
Recommendations Regarding Common
Analysis Format Content

D0 Data Format Working Group

October 4, 2004

DØ Note XXXX

Contents

1 Introduction 3

2 Overview of Tmb tree 3
2.1 Executable, framework packages and rcps 3

2.1.1 Structure of TMBAnalyze x 4
2.1.2 Overview of tmb tree Content 4

3 General Considerations Regarding Root Data Formats 6
3.1 Redundant Attributes . 6
3.2 CAF Data Model and Standard Root Classes 6

3.2.1 TObject . 6
3.2.2 TObjArray and TClonesArray 6
3.2.3 TRef and TRefArray 6
3.2.4 TLorentzVector . 6

3.3 Schema Evolution . 6

4 Specific Branches 6
4.1 Global Event Data . 6

4.1.1 TMBGlob — Global Event Object 7
4.1.2 TMBHist — Processing History 7
4.1.3 TMBTrig — Fired Triggers 8

1

4.2 Monte Carlo Information . 8
4.2.1 TMBMCpart — Monte Carlo Particles 9
4.2.2 TMBMCvtx — Monte Carlo Vertices 9
4.2.3 TMBMCevtInfo — Global Monte Carlo Information . 10

4.3 Reconstructed Physics Objects 10
4.3.1 TMBTrks and TMBIsoTrks — Charged Particles . . . 10
4.3.2 TMBVrts — Vertices 13
4.3.3 TMBEmcl and TMBEmCells — Electrons and Photons 15
4.3.4 TMBMuon — Muons 15
4.3.5 TMBJets — Jets . 15
4.3.6 TMBLeBob — Unclustered Energy 15
4.3.7 TMBTaus — Taus . 15
4.3.8 TMBMet — Missing ET 15
4.3.9 TMBFps — Forward Preshower Clusters 16
4.3.10 TMBCps — Central Preshower Clusters 16
4.3.11 TMBTRefs — Overlapping Physics Objects 16
4.3.12 B-Tagging . 16

4.4 Trigger Results . 16
4.5 Raw Data . 16

4.5.1 TMBCalQual — Calorimeter Data 16

2

Table 1: Framework packages in TMBAnalyze x.

CVS Package Framework Package
tmb tree maker TMBTreePkg

tmb tree maker TMBCorePkg

tmb bcjet TMBBCJetPkg

mc analyze TMBTreeMCPkg

tmb analyze TMBTRefsPkg

tmb tree trigger maker TMBTriggerPkg

1 Introduction

The Report of the DØ Data Format Working Group [1] recommended, among
other things, that the proposed Common Analysis Format (CAF) be based
on the tmb tree. The basic reasons for this recommendation were that the
tmb tree is general purpose and object-oriented. The report further recom-
mended a review of the contents of the tmb tree without any requirement
of backward compatibility of the CAF with respect to the current tmb tree.
This document contains the result of this review. Here we give our recom-
mendation of what the content of the CAF should be.

2 Overview of Tmb tree

This section contains an overview of the existing (pre-CAF) tmb tree, its
organization, branches, framework and cvs packages, and relationship to the
DST and TMB.

2.1 Executable, framework packages and rcps

Tmb tree root files are built by the executable TMBAnalyze x executable,
which is part of cvs package tmb analyze. The top level rcp is called
runTMBTreeMaker[SAM][MC].rcp. The packages invoked by the standard
top level rcp (i.e. those that are specifically related to making the tmb tree)
are shown in Table 1. The first package, TMBTreePkg, is the overall guid-
ing package (it somewhat resembles the standard framework Controller

package). The remaining packages are concerned with filling one or more
branches.

3

2.1.1 Structure of TMBAnalyze x

Before moving on to a consideration of the content of the tmb tree, we in-
clude here a brief commentary on the structure and design of TMBAnalyze x.

The branch-filling packages construct one or more branch-filling “maker”
objects (base class TMBMaker), which register themselves with the single
TMBTreePkg instance using static/global methods. This design is good in
the sense that it allows the content of tmb tree to be extended without
changing any existing code (this is one of the requirements for the CAF).
However, there are some negative aspects and missing features in the current
design. For example:

1. The fact that TMBTreePkg is a singleton means that it is not possible to
write more than one tmb tree at a time. It should be possible to write
multiple tmb tree’s, each with different branches and event selection.

2. The current TMBAnalyze x does not generate metadata for storing
tmb tree’s in sam.

3. The current TMBAnalyze x only runs on d0om data, and the maker
objects only have access to data stored in edm chunks. It would be
useful for TMBAnalyze x to run on either d0om or root data, and for
maker objects to have access to both edm chunks and root branches.

The Data Format Working Group intends to address these limitations,
however the proposed solutions are not the subject of this document.

2.1.2 Overview of tmb tree Content

The branches of the current tmb tree are summarized in Table 2.
The largest framework package is TMBCorePkg, which fills branches for

reconstructed physics objects and raw data. Package TMBTreeMcPkg fills
Monte Carlo information. Package TMBMCJetPkg is obsolete, having been
replaced by d0root-based b-tagging algorithms. TMBBCJetPkg is commented
out of the standard runTMBTreeMaker.rcp in the latest test releases, but is
still present by default in the p14 and p16 versions of tmb analyze. We will
have nothing further to say about TMBBCJetPkg in this document, but we
are proposing a replacement (see Sec. 4.3.12). The trigger branches created
by package TMBTriggerPkg are likewise in need of major revision. We are
proposing a replacement based on the TrigSimCert package (see Sec. 4.4).

4

Table 2: Branches in tmb tree.

Framework Branch Tree DST Chunk(s)
Package Object Object
TMBCorePkg Trks TMBTrks ChargedParticle ChargedParticleChunk

IsoTrks TMBIsoTrks ChargedParticle ChargedParticleChunk

Vrts TMBVrts Vertex VertexCollChunk

Emcl TMBEmcl EMparticle EMparticleChunk

EmCells TMBEmCells EMparticle EMparticleChunk

Muon TMBMuon MuonParticle MuonParticleChunk

Jets TMBJets Jet JetChunk

LeBob TMBLeBob LeBob JetChunk

Taus TMBTaus Tau TauChunk

Met TMBMet MissingET MissingETChunk

Glob TMBGlob TMBTriggerChunk

Trig TMBTrig L1L2Chunk, L3Chunk

Hist TMBHist HistoryChunk

CalQual TMBCalQual CalDataChunk

Calt42Chunk

Calt4 25Chunk

Fps TMBFps FPSClusterChunk

Cps TMBCps CPSClusterChunk

TMBBCJetPkg BCJets TMBBcJet bcJet bcJetChunk

TMBTreeMcPkg MCpart TMBMCpart MCKineChunk

MCvtx TMBMCvtx MCKineChunk

MCevtInfo TMBMCevtInfo MCKineChunk

TMBTrefsPkg TRefs TMBTRefs LinkedPhysObjChunk

TMBTriggerPkg L1CalTile TMBL1CalTower L1L2Chunk

L1CalTwr TMBL1CalTower L1L2Chunk

L1CalEMTwr TMBL1CalTower L1L2Chunk

L1Muon TMBL1Muon L1L2Chunk

L1AndOr TMBL1AndOr L1L2Chunk

L2Jet TMBL2Jet L1L2Chunk

L2EM TMBL2EM L1L2Chunk

L2Muon TMBL2Muon L1L2Chunk

L3ToolsResults TMBL3ToolsResults L3Chunk

5

Apart from these major revisions, we believe the existing branches of the
current tmb tree can provide a reasonable basis for the CAF.

3 General Considerations Regarding Root

Data Formats

3.1 Redundant Attributes

The current tmb tree classes are shot through with redundant attributes. A
common situation that arises is storing the 3-momentum of physics objects
in both Cartesian coordinates (px, py, pz) and Cylindrical coordinates (pT ,
η, φ). Given that it is faster to do a recalculation involving a transcendental
function call than it is to read four bytes of data from disk, we recommend
that in most cases these redundant attributes should be eliminated. The
dropped attributes can be replaced by methods, if necessary. The only con-
crete advantage of keeping redundant attributes, that we know of, is having
interactive access to these quantities through the root browser. For this rea-
son, in the specific case of objects containing both Cartesian and Cylindrical
3-momenta, our passing preference is to retain the Cylindrical representation.

3.2 CAF Data Model and Standard Root Classes

3.2.1 TObject

3.2.2 TObjArray and TClonesArray

3.2.3 TRef and TRefArray

3.2.4 TLorentzVector

3.3 Schema Evolution

4 Specific Branches

4.1 Global Event Data

This section describes global event produced by d0reco in the tmb tree. This
information is very simple, and not very big.

6

Table 3: Attributes of TMBGlob.
Attribute(s) Keep?
Run number (int) Yes
Event number (int) Yes
Store number (int) Yes
Luminosity block (int) Yes
Tick number (int) Yes
Solenoid polarity (int, 0=forward, 1=reverse) Yes
Toroid polarity (int, 0=forward, 1=reverse) Yes
Solenoid current (float) Yes
Toroid current (float) Yes
Event flags (vector<int>, current length 4) Add
Muon quality (6 ints) Add

Table 4: Attributes of TMBHist.
Attribute(s) Keep?
Number history chunks (int) Yes
Program name (string) Yes
Program version (string) Yes

4.1.1 TMBGlob — Global Event Object

Branch Glob (class TMBGlob) is the main repository for “global event data.”
The global event data stored in this branch originates in the Global ob-
ject stored in TMBTriggerChunk. The header Global.hpp can be found in
d0library package config base. The contents of TMBGlob are shown in Ta-
ble 3. We are recommending expanding the current branch by the addition
of event flags and muon quality words.

4.1.2 TMBHist — Processing History

Branch Hist (class TMBHist) stores processing history from HistoryChunks.
The contents of TMBHist are shown in Table 4. We do not recommend any
changes.

7

Table 5: Attributes of TMBTrig.

Attribute(s) Keep?
Number of triggers (int) Yes
Trigger name (string) Yes
L3 pass flag (bool) Yes
L2 pass flag (bool) Yes
L1 pass flag (bool) Yes
L3 unbiased flag (bool) Yes
L2 unbiased flag (bool) Yes
L2 bit number (int) Yes
L1 bit number (int) Yes
L1L2Chunk flag (bool) Yes

4.1.3 TMBTrig — Fired Triggers

Branch Trig (class TMBTrig) stores the list of fired triggers. This branch is
intended to provide event selection based on trigger. The contents of TMBTrig
are shown in Table 5. This branch gets its data either from L1L2Chunk

and L3Chunk (if present), or TMBTriggerChunk. We do not recommend any
changes.

4.2 Monte Carlo Information

The information in the three Monte Carlo branches mirrors information in
MCKineChunk. Dst or thumbnail files have several MCKineChunks, one for each
generated event (usually one hard scatter and several minimum bias events),
plus one MCKineChunk that is added by geant. The Monte Carlo branches
contain the union of the various MCKineChunks, and also retain enough infor-
mation to determine which MCKineChunk each particle and vertex originated
from.

Due to the large number of Monte Carlo particles in a typical MC event,
the MC particle and vertex branches are important contributors to the overall
size of MC tmb trees. Therefore, it is important not to waste space for these
branches.

8

Table 6: Attributes of TMBMCpart.

Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum No
pT , η, φ Cylindrical 3-momentum Yes
E Energy No
q Charge No
id Particle type (pdg id.) Yes
Associations Initial vertex (TRef) Yes

Final vertex (TRef) Yes

4.2.1 TMBMCpart — Monte Carlo Particles

Monte Carlo particles are stored in branch MCpart. The attributes of
TMBMCpart are shown in Table 6. Currently, TMBMCpart stores two redundant
representations of the 3-momentum, one of which is an obvious candidate for
elimination. We also recommend getting rid of the energy and charge at-
tributes because these are redundant with the pdg id. We note that the
mass and charge of any particle with a pdg id. can be trivially obtained via
the built in root class TParticlePDG. By these measures, the number of floats
and ints in MCpart can be reduced from nine to four.

Another change that might be considered is eliminating some of the TRefs.
Currently, bidirectional associations exist between Monte Carlo particles and
vertices. One might consider replacing some of these bidirectional associa-
tions with unidirectinoal (forward only) associations. However, we recom-
mend that the bidirectional associations be retained, as there can be a need
to traverse the MC particle-vertex tree backward as well as forward (exam-
ple: Did a Monte Carlo muon arise from the decay of a b quark-containing
hadron?).

4.2.2 TMBMCvtx — Monte Carlo Vertices

Monte Carlo vertices are stored in branch MCvtx. The attributes of TMBMCvtx
are shown in Table 7. We do not recommend any changes in this class.

9

Table 7: Attributes of TMBMCvtx.
Attribute(s) Description Keep?
x, y, z Cartesian position Yes
ct Time Yes
Associations Parent particles (TRefArray) Yes

Daughter particles (TRefArray) Yes

Table 8: Attributes of TMBMCevtInfo.
Attribute(s) Description Keep?
r, e Run & event number Yes
nR Reaction number Yes
σ Cross section Yes
w Event weight Yes
q̂2, ŝ, t̂, û Relativistic invariants Yes
Nchunk Number of MCKineChunks Yes
NPi Number of particles in chunk i Yes
NV i Number of vertices in chunk i Yes

4.2.3 TMBMCevtInfo — Global Monte Carlo Information

Monte Carlo global information is stored in branch MCevtInfo. The at-
tributes of TMBMCevtInfo are shown in Table 8. Since there is only one copy
of this class in an event, it is insignificant in terms of its total contribution
to the size of tmb tree. We do not recommend any changes.

4.3 Reconstructed Physics Objects

4.3.1 TMBTrks and TMBIsoTrks — Charged Particles

Charged particle (track) objects are stored in branches Trks and IsoTrks.
The former branch stores data for all tracks in an event, while the latter
holds information for a subset of tracks that pass minimum pT and isolation
cuts. The Trks/IsoTrks split mirrors the split between thumbnail objects
ChTmbObj and ChIsoTmbObj, which is present already in d0reco. The cuts
that determine which tracks qualify as high-pT and isolated are included in
the charged particle reconstruction rcp file <chpart reco ChPartReco>.

The attributes of the current TMBTrks object are shown in Table 9. If we

10

Table 9: Attributes of TMBTrks.
Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum No
pT , η, φ Cylindrical 3-momentum No
E Energy assuming mπ+ No
q Charge No
h Hit mask (96 bits, 3 ints) Yes
r Radius (?) — not filled No
∆r, σr, ∆z, σz I.P. & error to best vertex No
rS, z, φD, tan λ, q/pT Trf track parameters Yes
σ2

ij Trf error matrix (15 floats) Yes
χ2/dof Track chisquare/dof Yes
∆E, σ∆E Energy loss, error in cft, smt Keep smt, drop cft
χ2

PV χ2 wrt two pri. vertices No
χ2

SV χ2 wrt two sec. vertices No
Associations TMBIsoTrks (one TRef) No

Pri. vertices (TRefArray) No
Sec. vertices (TRefArray) No

look at the variables in TMBTrks, we see that the most important variables are
the trf track parameters and error matrix. Other obviously useful variables
are the hit mask, track chisquare, and energy loss in the smt (the energy loss
in the cft is currently unimplemented in d0reco and is of limited usefulness
in any case). We think that everything else can be gotten rid of. The
two representations of the particle 3-momentum, the energy, and charge are
redundant with the trf track parameters, and can be trivially recalculated.
There are several attributes having to do with the relationship of a track to
primary and secondary vertices. We feel that these vertex-oriented attributes
should be dropped due to the fact that tracks are logically prior to vertices.
Quite often, the first thing that people do when analyzing tmb tree’s is to
throw away any existing vertices and re-find vertices. Therefore, the proper
way to store the association between tracks and vertices is a one-way TRef

from the vertex object to the track object.
The attributes of the current TMBIsoTrks object are shown in Table 10.

There are several attributes relating tracks to preshower clusters, which are
currently unimplemented. These can be dropped. If needed, this informa-

11

tion can be stored in more appropriate branches or recalculated. Another
set of attributes has to do with calorimeter and tracking energy flow type
information. This is the type of information that would potentially be use-
ful for doing, say, lepton identification. Hosever, the lepton branches have
their own versions of the quality information they need stored in their own
branches. There is no reason to store this information for tracks. We do not
think this information is actually being used. Also, the purely track-based
energy flow information can be recalculated relatively easily. The remaining
attributes of TMBIsoTrks are purely kinematic. One of these is the position
of the track where is passes close to a vertex (we think). This can be dropped
as it is easily recalculated by a short-distance propagation. This brings us
to the only really useful attribute in the TMBIsoTrks branch, which is the
position of the track at the preshower (actually, it would be useful to have
the track angles and momentum too, that is, all five track parameters and
one surface parameter). This is potentially useful, and it is not easy to relac-
ulate correctly at the tree level. One can imagine, for example, that someone
might want to know which tracks of any momentum fall within the cone of
a jet, and this information might not be available in the jet branch. Our
recommendation is that the track parameters at the preshower be stored in
the TMBTrks branch.

Track propagation at the Tree Level It would be quite difficult to
do a proper track propagation (e.g. using D0Propagator) at the tree level,
as this would require bringing in a great deal of d0library code (magnetic
field map, detector geometry, etc.), and would be slow as well. This is why
we recommend storing the track parameters at the preshower in the track
branch.

It is much easier to do a short-distance propatation with acceptable ac-
curacy. A common instance of this is propagating the track parameters from
the (0,0) dca surface, where they are calculated by d0reco, to a vertex (that
is, to the (xV , yV) dca surface). Class TMBTrks should provide a method
to do this (it doesn’t currently). Such a method could be specialized for a
dca surface, assume a uniform axial magnetic field, and make short-distance
approximations. It need not import any trf code from d0library. The axial
magnetic field polarity would have to come from an external source, as it is
not stored in TMBTrks.

12

Table 10: Attributes of TMBIsoTrks.
Attribute(s) Description Keep?
r, φ, z Position at preshower Move to TMBTrks

∆η, ∆φ PS clus. sep. (not inpl.) No
χ2

PS χ2 wrt PS cluster No
ETi, Ni Track ET , mult. in cone i No
x, y, z Position near vertex No
MTC Cal. MTC data (15 floats, 1 int) No
E33 and E55 Calorimeter energy No

The Track-Vertex Measurement Problem Another problem that
should be solved by a method (not by additional attributes) is the track-
vertex measurement problem. That is, one should be able to calculate the
2D impact parameter and error matrix of any track with respect to any ver-
tex. Note that 99% of the solution of this problem consists of propagating
the track parameters and error matrix to the vertex dca surface, since, apart
from a z offset, the first two trf dca track parameters are precisely the radial
and z impact parameters, and the impact parameter error matrix is precisely
the 2× 2 upper left corner of the track parameter error matrix.

Vertex-Constrained Tracks A third method that we recommend adding
to TMBTrks is a method to refine the estimate of track parameter by the use
of vertex information. Equivalently, this can be thought of as contraining
a track to a vertex or applying the Kalman smoothing algorithm to the
vertex reconstruction problem (assuming that the vertex was originally re-
constructed using a Kalman fit type of algorithm).

4.3.2 TMBVrts — Vertices

Reconstructed vertices are stored in branch Vrts. The attributes of TMBVrts
are shown in Table 11. The structure of this branch is fairly simple. We
don’t recommend major changes.

The vertex branch has a vertex-type attribute, which currently is only
used to distinguish primary and secondary vertices (currently, secondary
vertices are not implemented in the framework). In the future, there is
the possibility to have multiple primary or secondary vertex algorithms. Our

13

Table 11: Attributes of TMBVrts.
Attribute(s) Description Keep?
T Vertex type No (split branch by type)
x, y, z Position Yes
σ2

ij Position error matrix Yes
χ2 Chisquare Yes
Ndof Degrees of freedom Yes (→ # of tracks)
PMB Minimum bias probability Add
Associations Tracks (TRefArray) Yes

recommendation is to split the vertex branch according to algorithm, making
this attribute unnecessary, so it should be dropped.

There is only one other attribute that could be a candidate for dropping,
which is the number of degrees of freedom, which is redundant with the size
of the TRefArray. However, it makes sense to keep this attribute (or equiv-
alent), so that the analyzer has the option of not reading in the TRefArray,
which can be large compared to the rest of the vertex branch (this is possible,
even though the TRefArray is in the same branch as the other attributes,
provided the split level is high enough). We think that it is preferable to save
this information in the form of the number of tracks rather than the num-
ber of degrees of freedom, because this form is more intrinsically interesting
quantity for interactive analysis. But, in any case, both quantities (number
of tracks and number of degrees of freedom) should be available as methods.
The relationship between the number of tracks and the number of degrees of
freedom can actually be quite complex, as it depends on the algorithm (con-
strained vs. unconstrained), and one-track vertices may represent a special
case.

Finally, we recommend that the minimum bias probability be added as
an additional attribute.

14

4.3.3 TMBEmcl and TMBEmCells — Electrons and Photons

4.3.4 TMBMuon — Muons

4.3.5 TMBJets — Jets

4.3.6 TMBLeBob — Unclustered Energy

4.3.7 TMBTaus — Taus

4.3.8 TMBMet — Missing ET

Information about the missing ET in a event is stored in the Met branch.
The branch consists of a single object of type TMBMet which closely mimics
the interface in the met evt framework package.

The attributes of the current TMBMet are shown in Table 12. They contain
all the information from the d0reco and thumbnail version.

The basic data structure used in the TMBMet object is the BMetStruct,
defined in the met util package. It consists of five floating point numbers
of 32 bit each, representing the various components of missing and sum ET :

• MEx

• MEy

• MEz

• SET

• MET

The structure is repeated for different definition of missing ET . See [2]
for the details. There are 29 versions of these, and most of them are only of
interest to an expert user.

The corrected missing ET is stored as a vector of of BMetQualInfo objects
(also defined in met util). Each object is at least 164 bytes plus the size of
a string identifying the jet algorithm. Its structure can be seen in Table 13.

Finally there are ring variables, four floats each, for up to 74 eta rings.
It is not known if this information has been used in a RunII analysis so far.

The z coordinate of the vertex used to calculate the missing ET is also
kept as a single floating point value.

15

We suggest to split the missing ET information into a user and expert
branch and keep only the indicated variables in the user branch. All the
other information should go into the expert branch. The missing ET classes
have been recently re-organized, so it contains no remnants of the past that
can be easily removed.

All items marked Yes in Table 12 will be kept in the user branch. All
items marked No will be in the expert branch. One of the items marked
JES will be kept in the user branch, whichever the Jet Energy Scale group
believes to be most useful.

For the metqualinfos vector we suggest to keep the JCCA, JCCB, and
CALMUO corrected versions of each.

4.3.9 TMBFps — Forward Preshower Clusters

4.3.10 TMBCps — Central Preshower Clusters

4.3.11 TMBTRefs — Overlapping Physics Objects

4.3.12 B-Tagging

4.4 Trigger Results

4.5 Raw Data

4.5.1 TMBCalQual — Calorimeter Data

References

[1] D0 Note 4473, Report of the DØ Data Format Working Group.

[2] DØ Note 4474, Missing ET Reconstructions in p17.

16

Table 12: Attributes of TMBMet.
Type Attribute Description User
BMetStruct met CAL + ICD Towers JES
BMetStruct metnoeta CAL + ICD Towers, above tower threshold JES
BMetStruct metweta CAL + ICD Towers, in eta limits, over t threshold JES
BMetStruct metT CAL + ICD Towers, over t threshold JES
BMetStruct metTM CAL + ICD + Muon correction, over t threshold No
BMetStruct metTAS CAL + ICD over eta limit, over t threshold No
BMetStruct metTBS CAL + ICD below eta limit, over t threshold No
BMetStruct metTAN CAL + ICD over eta limit, below t threshold No
BMetStruct metTBN CAL + ICD T below eta limit, below t threshold No
BMetStruct metC CAL + ICD Cells Yes
BMetStruct metCM CAL + ICD Cells + Muon correction No
BMetStruct metCAS CAL + ICD C above eta limit, above c threshold No
BMetStruct metCBS CAL + ICD T below eta limit, above c threshold No
BMetStruct metCAN CAL + ICD T above eta limit, above t threshold No
BMetStruct metCBN CAL + ICD c below eta limit, below c threshold No
BMetStruct metICD ICD Cells No
BMetStruct metNADA NADA Cells No
BMetStruct metMUON Tight Muons No
BMetStruct metD CAL + ICD Cells layers 1-14 (no CH) Yes
BMetStruct metDM CAL + ICD c layers 1-14 (no CH) + Mu correction No
BMetStruct metEM EM layers (1-7) No
BMetStruct metMG Massless Gap layers (8 & 10) No
BMetStruct metFH FH layers (11-14) No
BMetStruct metCH CH layers (15-17) No
BMetStruct metED CAL + ICD Cells below eta limit.(no threshold) No
BMetStruct metNG negative cells No
BMetStruct metT42 noise cells, based onthe CalT42 algorithm. No
BMetStruct metA META = METD + CH frac. of good jets Yes
BMetStruct metB METB = METD + CH frac. of good jets Yes
Float t Zvertex Z of the vertex used to calculate mET Yes
BMetQualInfo metqualinfos vector of Corrected mET Yes

17

Table 13: Attributes of BMetQualInfo.

Type Attribute Description
string algo Jet Algo Name
BMetStruct METcorr Final Corrected Missing ET
BMetStruct CHcorr MissingET Corrections
BMetStruct JEScorr MissingET Corrections
BMetStruct EMcorr MissingET Corrections
BMetStruct MUcorr MissingET Corrections
BMetStruct MUCalcorr MissingET Corrections
BMetStruct BJcorr MissingET Corrections
float isophigoodjet MissingET isolation wrt good id objects
float isophimu
float isophiem
float isophibadjet
float isophiunclusteredenergy
float isophibadtower MissingET isolation wrt bad Towers, Cells

18

