 20: Momentum Structure of TMBMuon
Classes Description
Local no track match or eloss correction
LocalCorr no track match with eloss correction
Central track values for matched muons
CentralCorr track values with

corrections for CFT only tracks
Global �t values for matched muons
SmearedMC MC smeared values
Members of Each Class Description Comments
px, py, pz Cartesian 3-momentum Access via Method
pT , η, φ Cylindrical 3-momentum Stored as Data
E and q Energy and charge Stored as Data
pT_err, η_err, φ_err associated errors Stored as Data

4.3.5 TMBMuon � Muons

All muon objects are stored in the Muon branch. The small number of muons
in an event means that limiting the branch size is not the main goal in
rede�ning the branch content, although certainly there are obsolete and un-
supported variables that should be cleaned out. The main goal is to provide
access via clear variable or method names to data needed by those using
muons in analyses. Along these lines it was decided to add a structure that
allows for a sensible storage of di�erent types of muon momenta (e.g. local,
central, global, etc.). Because the size is not so much an issue, it was also
deemed appropriate, except in simple cases like momentum components, to
bias on the side of storing data rather than relying on methods where values
would end up being calculated in two separate places (once in MuoCandi-
date code then again in the CAF provided method). Remember that use of
methods versus data will be invisible to the user.

At the moment there are six classi�cations of muon momentum in use
or to be used in time, local (not track matched), central (track matched �
but using just the track values), global (track matched using the �tted local
and central values), local uncorrected for energy loss, Monte Carlo smeared,
and central corrected when the track has no SMT hits. For several reasons,
including having higher level code while avoiding long lists of data members
in the tree, it was decided to keep these di�erent classi�cations of muons in

34

Table 21: Attributes of TMBMuon
Attribute(s) Description Keep?
float tanl tan(λ) Method
int nhit numbers of wire and scint hits Data
int nseg muon types Data
int ndeck numbers of deck hits Data
int nmtc number of calorimeter muons Data
float deltaPhi φ di� of A seg and charged part Data
float deltaEta η di� of A seg and charged part Data
float deltaDrift z di� of A seg and charged part Data
float etrack_best energy in cells assoc w/MTC Data
float chisq χ2 of track match Data
int ndof degrees of freedom Data
float prob probablity of χ2 Method
float chisqloc χ2 of local muon �t Data
float xA, yA, zA hit positions at A layer Data
float zAtPca, err_zAtPca z and error at pca Data
float impPar, err_impPar impact parameter and error Data
float imparSig impact parameter signi�cance Data
float dca, dca_err distance of closest approach Data
float EinCone(1,15,2,4,6) calo energy in ∆R cones Data
float calnLayer number of calo layers hit Data
float caleSig calo energy signature Data
float calEta, calPhi calo η and φ of muon Data
float eloss Run I energy loss in calo Data
int wireHits(A,B,C) A, B and C layer wire hits Method
int scintHits(A,B,C) A, B and C layer scint hits Method
int wireHits(i,j,k,l) i, j, k, and l deck wire hits Method
bool is(Loose,Medium,Tight) muon quality info Data
int hasLocal is there a local track? Data
int hasCentral is there a central track? Data
int hasCal is there a calo signal? Data

35

Table 22: Attributes of TMBMuon cont.
Attribute(s) Description Keep?
float drJet5, etTrkCone5 isolation variables Data
float etHalo, int nTtk5 isolation variables Data
float bdl B dl of muon through Toroid Data
int isMuonEventOK check for crate errors Data
TRef chptr points to matching charged part Data
TRef vtxref points to matching vertex Data
float detectorEta detector eta Data
float sctime(A,B,C) scint times per layer Data
int region, octant region and octant Data
bool isCosmic, isCosmicT cosmic �ags Method

separate objects. One example is to have a set of classes that inherit from
TMBLorentzVector (from which TMBMuon also inherits) based on these muon
types. Then, for example, a local muon's pT could be accessed via

TMBMuon::Local::pT()

A general momentum value could also be returned as de�ned by the
muon group. That is,

TMBMuon::pT()

would return the track matched momentum or if there is no track
match, the local corrected momentum as is done at the time of this writing.
The exact implementation has yet to be worked out, but the user interface
will be as stated. Table 20 shows the momentum structure for the muon
branch in the CAF. As in other branches only the cylindrical momentum
components will be stored as data, with methods providing access to all the
others.

For muon branch content aside from the new momentum structure, see
tables 21 and 22. Note that parentheses do not denote arrays, but are di�er-
ent endings, e.g. wireHits(A,B,C) means wireHitsA, wireHitsB, wireHitsC.
The variables in the table are largely based on the current content of the
tmb_tree. There are several additions to the list as well as renaming of

36

variables to make them more descriptive. In no case, however, did a variable
name change meaning � renaming means an old variable moved to an unused
name or used in a di�erent context. The table points out whether the value
will be stored in the tree as data, or recalculated via a supplied method.
Note that the six muon quality words (with information on readout errors)
will be stored in the Global branch. See table 23 for a list of variables being
removed. Note that some of these will still exist in other forms, for example,
float pxA, etc. are migrating into the Local class.

In the end there might be a separation of branches into user and ex-

pert branches where the expert branch could be easily turned o� for perhaps
quicker run times and/or smaller output data �les for users who don't need
such detailed information. The separation of data into these branches will
then need to be decided.

4.3.6 TMBJets � Jets

The attributes of a jet can be divided in four categories, descibed in Tables 24-
27:

• Kinematical information.

• Quality/ID information.

• Jet Energy Scale information.

• Association to other physics objects.
Regarding the kinematical information, some of the variables stored in the

TMBTree were redundant and could be computed from the other variables.
This will be addressed in the new format with the new base class from which
all physics objects inherit. Thus most of the kinematical variables stored in
the TMBJets class can be removed.

For the Quality/ID information we propose to keep most of the variables
present in the TMBJets. New variables can be added, for example variables
having to do with energy �ow or new and updated quality variables.

It is useful to store Jet Energy Scale corrections and smearing coe�cients
in the jet class to allow for systemtic studies. We propose to add variables
containing this information, which was not present in the TMBJets class.

Jets are central objects within the event and can be associated with other
physics objects such as tracks, primary and secondary vertices, trigger objects
and so on. We propose to add all such useful associations to the jet class.

37

Table 23: Attributes of TMBMuon being Removed
Attribute(s) Description Why Remove?
float hfrac_hit fraction of hadronic calo cells hit Unused
float etrack_hit energy in calo cells hit Unused
float hfrac_best frac of had layers w/energy Unused
float elast energy in last had. layer Unused
float e33 calo energy in 3x3 tower Unused
float e55 calo energy in 5x5 tower Unused
int categoryloc types similar to nseg Duplicate
int qualityloc types of muons based on hit info Duplicate
int statusloc status of local muon �t Obsolete
int centralmatch number of central track matches Unused
int centralrank rank of track match Unused
float qptloc charge divided by pT Easily Reproduced
float pxA, pyA, pzA local �t at A layer to Local class
float phiA, etaA local �t at A layer to Local class
int segIndex index of segment Obsolete
int TrkIndex index of track in TrackChunk Obsolete
bool isTightMuoTrack is tight according to p10 or p11? Obsolete
float pTCorr, int chargeCorr corrected for CFT only track to CentralCorr
float (pT,eta,phi)Central central track pT, η, φ Duplicate
int isAxialMatched is there an axial track? Obsolete
float road(EM,Fine) unknown Obsolete
float road(Course,OutFloor) unknown Obsolete
float scvelo scint velocities Unused
float sctimeBC scint time for BC layers Obsolete
int expWhits(A,BC) wire hits in layers Renamed
int expShits(A,BC) scint hits in layers Renamed

Table 24: Kinematical attributes of TMBJets.
Attribute(s) Description Keep?
pT , px, py, pz Momenta No, move to base class
E Energy No, move to base class
φ, η Direction No, move to base class
det. φ, det. η pT weighted location in terms of iphi and ieta Yes

38

Table 25: Quality/ID attributes of TMBJets.
Attribute(s) Description Keep?
q Sum of charge of associated charged particles No
emf ET fraction in layers 1-7 Yes
emf1, emf2, emf3 ET fraction in layers 1, 2, 3 Yes
icdf, ccmg, ecmg ET fraction in ICD, CC massless gap, EC massless gap Yes
icrf ET fraction in ICD massless gap Yes
fh1f, fh2f, fh3f ET fraction in Fine Hadronic layers 1, 2 and 3+4 Yes
chf ET fraction in Coarse Hadronic layers Yes
emcc, hadcc ET fraction in the EM and hadronic part of the CC Yes
emec, hadec ET fraction in the EM and hadronic part of the EC Yes
hot Ratio of hottest to next-hottest cell Yes
mxET Hottest cell ET Yes
etaW, phiW Eta and phi RMS width Yes
cpsE De-ghosted associated CPS energy Yes
sET, vPT Scalar ET and vector pT Yes
iPT Initial ET : valid only for cone jets Yes
seedET Seed ET : valid only for cone jets Yes
split_merge_word Split/merge word: valid only for cone jets Yes
Nitems Number of towers Yes
n90 Number of towers with 90% of pT Yes
ntrk Number of associated tracks No
nps Number of associated preshower clusters No
algoname Algorithm name as JCCA, JCCB, etc. No
�avor Jet �avor in MC Add

Table 26: Jet Energy Scale information in TMBJets.
Attribute(s) Description Keep?
jes_data_lq[3] JES data correction for light jet, with stat. and syst. error Add
jes_data_hq[3] JES data correction for hf jet, with stat. and syst. error Add
jes_mc_lq[3] JES MC correction for light jet, with stat. and syst. error Add
jes_mc_lq[3] JES MC correction for hf jet, with stat. and syst. error Add
jes[3] JES correction currently applied to jet, with errors Add
smear_coe� Smearing coe�cient applied to jet Add

39

Table 27: Association of TMBJets to other objects.
Attribute(s) Description Keep?
Associations Tracks (TRefArray) Yes
Associations Primary Vertex (TRef) Yes
Associations Track Jets (TRefArray) Add
Associations Matched Muons (TRefArray) Add
Associations Matched Electrons (TRefArray) Add
Associations Trigger Objects (TRefArray) Add
Associations b-ID Objects (TRefArray) Add
Associations PS clusters (TRefArray) Add

4.3.7 TMBLeBob � Unclustered Energy

4.3.8 TMBTaus

TMBTaus contains information about tau candidate objects. The current at-
tributes of TMBTaus, and our recommended modi�cations for CAF are shown
in Table 28.

We propose to eliminate all duplicate attributes, including some that are
uniquely determined by others. Some others that are there for historical
reasons only shall be dropped as well. All commonly used accessor functions
will be retained and several new ones will be added. Implementation of some
existing accessors will have to change because of the above restructuring, but
this will not require any change in the analysis code.

For the 4-momentum, the same coordinate system (Cartesian or Cylin-
drical) should be chosen for all objects. The energy _E of the calorimeter
cluster can be calculated from the 3-momentum, and does not need to be
retained as a data member. The charge _charge, will be calculated from
the associated tracks. The number of tracks in 10◦, 20◦, 30◦ cones can
also be calculated on the �y, if necessary. These attributed will therefore
be dropped. The variables _et_3, _et_7, _rms, _profile, _hot, _emf,
_chf, _icdf need to be retained as they contain important information
about the shower shape and isolation. _EM12_Et, _EM3_Et, _EM4_Et and
_EM12_Et_core, _EM3_Et_core, _EM4_Et_core also detailed information

1The ∆'s are taken between the vector sum of tracks & the EM subcluster to calculate
the invariant mass of the charged tracks and the π0s: _e1e2 × _dalpha = mass(track,
cal cluster).

40

Table 28: Current attributes of TMBTaus.
Attribute(s) Description Keep?
_px, _py, _pz Cartesian 3-momentum No
_pT, _eta, _phi Cylindrical 3-momentum Yes
_E Energy No
_charge Charge No
_ntrk number of tracks Yes
_rms, _profile, _hot Cal RMS, Pro�le, hot-cell ratio Yes
_emf, _chf, _icdf EM, CH, and ICD fractions Yes
_ntrk1, _ntrk2, _ntrk3 # tracks in 10◦, 20◦, 30◦ cones No
_fsh Fisher discriminant (obsolete) No
_type tau decay hypothesis (1-4) Yes
_nnout[4] NN output for 4 types Yes
_flag Status word (Int) Yes
_et_3, _et_7 ET in 0.3 & 0.7 cones Yes
_EM12_Et, _EM3_Et, _EM4_Et ET in EM layers 1+2, 3, & 4 Only EM12
_EM12_Et_core,..._EM4_Et_core Ditto in core cones Ditto
_tzDCA z of leading track at DCA Yes
_ett1, _ett2, _ett3 pT of 3 hightest-pT tracks Yes
_mtrk, Mass of all tracks Yes
_teta, _tphi η, φ of track (Σp) Yes
_tphiPS, _tphiEM3 φ of leading track at PS, EM3 Yes
_ettr pT sum of non-leading tracks Yes
_empt, _emeta, _emphi, _emm pT , η, φ, mass of EM subclusters Yes
_emcl_et1, _emcl_eta1, _emcl_phi1 ET , η, φ of leading EM subcluster Yes
_emcl_et2, _emcl_eta2, _emcl_phi2 ET , η, φ of 2nd EM subcluster Yes
_pseta, _psphi η, φ of PS cluster Yes
_dalpha _dalpha =

√
(∆φ)2

sin2 θ
+ (∆η)2 Yes1

_e1e2
√

pT (tracks)× ET (EMcal) Yes1
Associations Description Keep?
_vtxref Vertex (one TRef) ?
_tracks Tracks (TRefArray) Yes
_cpsptr CPS clusters (TRefArray) Yes
_fpsptr FPS clusters (TRefArray) Yes

41

about the shape of the shower in the EM layers, but are not being used.
These can probably be dropped. The obsolete variable _fsh can be dropped.
_type is an integer representing the categorization of the candidate based
on hypothesized decay channel (presently 1-4). _nnout[4] are the outputs
of each candidate from neural networks, one for each _type. Frequent re-
training of the networks makes it necessary to retain all the input variables
(see below), and member functions will be available for the user to re-evaluate
the network functions with new sets of weights. Still, it is necessary to keep
the original (reco) values of NN outputs since these are often used in se-
lection criteria for streaming etc. Pointers to tracks and preshower clusters
associated with the tau candidate need to be kept. The pointer to the as-
sociated vertex can be dropped if it can be readily accessed using the track
pointer(s).

4.3.9 TMBMet � Missing ET

Information about the missing ET in a event is stored in the Met branch.
The branch consists of a single object of type TMBMet which closely mimics
the interface in the met_evt framework package.

The attributes of the current TMBMet are shown in Table 29. They contain
all the information from the d0reco and thumbnail version.

The basic data structure used in the TMBMet object is the BMetStruct,
de�ned in the met_util package. It consists of �ve �oating point numbers
of 32 bit each, representing the various components of missing and sum ET :

• MEx

• MEy

• MEz

• SET

• MET

The structure is repeated for di�erent de�nitions of missing ET . See [2]
for the details. There are 29 versions of these, and most of them are only of
interest to an expert user.

42

The corrected missing ET is stored as a vector of of BMetQualInfo objects
(also de�ned in met_util). Each object is at least 164 bytes plus the size of
a string identifying the jet algorithm. Its structure can be seen in Table 30.

Finally there are ring variables, four �oats each, for up to 74 eta rings. It
is not known if this information has been used in a RunII analysis so far.

The z coordinate of the vertex used to calculate the missing ET is also
kept as a single �oating point value.

We suggest to split the missing ET information into a user and expert
branch and keep only the indicated variables in the user branch. All the
other information will go into the expert branch. The missing ET classes
have been recently re-organized, so it contains no remnants of the past that
can be easily removed.

All items marked Yes in Table 29 will be kept in the user branch. All
items marked No will be in the expert branch. [One of the items marked
JES will be kept in the user branch, whichever the Jet Energy Scale group
believes to be most useful.]

For the _metqualinfos vector we suggest to keep all the information
available in the thumbnails.

4.3.10 TMBCps � Central Preshower

For the CPS, contiguous strips above threshold are clustered into single layer
clusters (SLCs). These SLCs are then divided into subclusters containing
at most �ve strips. Subclusters that overlap in all three layers are used to
create 3D clusters. 3D clusters associated with isolated tracks, taus, and
EM objects are written to thumbnail. When writing CPS information to
tmb_tree, each 3D cluster is represented by a TMBCps object. Each TMBCps
has the following members:

• r

• phi

• z

• xE, uE, vE

• matchQ

• matchEQ

43

Table 29: Attributes of TMBMet.
Type Attribute Description User
BMetStruct _met CAL + ICD Towers JES
BMetStruct _metnoeta CAL + ICD Towers, above tower threshold JES
BMetStruct _metweta CAL + ICD Towers, in eta limits, over t threshold JES
BMetStruct _metT CAL + ICD Towers, over t threshold JES
BMetStruct _metTM CAL + ICD + Muon correction, over t threshold No
BMetStruct _metTAS CAL + ICD over eta limit, over t threshold No
BMetStruct _metTBS CAL + ICD below eta limit, over t threshold No
BMetStruct _metTAN CAL + ICD over eta limit, below t threshold No
BMetStruct _metTBN CAL + ICD T below eta limit, below t threshold No
BMetStruct _metC CAL + ICD Cells Yes
BMetStruct _metCM CAL + ICD Cells + Muon correction No
BMetStruct _metCAS CAL + ICD C above eta limit, above c threshold No
BMetStruct _metCBS CAL + ICD T below eta limit, above c threshold No
BMetStruct _metCAN CAL + ICD T above eta limit, above t threshold No
BMetStruct _metCBN CAL + ICD c below eta limit, below c threshold No
BMetStruct _metICD ICD Cells No
BMetStruct _metNADA NADA Cells No
BMetStruct _metMUON Tight Muons No
BMetStruct _metD CAL + ICD Cells layers 1-14 (no CH) Yes
BMetStruct _metDM CAL + ICD c layers 1-14 (no CH) + Mu correction No
BMetStruct _metEM EM layers (1-7) No
BMetStruct _metMG Massless Gap layers (8 & 10) No
BMetStruct _metFH FH layers (11-14) No
BMetStruct _metCH CH layers (15-17) No
BMetStruct _metED CAL + ICD Cells below eta limit.(no threshold) No
BMetStruct _metNG negative cells No
BMetStruct _metT42 noise cells, based onthe CalT42 algorithm. No
BMetStruct _metA META = METD + CH frac. of good jets Yes
BMetStruct _metB METB = METD + CH frac. of good jets Yes
Float_t _Zvertex Z of the vertex used to calculate mET Yes
BMetQualInfo _metqualinfos vector of Corrected mET Yes

44

Table 30: Attributes of BMetQualInfo.
Type Attribute Description
string _algo Jet Algo Name
BMetStruct _METcorr Final Corrected Missing ET
BMetStruct _CHcorr MissingET Corrections
BMetStruct _JEScorr MissingET Corrections
BMetStruct _EMcorr MissingET Corrections
BMetStruct _MUcorr MissingET Corrections
BMetStruct _MUCalcorr MissingET Corrections
BMetStruct _BJcorr MissingET Corrections
�oat _isophigoodjet MissingET isolation wrt good id objects
�oat _isophimu
�oat _isophiem
�oat _isophibadjet
�oat _isophiunclusteredenergy
�oat _isophibadtower MissingET isolation wrt bad Towers, Cells

• xSLC_Id, uSLC_Id, vSLC_Id

• xNStrips, uNStrips, vNStrips

• dphi

• dz

• nn

• isLoose

• isTight

• p3v[3]

The �rst three variables are the coordinates of the 3D cluster. The next
three are the energies of the SLCs that make up the 3D cluster. matchQ is
a χ2-like term that measures the quality of the spatial match of the three
SLCs. matchEQ is an analagous quantity for the energy match of the three
SLCs. The next three variables are the id numbers for the SLCs in the
3D cluster. The following three variables are the number of strips in each

45

Table 31: Average number of CPS clusters written per event.
Skim Clusters
BID 4.7
EM1TRK 6.9
QCD 8.0

SLC. dphi and dz are the errors on the φ and z coordinates. nn is a neural
net output to discriminate between EM objects and non-EM objects, and
isLoose and isTight are boolean �ags for picking EM-like clusters, based
on the neural net output and the number of strips and energies in the SLCs.
Finally, p3v[3] is a unit vector from the primary vertex to the 3D cluster,
used for π0 reconstruction.

The (x,u,v)SLC_Id variables identify the SLCs used in a 3D cluster, and
could be used to identify 3D clusters that share SLCs. However, it is unlikely
that this will be done, and it is recommended that these three variables be
omitted.

p3v[3] can be calculated from the position of the 3D cluster and the
desired vertex, and the algorithm is one that will not change over time, so it
is suggested that this variable also be omitted.

All other variables should be kept. r, phi, z, dphi and dz are clearly
necessary. matchQ and matchEQ are important quality variables useful in
rejecting combinatoric background. The number of strips and energy in each
SLC are used to distinguish EM-like objects from fakes. The neural net
output is not easily calculated on the �y, and isLoose and isTight only
require one bit each.

Since 3D clusters are only kept if they are associated with various physics
objects, relatively few are written per event. Typical averages are shown in
Table 31.

We would also like to consider the possibility of keeping all 3D clusters
that are classi�ed as isLoose. Using a diEM skim, we found that the number
of clusters kept would go from 7.1 to 12.4.

In addition to the standard CPS data, the energy information for all strips
that were read out in an event (i.e. - the contents of the CPSDigiChunk)
should be available in an expert/developer branch.

46

4.3.11 TMBFps � Forward Preshower

As for the CPS, FPS clusters associated with isolated tracks, taus and EM
objects are written to thumbnail. Information about FPS clusters are stored
in TMBFps objects, which contain the following members.

• E

• phi

• r

• z

• nstr_(u,v)

• cntrd_(u,v)

• rms_(u,v)

• ecl_(u,v)

• index_cl

E is the energy of the cluster, and r, phi and z are the coordinates of the
cluster. The next variables are the number of strips, centroid, rms width and
energy, respectively, of the u and v layer cluster. index_cl identi�es which
wedge the cluster is in.

The energy and position variables should de�nitely be kept for the com-
mon analysis format. The other variables are likely to be used only by ex-
perts, but since less than one FPS cluster is stored per event, their impact
on the data size will be negligible. We therefore propose to keep the FPS
variables as they are, and store the same clusters as for the thumbnail.

In addition to the standard FPS data, the energy information for all strips
that were read out in an event (i.e. - the contents of the FPSDataChunk)
should be available in an expert/developer branch.

47

Table 32: Attributes of TMBLum.
Type Variable Name Unit Description
Int_t _time 1/20 nanosecond Time of Hit
Int_t _charge femtoCoulombs Charge in counter
Int_t _id Wedge ID See Table
Int_t _slew 1/20 nanosecond Slew correction
Int_t _range Range used to calculate charge in unpacker
Int_t _tc 1/20 nanosecond Corrected time
Float_t phi degrees Low edge of wedge

4.3.12 TMBLum and TMBLumV - Luminosity Monitor

The luminosity monitor consistes of 48 wedges. 24 Wedges of each of the
North and south Sides. The Luminosity Detector output is stored in the
CAF in two Classes. TMBLum and TMBLumV. The TMBLum Class
stores variables from the TDC boards of the luminosity system, with an
instance corresponding to the variables from one of the Luminosity wedges.
The TMBLumV Class stores variables read from the vertex board of the
luminosity system.
The variables of the TMBLum class are shown in table 32. The variables for
the TMBLumV class are shown in table 33. These variables are analogous
to those stored in the LMDigiChunk and LMTmbObj Classes of lm_event.
The TDC Data for any Given wedge is stored by wedge name as described
in 34, and no data is stored for wedges which zero charge or time values.
Documentation on the luminosity monitor data format may be found in
D0Note 4140, and 4857.

4.3.13 TMBTRefs � Overlapping Physics Objects

4.4 B-Tagging

Before the DØ b-tagging algorithms were migrated to d0root, b-tagging
worked a lot like any other DØ reconstruction algorithm. There were frame-
work packages and chunks to store results (vertexTagChunk, impTagChunk,
bcJetChunk, etc.). There were also a thumbnail class (bcTmbObj) and
tmb_tree branch class (TMBBCJet).

48

Table 33: Attributes of TMBLumV.
Type Variable Name Unit Description
Int_t _t_l2n 1/20 nanosecond Second smallest _tc for N counters
Int_t _t_h3n 1/20 nanosecond Third largest _tc for N counters
Int_t _t_h2n 1/20 nanosecond Second largest _tc for N counter
Int_t _th1n 1/20 nanosecond largest _tc for N counters
Int_t _sumn 1/20 nanosecond sum of _tc for north counters
Int_t _nhitn No. of valid hits in N counters
Int_t _t_l1n 1/20 nanosecond smallest _tc for N counters
Int_t _t_l2s 1/20 nanosecond Second smallest _tc in S counter
Int_t _t_h3s 1/20 nanosecond Third largest _tc in S counter
Int_t _t_h2s 1/20 nanosecondd Second largest _tc in S counter
Int_t _t_h1s 1/20 nanosecond Largest _tc in south counter
Int_t _sums 1/20 nanosecond sum of _tc for south counters
Int_t _nhits No. of valid hits in S counters
Int_t _t_l1s 1/20 nanosecond smallest _tc for S counters
Int_t _mi_�ag Multiple Interaction �ag
Int_t _tdifn 1/20 nanosecond spread in _tc for N counters
Int_t _tdifs 1/20 nanosecond Spread in _tc for S counters
Int_t _averagen 1/20 nanosecond Average _tc in N counters
Int_t _averages 1/20 nanosecond Average _tc in S counters
Int_t _zvtx 1/0.75 cm Vertex position
Int_t _tfw_andor Trigger framework input bits

49

Table 34: Wedge Label as a function of id.
ID Label ID Label ID Label ID Label
0 NW01 12 NE01 24 SW01 36 SE01
1 NW02 13 NE02 25 SW02 37 SE02
2 NW03 14 NE03 26 SW03 38 SE03
3 NW04 15 NE04 27 SW04 39 SE04
4 NW05 16 NE05 28 SW05 40 SE05
5 NW06 17 NE06 29 SW06 41 SE06
6 NW07 18 NE07 30 SW07 42 SE07
7 NW08 19 NE08 31 SW08 43 SE08
8 NW09 20 NE09 32 SW09 44 SE09
9 NW10 21 NE10 33 SW10 45 SE10
10 NW11 22 NE11 34 SW11 46 SE11
11 NW12 23 NE12 35 SW12 47 SE12

Since the migration of b-tagging algorithms to d0root, the associated
infrastructure (chunks, thumbnail object, tree branch) no longer works. De-
velopers and analyzers alike are now required to run b-tagging at the analysis
(root) level, beginning with re�nding primary vertices using the bid-certi�ed
primary vertex algorithm.

From the analyzers point of view, this way of doing things has the disad-
vantage of being slow and more complex than it needs to be. It is obvious
that b-tagging results should be stored directly in the CAF tree, without
needing to be recalculated each time.

The data format group proposes to bring back a lot of the abandoned
infratructure while keeping the b-tagging algorithms as part of d0root. In
principle, this should not be that di�cult, since a mechanism already exists
to import framework objects (tracks, jets, etc.) into the d0root universe.
What is lacking is an export mechanism and infrastructure to receive the
results. Speci�cally, we propose that results of each stage of the lifetime b-
tagging analysis chain be made persistent as an edm chunk, thumbnail object
(possibly), and as a branch in the CAF. There are six such stages.

1. Re�nd primary vertices. This step is not part of the b-tagging algo-
rithms proper, but for some time the primary vertex algorithm used for
certi�ed b-tagging has been di�erent than the primary vertex algorithm
that runs in d0reco.

50

2. V 0-�nding. The purpose of this step is to identify tracks originat-
ing from K0

S and Λ decays, so that such tracks can be removed from
consideration as candidates tracks arising from the decay of b-quark-
containing hadrons.

3. Track selection and V 0-removal. The purpose of this step is to identify
a sample of tracks originating from the hard scatter vertex to be used
as input to the lifetime b-tagging algorithms.

4. Find track jets. Track jets are found using a cone algorithm using track
as inputs. Calorimeter information is ignored, except that track jets
are eventually matched to calorimeter jets using η-φ matching. Track
jets are used to de�ne �taggability� of calorimeter jets for all lifetime
taggers (certi�ed tag rate functions and scale factors are always de�ned
relative to so-called taggable jets). Additionally, some taggers (namely
SVT) make essential use of the track jets as input to the algorithm.

5. Find secondary vertices. Secondary vertices are searched for within
track jets.

6. Apply tagging algorithm. There are currently four tagging algorithms
implemented in d0root.

• The Secondary Vertex (SVT) algorithm uses secondary vertices as
its primary input. Calorimeter jets are not used, except that the
�nal results are applied to matched calorimeter jets.

• The Jet Lifetime Impact Parameter (JLIP) algorithm is based
on the impact parameters of tracks. Tracks are treated indepen-
dently. Calorimeter jets are required as an essential input to de�ne
the jet axis so that tracks can be classi�ed as having positive or
negative impact parameter. Matched track jets are not used di-
rectly, except to establish taggability.

• The Counting Signed Impact parameter (CSIP) is another impact
parameter based algorithm. The same general considerations ap-
ply as for JLIP.

• The Soft Lepton Tag (SLT) algorithm is based on the �nding of
leptons in jets as evidence of a b-quark semileptonic decay. Cur-
rently, only muons are used. Most of the track-based infrastruc-

51

ture used by the lifetime taggers is not relevant for the SLT algo-
rithm.

Steps two and three (V0 track-�ltering) are currently implemented as a
single step (via class d0root_csip/CsipV0Filter). The found V0's are not
saved anywhere, not even in d0root. This should be split into two steps and
the found V0's should be saved.

Steps four (track jets) and �ve (secondary vertices) are currently only
used by the SVT algorithm. Both steps are implemented internally as part of
the SVT algorithm (class d0root_btag/SVKalmanBtagger) and the results
of these intermediate steps are not visible externally. The results of both
steps should be made visible and exported.

We recommend that the results of the above six analysis steps, except
for track selection, which can continue to be on-the-�y, be saved in an edm
chunk and in a tmb_tree branch. In addition, we recommend that a seventh
chunk/branch be created to store the relationships among all of the objects
and algorithms involved in b-tagging.

4.4.1 Primary Vertices for b-tagging

.
Among all of the d0root objects created for use in b-tagging, vertices

(primary or secondary) are the only one for which there is a suitable edm
chunk, namely VertexCollChunk. The contents of VertexCollChunk consist
of an integer vertex type, a vertex name, and a collection of Vertex objects.

The selection of vertex chunks for use as input for further reconstruc-
tion or analysis is done exclusively by means of the integer vertex type at-
tribute rather than the vertex name attribute. The vertex type is used to
distinguish primary and secondary vertices, as well as vertices reconstructed
using di�erent algorithms. Many packages assume that there will be only
one VertexCollChunk of any given type, which restriction d0root must re-
spect. C++ enums of all known vertex types are stored in the header �le
vertexutil/VertexType.hpp. The type that corresponds to �physics pri-
mary vertices� is VertexType=PRIMARY or 3. The �rst vertex in this chunk is
the one that has been selected as the best choice for the hard scatter vertex.

Primary and secondary vertices found by d0root can �t rather easily
into the existing edm vertex infrastructure by simply de�ning new vertex
types for each d0root vertex reconstruction algorithm. Creating additional

52

Table 35: Attributes of vertex::V0.
Attribute(s) Description
px, py, pz 3-momentum
m Mass
σm Mass error
q Total charge
x, y, z Decay vertex
σ2

ij Vertex error matrix
χ2 Vertex chisquare
PDGID Particle type
Associations Charged particles (LinkIndex<ChargedParticle>)

VertexCollChunks will not interfere with any existing code provided that
each algorithm gets a unique vertex type. Each algorithm that wants to cre-
ate a chunk should register for a type by adding an enum to VertexType.hpp.

For the CAF, primary vertex objects will be stored using class
TMBPrimaryVertex (see sec. 4.3.2), with di�erent algorithms having di�erent
branch names.

4.4.2 V 0's

The next step in lifetime b-tagging is search for fully reconstructable long-
lived V 0's (K0

S's and Λ's). At the CAF level, these objects will be stored in
class TMBV0 (see Sec. 4.3.2). At the edm level, it will be necessary to de�ne
a new chunk. Rather than derive from class vertex::Vertex, we propose to
make a new class vertex::V0 (see Table 35). Class vertex::V0Chunk will
consist of a collection of V0's.

4.4.3 Track Jets

The fourth step in lifetime b-tagging is the �nding of track jets. Currently,
track jets are found in d0root, but there is no support for track jets in edm
or tmb_tree. As with calorimeter jets, the is the potential to have di�erent
track jet algorithms. At the edm level, the results of di�erent track jet
algorithms will be stored in di�erent chunks with the attribute identi�ed by
a chunk attribute. At the CAF level, the track jet algorithm will be identi�ed
by the name of the branch.

53

Table 36: Attributes of bid::TrackJet.
Attribute(s) Description
px, py, pz, E 4-momentum
q Total charge
status Status word (includes taggability)
Primary Vertex LinkIndex<Vertex>
Charged particles vector<LinkIndex<ChargedParticle> >

Table 37: Attributes of TMBTrackJet.
Attribute(s) Description
px, py, pz, E 4-momentum (TMBLorentzVector)
q Total charge
status Status word (includes taggability)
Primary Vertex TRef
Charged particles TRefArray

The proposed edm track jet object is called bid::TrackJet and its con-
tents are shown in Table 36. The CAF object is called TMBTrackJet, and its
contents are shown in Table 37.

4.4.4 Secondary Vertices

The �fth step in lifetime b-tagging is secondary vertex �nding. Many of
the same general considerations apply to secondary vertices as to primary
vertices (see Sec. 4.4.1). At the edm level, secondary vertices can be stored
in VertexCollChunk, with appropriate vertex type attribute. At the CAF
level, secondary vertices are stored in TMBSecondaryVertex (see Sec. 4.3.2).

4.4.5 b-Tagging Results

The sixth and �nal step in lifetime b-tagging is the application of the b-
tagging algorithm proper. The tagging algorithms may make use of any of
the results from the previous �ve steps, as well as any other results from the
event.

Some results produced by the various tagging algorithms are generic, such
as whether a given calorimeter jet is tagged tight, medium, loose, or not at
all. Other results are algorithm speci�c. We propose to have a common

54

Table 38: Attributes of bid::BTag.
Attribute(s) Description
status Status word (includes loose/medium/tight,

positive/negative, MC �avor)
Calorimeter Jet LinkIndex<Jet>
Track Jet LinkIndex<TrackJet>
MC Particle Jet LinkIndex<Jet>
Filtered Tracks ChunkID

Table 39: Attributes of TMBBTag.
Attribute(s) Description
status Status word (includes loose/medium/tight,

positive/negative, MC �avor)
Calorimeter Jet TRef to TMBJet
Track Jet TRef to TMBTrackJet
MC Particle Jet TRef to TMBJet
Filtered Tracks TRef to TMBFilteredTracks
Data TRF Method or attribute
MC TRF Method or attribute
Scale factor Method or attribute

base class for the generic results, and derived class for the algorithm-speci�c
results. The base class is called bid::BTag at the edm level, and TMBBTag at
the CAF level. The contents of the base class are shown in Tables 38 and 39.
Algorithm speci�c classes for SVT are shown in Tables 40 and 41. Algorithm
speci�c classes for JLIP are shown in Tables 42 and 43. Algorithm speci�c
classes for CSIP are shown in Tables 44 and 45. Algorithm speci�c classes
for SLT are shown in Tables 46 and 47.

Table 40: Attributes of bid::BTagSVT.
Attribute(s) Description
bid::BTag base class
Secondary vertices vector<LinkIndex<Vertex> >

55

Table 41: Attributes of TMBBTagSVT.
Attribute(s) Description
TMBBTag base class
Secondary vertices TRefArray

Table 42: Attributes of bid::BTagJLIP.
Attribute(s) Description
bid::BTag base class
PJLIP Tagging probability
NTrack Number of selected tracks.
Selected tracks vector<LinkIndex<ChargedParticle> >

Table 43: Attributes of TMBBTagJLIP.
Attribute(s) Description
TMBBTag base class
PJLIP Tagging probability
NTrack Number of selected tracks.
Selected tracks TRefArray

Table 44: Attributes of bid::BTagCSIP.
Attribute(s) Description
bid::BTag base class
NTrack Number of selected tracks.
Selected tracks vector<LinkIndex<ChargedParticle> >

Table 45: Attributes of TMBBTagCSIP.
Attribute(s) Description
TMBBTag base class
NTrack Number of selected tracks.
Selected tracks TRefArray

56

Table 46: Attributes of bid::BTagSLT.
Attribute(s) Description
bid::BTag base class
Nmuon Number of associated muons.
Associated muons vector<LinkIndex<MuonParticle> >

Table 47: Attributes of TMBBTagSLT.
Attribute(s) Description
TMBBTag base class
Nmuon Number of associated muons.
Associated muons TRefArray

4.5 Trigger Results

[Section missing. Basic plan is to import contents of trigsimcert tree into
CAF.]

4.6 Branch and Class Names

We suggest to change the names of branches in the �les and C++ classes
according to Table 48.

The changes are intended to move away from abbreviations and be inter-
nally consistent. For instance, classes for physics objects are all singular and
fully spelled out.

Branch names are often used interactively, so they leave out any pre�x
and try to be short and descriptive.

Jet and EM brances will be split by algorithm. We suggest to use the
normal Jet algorithm name for branches, e.g. JCCA, JCCB, etc. For EM
branches we suggest to use EMscone and EMcnn.

References

[1] D0 Note 4473, Report of the DØ Data Format Working Group.

[2] DØ Note 4474, Missing ET Reconstructions in p17.

57

Table 48: Names of branches and C++ classes.
Old Class Name Old Branch New Class Name New Branch
TMBGlob Glob TMBGlobal Global
TMBHist Hist TMBHistory History
TMBMuon Muon TMBMuon Muon
TMBTrks Trks TMBTrack Track
TMBIsoTrks IsoTrks TMBIsoTrack IsoTrack
TMBVrts Vrts TMBVertex Vertex
TMBEmcl Emcl TMBEM (see text)
TMBJets Jets TMBJet (see text)
TMBTaus Taus TMBTau Tau
TMBLeBob LeBob TMBLeBob LeBob
TMBMet Met TMBMet Met
TMBTrig Trig TMBTrigger Trigger

58

