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Table 1: Framework packages in TMBAnalyze x.

CVS Package Framework Package
tmb tree maker TMBTreePkg

tmb tree maker TMBCorePkg

tmb bcjet TMBBCJetPkg

mc analyze TMBTreeMCPkg

tmb analyze TMBTRefsPkg

tmb tree trigger maker TMBTriggerPkg

1 Introduction

The Report of the DØ Data Format Working Group [1] recommended, among
other things, that the proposed Common Analysis Format (CAF) be based
on the tmb tree. The basic reasons for this recommendation were that the
tmb tree is general purpose and object-oriented. The report further recom-
mended a review of the contents of the tmb tree without any requirement
of backward compatibility of the CAF with respect to the current tmb tree.
This document contains the result of this review. Here we give our recom-
mendation of what the content of the CAF should be.

2 Overview of Tmb tree

This section contains an overview of the existing (pre-CAF) tmb tree, its
organization, branches, framework and cvs packages, and relationship to the
DST and TMB.

2.1 Executable, framework packages and rcps

Tmb tree root files are built by the executable TMBAnalyze x executable,
which is part of cvs package tmb analyze. The top level rcp is called
runTMBTreeMaker[SAM][ MC].rcp. The packages invoked by the standard
top level rcp (i.e. those that are specifically related to making the tmb tree)
are shown in Table 1. The first package, TMBTreePkg, is the overall guid-
ing package (it somewhat resembles the standard framework Controller

package). The remaining packages are concerned with filling one or more
branches.
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2.1.1 Structure of TMBAnalyze x

Before moving on to a consideration of the content of the tmb tree, we in-
clude here a brief commentary on the structure and design of TMBAnalyze x.

The branch-filling packages construct one or more branch-filling “maker”
objects (base class TMBMaker), which register themselves with the single
TMBTreePkg instance using static/global methods. This design is good in
the sense that it allows the content of tmb tree to be extended without
changing any existing code (this is one of the requirements for the CAF).
However, there are some negative aspects and missing features in the current
design. For example:

1. The fact that TMBTreePkg is a singleton means that it is not possible to
write more than one tmb tree at a time. It should be possible to write
multiple tmb tree’s, each with different branches and event selection.

2. The current TMBAnalyze x does not generate metadata for storing
tmb tree’s in sam.

3. The current TMBAnalyze x only runs on d0om data, and the maker
objects only have access to data stored in edm chunks. It would be
useful for TMBAnalyze x to run on either d0om or root data, and for
maker objects to have access to both edm chunks and root branches.

The Data Format Working Group intends to address these limitations,
however the proposed solutions are not the subject of this document.

2.1.2 Overview of tmb tree Content

The branches of the current tmb tree are summarized in Table 2.
The largest framework package is TMBCorePkg, which fills branches for

reconstructed physics objects and raw data. Package TMBTreeMcPkg fills
Monte Carlo information. Package TMBBCJetPkg is obsolete, having been
replaced by d0root-based b-tagging algorithms. TMBBCJetPkg is commented
out of the standard runTMBTreeMaker.rcp in the latest test releases, but
is still present by default in the p14 and p16 versions of tmb analyze. We
will have nothing further to say about TMBBCJetPkg in this document, but
we are proposing a replacement (see Sec. 4.4). The trigger branches created
by package TMBTriggerPkg are likewise in need of major revision. We are
proposing a replacement based on the TrigSimCert package (see Sec. 4.5).
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Table 2: Branches in tmb tree.

Framework Branch Tree DST Chunk(s)
Package Object Object
TMBCorePkg Trks TMBTrks ChargedParticle ChargedParticleChunk

IsoTrks TMBIsoTrks ChargedParticle ChargedParticleChunk

Vrts TMBVrts Vertex VertexCollChunk

Emcl TMBEmcl EMparticle EMparticleChunk

EmCells TMBEmCells EMparticle EMparticleChunk

Muon TMBMuon MuonParticle MuonParticleChunk

Jets TMBJets Jet JetChunk

LeBob TMBLeBob LeBob JetChunk

Taus TMBTaus Tau TauChunk

Met TMBMet MissingET MissingETChunk

Glob TMBGlob TMBTriggerChunk

Trig TMBTrig L1L2Chunk, L3Chunk

Hist TMBHist HistoryChunk

CalQual TMBCalQual CalDataChunk

Calt42Chunk

Calt4 25Chunk

Fps TMBFps FPSClusterChunk

Cps TMBCps CPSClusterChunk

TMBBCJetPkg BCJets TMBBcJet bcJet bcJetChunk

TMBTreeMcPkg MCpart TMBMCpart MCKineChunk

MCvtx TMBMCvtx MCKineChunk

MCevtInfo TMBMCevtInfo MCKineChunk

TMBTrefsPkg TRefs TMBTRefs LinkedPhysObjChunk

TMBTriggerPkg L1CalTile TMBL1CalTower L1L2Chunk

L1CalTwr TMBL1CalTower L1L2Chunk

L1CalEMTwr TMBL1CalTower L1L2Chunk

L1Muon TMBL1Muon L1L2Chunk

L1AndOr TMBL1AndOr L1L2Chunk

L2Jet TMBL2Jet L1L2Chunk

L2EM TMBL2EM L1L2Chunk

L2Muon TMBL2Muon L1L2Chunk

L3ToolsResults TMBL3ToolsResults L3Chunk
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Apart from these major revisions, we believe the existing branches of the
current tmb tree can provide a reasonable basis for the CAF.

3 General Considerations Regarding Root

Data Formats

3.1 Redundant Attributes

The current tmb tree classes are shot through with redundant attributes.
A common situation that arises is storing the 3-momentum of physics ob-
jects in both Cartesian coordinates (px, py, pz) and Cylindrical coordinates
(pT , η, φ). Given that it is faster to do a recalculation, even one involving
a transcendental function call, than it is to read four bytes of data from
disk, we recommend that in most cases these redundant attributes should be
eliminated. The dropped attributes can be replaced by methods, if necessary.

The only concrete advantage of keeping redundant attributes, that we
know of, is having interactive access to these quantities through the root
browser. Thanks to Axel Naumann, the root browser has been extended
to allow browsing of const methods that can be called with zero arguments
(as is already the case using method TTree::Draw), effectively removing this
incentive to keeping redundant attributes. The only caveat is that the classes
involved must be known to root (shared library loaded, etc.).

The specific case of storing the 4-momentum of physics objects will be
handled by class TMBLorentzVector (see Sec. 3.2.4), which will be used a a
base class for objects for which this makes sense.

3.2 CAF Data Model and Standard Root Classes

This section describes the basic requirements for CAF classes.

3.2.1 TObject

TObject is the standard root base class. TObject provides a standard set of
features for all root objects. TObjects can be printed (TObject::Print),
drawn (TObject::Draw), persisted (TObject::Streamer, TObject::Write),
cloned (TObject::Clone), stored in root collections (TObjArray,
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TClonesArray), and pointed to by root smart pointers (TRef). De-
fault implementations of most standard TObject methods are supplied by
the root precompiler rootcint. It is a basic requirement that the top level
class of a root tree branch inherit from TObject.

Each TObject carries a two-word overhead of persistent data (before com-
pression), namely, a unique id. and a status bit word. Since both words are
integers, compression of the TObject overhead tends to be good. Because
of the TObject overhead, it is normally preferred not to use root classes as
internal persistent attributes inside branch classes, unless there is a specific
reason for doing so.

3.2.2 Root collections: TObjArray and TClonesArray

Root has several different kinds of collection classes, including its own ver-
sions of most of the STL collection classes. Except for the top level collec-
tion of a tree branch, which is always TClonesArray for array-type branches,
there is little reason to be concerned about root collections, or to prefer root
collections to STL collections.

One thing that all root collections have in common is that they inherit
from base class TCollection. This base class provides standard ways of
iterating all root collections, for example, as well as inheriting from TObject.
Another thing that all root collections have in common is that they hold
the objects they contain by reference (as TObject*), rather than by value,
as in the case of STL collections. Since root collections are not templated,
extracted objects must be cast to the correct type.

Root collections may or may not own the objects they contain (ownership
can be controlled by method TCollection::SetOwner). Root provides some
features and tools to automate memory management. Memory management
in root nevertheless remains complicated and error prone (as is true of C++
generally).

The basic variable size array collection is called TObjArray, which cor-
responds roughly to the STL collection vector<TObject*>. Root collection
TClonesArray inherits from TObjArray and has the same general structure,
but can only be used for identically typed objects (TObjArray has no such
restriction). As compared to TObjArray, TClonesArray has several optimiza-
tions and restrictions, the main optimization being that different attributes
are streamed in separate buffers, allowing (usually) greater compression.
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3.2.3 Smart Pointers: TRef and TRefArray

TRef is the root smart pointer class, which can be used to point to any
object that inherits from TObject. TRef is dereferenced by calling method
TRef::GetObject. As with root collections, TRef is not templated, so a cast
to the correct type is required when dereferencing.

TRef inherits from TObject, and has a persistent size of three words (be-
fore compression), with two of the persistent words coming from the TObject
base class. In the case of TRef, the unique id. part of the TObject stands for
the object being pointed to, rather than to the TRef itself.

Class TRefArray is a special type of collection for TRefs only. TRefArray
has a per-element overhead of only two persistent words, as compared to
three words for a single TRef. The per-element overhead consists of the
TObject part of the stored TRefs, the non-TObject part being shared by all
of the elements in the collection. Thus, TRefArray is preferred to any other
way of storing a collection of TRefs (root collection, STL collection, or bare
C++ array).

3.2.4 TMBLorentzVector

The standard root 4-vector class TLorentzVector was considered and re-
jected as a common base class for physics objects, mainly because its meth-
ods are not virtual. The data format group decided to develop our own
4-vector class TMBLorentzVector as the standard base class for physics
objects that have a 4-momentum. TMBLorentzVector is similar to root’s
TLorentzVector, but has mostly virtual methods. Another optimization of
TMBLorentzVector as compared to TLorentzVector is the use of mass rather
than energy as the fourth component in the persistent representation. This
representation give better compression, since DØ tree data often consists of
many objects with identical masses.
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Table 3: Attributes of TMBGlob.
Attribute(s) Keep?
Run number (int) Yes
Event number (int) Yes
Store number (int) Yes
Luminosity block (int) Yes
Tick number (int) Yes
Solenoid polarity (int, 0=forward, 1=reverse) Yes
Toroid polarity (int, 0=forward, 1=reverse) Yes
Solenoid current (float) Yes
Toroid current (float) Yes
Event flags (vector<int>, current length 4) Add
Muon quality (6 ints) Add
Calorimeter quality (? ints) Add

3.3 Schema Evolution

4 Specific Branches

4.1 Global Event Data

This section describes global event produced by d0reco in the tmb tree. This
information is very simple, and not very big.

4.1.1 TMBGlob — Global Event Object

Branch Glob (class TMBGlob) is the main repository for “global event data.”
The global event data stored in this branch originates in the Global ob-
ject stored in TMBTriggerChunk. The header Global.hpp can be found in
d0library package config base. The contents of TMBGlob are shown in Ta-
ble 3. We are recommending expanding the current branch by the addition
of event flags, muon and calorimeter quality words.

4.1.2 TMBHist — Processing History

Branch Hist (class TMBHist) stores processing history from HistoryChunks.
The contents of TMBHist are shown in Table 4. We do not recommend any
changes.
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Table 4: Attributes of TMBHist.
Attribute(s) Keep?
Number history chunks (int) Yes
Program name (string) Yes
Program version (string) Yes

Table 5: Attributes of TMBTrig.

Attribute(s) Keep?
Number of triggers (int) Yes
Trigger name (string) Yes
L3 pass flag (bool) Yes
L2 pass flag (bool) Yes
L1 pass flag (bool) Yes
L3 unbiased flag (bool) Yes
L2 unbiased flag (bool) Yes
L2 bit number (int) Yes
L1 bit number (int) Yes
L1L2Chunk flag (bool) Yes

4.1.3 TMBTrig — Fired Triggers

Branch Trig (class TMBTrig) stores the list of fired triggers. This branch is
intended to provide event selection based on trigger. The contents of TMBTrig
are shown in Table 5. This branch gets its data either from L1L2Chunk

and L3Chunk (if present), or TMBTriggerChunk. We do not recommend any
changes.

4.2 Monte Carlo Information

The information in the three Monte Carlo branches mirrors information in
MCKineChunk. Dst or thumbnail files have several MCKineChunks, one for each
generated event (usually one hard scatter and several minimum bias events),
plus one MCKineChunk that is added by geant. The Monte Carlo branches
contain the union of the various MCKineChunks, and also retain enough infor-
mation to determine which MCKineChunk each particle and vertex originated
from.
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Table 6: Attributes of TMBMCpart.

Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum Yes (TMBLorentzVector)
pT , η, φ Cylindrical 3-momentum No
E Energy Yes (TMBLorentzVector)
q Charge Yes
id Particle type (pdg id.) Yes
Associations Initial vertex (TRef) Yes

Final vertex (TRef) Yes

Due to the large number of Monte Carlo particles in a typical MC event,
the MC particle and vertex branches are important contributors to the overall
size of MC tmb trees. Therefore, it is important not to waste space for these
branches.

4.2.1 TMBMCpart — Monte Carlo Particles

Monte Carlo particles are stored in branch MCpart. The attributes of
TMBMCpart are shown in Table 6. Currently, TMBMCpart stores two redundant
representations of the 3-momentum, one of which should be removed. The
mass and charge of the particle can be obtained from the pdg id. via built in
root class TParticlePDG. However, the energy attribute needs to remain to
handle the case of off-shell or wide particles. The charge attribute could be
eliminated, but we recommend keeping it because it should be highly com-
pressible, and because of the possibility of particles with pdg ids. unknown
to root.

Another change that might be considered is eliminating some of the TRefs.
Currently, bidirectional associations exist between Monte Carlo particles and
vertices. One might consider replacing some of these bidirectional associa-
tions with unidirectinoal (forward only) associations. However, we recom-
mend that the bidirectional associations be retained, as there can be a need
to traverse the MC particle-vertex tree backward as well as forward (exam-
ple: Did a Monte Carlo muon arise from the decay of a b quark-containing
hadron?).
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Table 7: Attributes of TMBMCvtx.
Attribute(s) Description Keep?
x, y, z Cartesian position Yes
ct Time Yes
Associations Parent particles (TRefArray) Yes

Daughter particles (TRefArray) Yes

Table 8: Attributes of TMBMCevtInfo.
Attribute(s) Description Keep?
r, e Run & event number Yes
nR Reaction number Yes
σ Cross section Yes
w Event weight Yes
q̂2, ŝ, t̂, û Relativistic invariants Yes
Nchunk Number of MCKineChunks Yes
NPi Number of particles in chunk i Yes
NV i Number of vertices in chunk i Yes

4.2.2 TMBMCvtx — Monte Carlo Vertices

Monte Carlo vertices are stored in branch MCvtx. The attributes of TMBMCvtx
are shown in Table 7. We do not recommend any changes in this class.

4.2.3 TMBMCevtInfo — Global Monte Carlo Information

Monte Carlo global information is stored in branch MCevtInfo. The at-
tributes of TMBMCevtInfo are shown in Table 8. Since there is only one copy
of this class in an event, it is insignificant in terms of its total contribution
to the size of tmb tree. We do not recommend any changes.

4.2.4 Particle and Parton Jets

Monte Carlo particle and parton jets are found by d0reco and stored in
JetChunk along with calorimeter jets. In the old tmb tree, particle and
parton jets stored in JetChunk were stored in the TMBJets branch along
with calorimeter jets. In the CAF, particle and parton jets will still be
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stored, except that the old TMBJets branch will be split by jet algorithm,
meaning that particle and parton jets will have their own branches.

4.3 Reconstructed Physics Objects

4.3.1 TMBTrack and TMBIsoTrack — Charged Particles

Charged particle (track) objects are stored in branches Track and IsoTrack

(renamed from Trks and IsoTrks). The former branch stores data for all
tracks in an event, while the latter holds information for a subset of tracks
that pass minimum pT and isolation cuts. The Track/IsoTrack split mirrors
the split between thumbnail objects ChTmbObj and ChIsoTmbObj, which is
made already by d0reco. The cuts that determine which tracks qualify as
high-pT and isolated are included in the charged particle reconstruction rcp
file <chpart reco ChPartReco>.

The attributes of the current TMBTrack object are shown in Table 9. If we
look at the variables in TMBTrack, we see that the most important variables
are the trf track parameters and error matrix. Other obviously useful vari-
ables are the hit mask, track chisquare, and energy loss in the smt (the energy
loss in the cft is currently unimplemented in d0reco and is of limited useful-
ness in any case). There are two representations of the track 3-momentum,
in addition to the trf track parameters (for a total of three different rep-
resentations of the 3-momenta). We recommend keeping the the Cartesian
3-momentum (as part of the TMBLorentzVector base class), and losing the
the cylindrical 3-momentum and the last three trf track parameters, which
are just another representation of the 3-momentum (however, the trf track
parameters should be continue to be available as methods, since they will
be needed for any fitting or propagation). Everything else except charge can
be gotten rid of. There are several attributes having to do with the rela-
tionship of a track to primary and secondary vertices. We feel that these
vertex-oriented attributes should be dropped due to the fact that tracks are
logically prior to vertices. Quite often, the first thing that people do when
analyzing tmb tree’s is to throw away any existing vertices and re-find ver-
tices. Therefore, the proper way to store the association between tracks and
vertices is a one-way TRef from the vertex object to the track object.

The attributes of the current TMBIsoTrack object are shown in Table 10.
There are several attributes relating tracks to preshower clusters. The associ-
ations, which are made in d0reco (in ThumbNailPkg), and which association

13



Table 9: Attributes of TMBTrack.
Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum Yes (TMBLorentzVector)
pT , η, φ Cylindrical 3-momentum No
E Energy assuming mπ+ Yes (TMBLorentzVector)
q Charge Yes
h Hit mask (96 bits, 3 ints) Yes
r Radius (?) — not filled No
∆r, σr, ∆z, σz I.P. & error to best vertex No
rS, z, φD, tan λ, q/pT Trf track parameters Keep rS, z
σ2

ij Trf error matrix (15 floats) Yes
χ2/dof Track chisquare/dof Yes
∆E, σ∆E Energy loss, error in cft, smt Keep smt, drop cft
χ2

PV χ2 wrt two pri. vertices No
χ2

SV χ2 wrt two sec. vertices No
Associations TMBIsoTrack (one TRef) No

Pri. vertices (TRefArray) No
Sec. vertices (TRefArray) No

is one of the criteria for retaining preshower clusters in the thumbnail, should
be kept, but the track-preshower residual and chisquare should be dropped,
as they can easily be recalculated. There is also an association to the (non-
isolated) track object, TMBTrack, which should be kept.

Another set of attributes has to do with calorimeter and tracking energy
flow type information. This is the type of information that would potentially
be useful for doing, say, lepton identification. The lepton branches have their
own versions of the quality information they need, of course. But the informa-
tion in TMBIsoTrack could potentially be useful for doing track-based lepton
identification where no lepton object was found by d0reco. One example of
track-based lepton identification is the third lepton in trilepton analyses. It
is our view that the energy flow information in the current TMBIsoTrack class
needs refining. The purely track-based energy flow (track-energy in cones) is
easily recalculated and can be dropped. The calorimeter MTC information
is certainly useful for muon identification. However, muon reconstruction
already includes track-seeded muons (i.e. muons found from track and MTC
information with no matching local muon track in the muon system). We
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Table 10: Attributes of TMBIsoTrack.
Attribute(s) Description Keep?
r, φ, z Position at preshower To TMBTrack

∆η, ∆φ PS clus. sep. (not inpl.) No
χ2

PS χ2 wrt PS cluster No
ETi, Ni Track ET , mult. in cone i No
x, y, z Position near vertex No
MTC Cal. MTC data (15 floats, 1 int) No
E33 and E55 Calorimeter energy No
EM (0.2, 0.3, 0.4, 0.5) Calorimeter energy (4 floats) Add
FH (0.2, 0.3, 0.4, 0.5) Calorimeter energy (4 floats) Add
CH (0.2, 0.3, 0.4, 0.5) Calorimeter energy (4 floats) Add
ICR (0.2, 0.3, 0.4, 0.5) Calorimeter energy (4 floats) Add
Associations TMBTrack (one TRef) Yes

CPS clusters (TRefArray) Yes
FPS clusters (TRefArray) Yes

do not think storing MTC information in TMBIsoTrack adds anything, so we
recommend dropping it. Calorimeter energy flow and isolation information
is useful for various types of lepton identification. Our recommendation is
that the calorimeter energy flow information be modified from its current
form to be the energy in various cones around the track at several depths in
the calorimeter. This an expansion of what exists currently.

The remaining attributes of TMBIsoTrack are purely kinematic. One of
these is the position of the track where is passes close to a vertex (we think).
This can be dropped as it is easily recalculated by a short-distance propaga-
tion. This brings us to a really useful attribute in the TMBIsoTrack branch,
which is the position of the track at the preshower (actually, it would be
useful to have the track angles and momentum too, that is, all five track pa-
rameters and one surface parameter). This information is potentially useful,
and it is not easy to relaculate correctly at the tree level. One can imagine,
for example, that someone might want to know which tracks of any momen-
tum fall within the cone of a jet, and this information might not be available
in the jet branch. Our recommendation is that the track parameters at the
preshower be stored in the TMBTrack branch.
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Track propagation at the Tree Level It would be quite difficult to
do a proper track propagation (e.g. using D0Propagator) at the tree level,
as this would require bringing in a great deal of d0library code (magnetic
field map, detector geometry, etc.), and would be slow as well. This is why
we recommend storing the track parameters at the preshower in the track
branch.

It is much easier to do a short-distance propagation with acceptable ac-
curacy. A common instance of this is propagating the track parameters from
the (0,0) dca surface, where they are calculated by d0reco, to a vertex (that
is, to the (xV , yV ) dca surface). Class TMBTrack should provide a method
to do this (it doesn’t currently). Such a method could be specialized for a
dca surface, assume a uniform axial magnetic field, and make short-distance
approximations. It need not import any trf code from d0library. The axial
magnetic field polarity would have to come from an external source, as it is
not stored in TMBTrack.

The Track-Vertex Measurement Problem Another problem that
should be solved by a method (not by additional attributes) is the track-
vertex measurement problem. That is, one should be able to calculate the
2D impact parameter and error matrix of any track with respect to any ver-
tex. Note that 99% of the solution of this problem consists of propagating
the track parameters and error matrix to the vertex dca surface, since, apart
from a z offset, the first two trf dca track parameters are precisely the radial
and z impact parameters, and the impact parameter error matrix is precisely
the 2× 2 upper left corner of the track parameter error matrix.

Vertex-Constrained Tracks A third method that we recommend adding
to TMBTrack is a method to refine the estimate of track parameter by the
use of vertex information. Equivalently, this can be thought of as constrain-
ing a track to a vertex or applying the Kalman smoothing algorithm to the
vertex reconstruction problem (assuming that the vertex was originally re-
constructed using a Kalman fit type of algorithm).

4.3.2 TMBVertex — Vertices

Reconstructed vertices are stored in class TMBVertex (formerly TMBVrts).
The attributes of TMBVertex are shown in Table 11. One of our recommen-
dations is that class TMBVertex remain as a base class for different kinds of
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vertices, and that derived classes be added for primary vertices, secondary
vertices, and V 0’s.

As far as additions, we recommend adding attributes for the total 4-
momentum of the constituent tracks (via base class TMBLorentzVector) and
total charge. This is mainly of interest for secondary vertices and V 0’s, but
is not totally without interest for primary vertices, so we recommend adding
this attribute to the base class.

The vertex class currently has a vertex-type attribute, which currently is
only used to distinguish primary and secondary vertices (currently, secondary
vertices are not present in tmb tree because they are not implemented in the
framework). In the future, there is the possibility to have multiple primary
or secondary vertex algorithms. Our recommendation is to split the ver-
tex branch according to algorithm, making this attribute unnecessary, so it
should be dropped.

Another attribute that could be a candidate for dropping is the number
of degrees of freedom, which is redundant with the size of the TRefArray.
However, it makes sense to keep this attribute (or equivalent), so that the
analyzer has the option of not reading in the TRefArray, which can be large
compared to the rest of the vertex branch. We think that it is preferable
to save this information in the form of the number of tracks rather than the
number of degrees of freedom, which we feel is a more intrinsically interesting
variable.

For the primary vertex class TMBPrimaryVertex (see Table 12), our rec-
ommendation is to add an attribute for the minimum bias probability, in
addition to the base class attributes.

For secondary vertices (class TMBSecondaryVertex, see Table 13), we
recommend adding as an attribute a reference to the associated primary
vertex. The decay length and decay length significance should be available
as methods.

Neutral V ’s are a special case of secondary vertices. Class TMBV0 should be
derived from TMBSecondaryVertex, with an additional attribute for the pdg
id. (see Table 14). In this case, it is desirable that the 4-momentum stored in
the base class be calculated including a mass and primary vertex constraint.
Note that the class TMBV0 being proposed here is not a full-fledged system
for dealing with fully reconstructed or identified particles, but is intended
to solve the more limited problem of finding long-lived two-prong neutral
V ’s, namely, K0

S’s and Λ’s. The K0
S//Lambda case is somewhat special in

the sense that the identity of the daughter particles (i.e. the tracks) can be
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Table 11: Attributes of TMBVertex.
Attribute(s) Description Keep?
px, py, pz, E 4-momentum Add (TMBLorentzVector)
q Total charge Add
T Vertex type No (split branch by type)
x, y, z Position Yes
σ2

ij Position error matrix Yes
χ2 Chisquare Yes
Ndof Degrees of freedom Yes (→ # of tracks)
Associations Tracks (TRefArray) Yes

Table 12: Attributes of TMBPrimaryVertex.

Attribute(s) Description Keep?
TMBVertex base class Yes
PMB Minimum bias probability Add

unambiguously inferred from the identity of the parent, which is not true
in the general case. A general system for dealing with identified or fully
reconstructed particles (including, for example, B and D measons), would
need a way of attaching identity hypotheses to the constituent particles.

4.3.3 TMBEmcl — Electrons and Photons

4.3.4 TMBEmCells – Calorimeter Cells

The current version of TMBTrees optionally stores calorimeter cells for elec-
tromagnetic clusters. The code is part of TMBEmclMaker and, depending on
a boolean flag, either produces a list of calorimeter cells which are part of a
cluster, or the clusters themselves with references to the cells.

Each TMBEmCells object inherits from TObject and stores its coordinates

Table 13: Attributes of TMBSecondaryVertex.

Attribute(s) Description Keep?
TMBVertex base class Yes
Associations Primary vertex (TRef) Add
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Table 14: Attributes of TMBV0.
Attribute(s) Description Keep?
TMBSecondaryVertex base class Yes
PDGID Particle type Add

(ieta, iphi, ilayer) as three integers and its energy as a float. The total size
of each cell object is 24 bytes. See table 15 for details.

The references between electromagnetic clusters and cells is stored as a
TRefArray in TMBEmcl.

The current implementation wastes a lot of space by having each cell
inherit from TObject and storing the coordinates as 32 bit integers despite
their restricted range. Some of this is compensated for by ROOT’s compres-
sion algorithm. The TObject base class is needed for the TRef references
from the EM clusters.

The current implementation only stores cells for EM clusters, not for any
other physics object. It is not possible to store the full data chunk or killed
cells (e.g. by Nada and/or CalT42).

We suggest to change the structure of the calorimeter cell branch in the
following way:

• The cell class no longer inherits from TObject.

• The coordinates are stored as 3 bytes instead of 3 integers.

• An additional byte for flags is added (see below).

• A new container class which inherits from TObject is introduced. It
contains a vector of all cells that have been stored for this event. A
cell is identified by a 16 bit index in this container. The container is
filled dynamically: as new cells are added they are either assigned a
new index, or an existing index is returned. Every cell is stored only
once.

• Every physics object that wants to store a list of cells, stores a list of
cell indices instead of a TRefArray. It only references the container
object, not every single cell. The combination of the container object
plus the index is enough to find a pointer to a given cell.
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Table 15: Attributes of TMBEmcells.
Type Attribute Description New Type
int ieta eta coordinate (-40..40) signed byte
int iphi phi coordinate (0..64) unsigned byte
int ieta layer (1..17) unsigned byte
float energy Energy float
NEW flags Cell level flags unsigned byte

The new cell size will be 8 bytes instead of 24. The size of the information
in a physics object is roughly 2 bytes times the number of cells.

There should be additional RCP flags which can be enabled during tree
generation for experts. The default will be to not generate the full data
chunk or any of the Nada or CalT42 cells.

• bool doCalData - add cells from full CalDataChunk

• bool doCalNada - add cells from CalNadaChunk

• bool doCalT42 - add cells from Calt4 25Chunk

Cells which do not come from the normal CalDataChunk will have an
additional flag set, giving information on why they have been killed.

Additional physics objects apart from TMBEmcl can implement the option
to store associated calorimeter cells using the same mechanism.

4.3.5 TMBMuon — Muons

All muon objects are stored in the Muon branch. The small number of muons
in an event means that limiting the branch size is not the main goal in
redefining the branch content, although certainly there are obsolete and un-
supported variables that should be cleaned out. The main goal is to provide
access via clear variable or method names to data needed by those using
muons in analyses. Along these lines it was decided to add a structure that
allows for a sensible storage of different types of muon momenta (e.g. local,
central, global, etc.). Because the size is not so much an issue, it was also
deemed appropriate, except in simple cases like momentum components, to
bias on the side of storing data rather than relying on methods where values
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Table 16: Momentum Structure of TMBMuon
Classes Description
Local no track match or eloss correction
LocalCorr no track match with eloss correction
Central track values for matched muons
CentralCorr track values with

corrections for CFT only tracks
Global fit values for matched muons
SmearedMC MC smeared values

Members of Each Class Description Comments
px, py, pz Cartesian 3-momentum Access via Method
pT , η, φ Cylindrical 3-momentum Stored as Data
E and q Energy and charge Stored as Data
pT err, η err, φ err associated errors Stored as Data

would end up being calculated in two separate places (once in MuoCandi-
date code then again in the CAF provided method). Remember that use of
methods versus data will be invisible to the user.

At the moment there are six classifications of muon momentum in use
or to be used in time, local (not track matched), central (track matched –
but using just the track values), global (track matched using the fitted local
and central values), local uncorrected for energy loss, Monte Carlo smeared,
and central corrected when the track has no SMT hits. For several reasons,
including having higher level code while avoiding long lists of data members
in the tree, it was decided to keep these different classifications of muons in
separate objects. One example is to have a set of classes that inherit from
TMBLorentzVector (from which TMBMuon also inherits) based on these muon
types. Then, for example, a local muon’s pT could be accessed via

TMBMuon::Local::pT()

A general momentum value could also be returned as defined by the
muon group. That is,

TMBMuon::pT()
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Table 17: Attributes of TMBMuon
Attribute(s) Description Keep?
float tanl tan(λ) Method
int nhit numbers of wire and scint hits Data
int nseg muon types Data
int ndeck numbers of deck hits Data
int nmtc number of calorimeter muons Data
float deltaPhi φ diff of A seg and charged part Data
float deltaEta η diff of A seg and charged part Data
float deltaDrift z diff of A seg and charged part Data
float etrack best energy in cells assoc w/MTC Data
float chisq χ2 of track match Data
int ndof degrees of freedom Data
float prob probablity of χ2 Method
float chisqloc χ2 of local muon fit Data
float xA, yA, zA hit positions at A layer Data
float zAtPca, err zAtPca z and error at pca Data
float impPar, err impPar impact parameter and error Data
float imparSig impact parameter significance Data
float dca distance of closest approach Data
float EinCone(1,15,2,4,6) calo energy in ∆R cones Data
float calnLayer number of calo layers hit Data
float caleSig calo energy signature Data
float calEta, calPhi calo η and φ of muon Data
float eloss Run I energy loss in calo Data
int wireHits(A,B,C) A, B and C layer wire hits Method
int scintHits(A,B,C) A, B and C layer scint hits Method
int wireHits(i,j,k,l) i, j, k, and l deck wire hits Method
bool is(Loose,Medium,Tight) muon quality info Data
int hasLocal is there a local track? Data
int hasCentral is there a central track? Data
int hasCal is there a calo signal? Data
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Table 18: Attributes of TMBMuon cont.
Attribute(s) Description Keep?
float drJet5, etTrkCone5 isolation variables Data
float etHalo, int nTtk5 isolation variables Data
float bdl B dl of muon through Toroid Data
int isMuonEventOK check for crate errors Data
TRef chptr points to matching charged part Data
TRef vtxref points to matching vertex Data
float detectorEta detector eta Data
float sctime(A,B,C) scint times per layer Data
int region, octant region and octant Data
bool isCosmic, isCosmicT cosmic flags Method

would return the track matched momentum or if there is no track
match, the local corrected momentum as is done at the time of this writing.
The exact implementation has yet to be worked out, but the user interface
will be as stated. Table 16 shows the momentum structure for the muon
branch in the CAF. As in other branches only the cylindrical momentum
components will be stored as data, with methods providing access to all the
others.

For muon branch content aside from the new momentum structure, see
tables 17 and 18. Note that parentheses do not denote arrays, but are differ-
ent endings, e.g. wireHits(A,B,C) means wireHitsA, wireHitsB, wireHitsC.
The variables in the table are largely based on the current content of the
tmb tree. There are several additions to the list as well as renaming of vari-
ables to make them more descriptive. In no case, however, did a variable
name change meaning – renaming means an old variable moved to an unused
name or used in a different context. The table points out whether the value
will be stored in the tree as data, or recalculated via a supplied method.
Note that the six muon quality words (with information on readout errors)
will be stored in the Global branch. See table 19 for a list of variables being
removed. Note that some of these will still exist in other forms, for example,
float pxA, etc. are migrating into the Local class.

In the end there might be a separation of branches into user and expert
branches where the expert branch could be easily turned off for perhaps
quicker run times and/or smaller output data files for users who don’t need
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Table 19: Attributes of TMBMuon being Removed

Attribute(s) Description Why Remove?
float hfrac hit fraction of hadronic calo cells hit Unused
float etrack hit energy in calo cells hit Unused
float hfrac best frac of had layers w/energy Unused
float elast energy in last had. layer Unused
float e33 calo energy in 3x3 tower Unused
float e55 calo energy in 5x5 tower Unused
int categoryloc types similar to nseg Duplicate
int qualityloc types of muons based on hit info Duplicate
int statusloc status of local muon fit Obsolete
int centralmatch number of central track matches Unused
int centralrank rank of track match Unused
float qptloc charge divided by pT Easily Reproduced
float pxA, pyA, pzA local fit at A layer to Local class
float phiA, etaA local fit at A layer to Local class
int segIndex index of segment Obsolete
int TrkIndex index of track in TrackChunk Obsolete
bool isTightMuoTrack is tight according to p10 or p11? Obsolete
float pTCorr, int chargeCorr corrected for CFT only track to CentralCorr
float (pT,eta,phi)Central central track pT, η, φ Duplicate
int isAxialMatched is there an axial track? Obsolete
float road(EM,Fine) unknown Obsolete
float road(Course,OutFloor) unknown Obsolete
float scvelo scint velocities Unused
float sctimeBC scint time for BC layers Obsolete
int expWhits(A,BC) wire hits in layers Renamed
int expShits(A,BC) scint hits in layers Renamed

24



Table 20: Kinematical attributes of TMBJets.
Attribute(s) Description Keep?
pT , px, py, pz Momenta No, move to base class
E Energy No, move to base class
φ, η Direction No, move to base class
det. φ, det. η pT weighted location in terms of iphi and ieta Yes

such detailed information. The separation of data into these branches will
then need to be decided.

4.3.6 TMBJets — Jets

The attributes of a jet can be divided in four categories, descibed in Tables 20-
23:

• Kinematical information.

• Quality/ID information.

• Jet Energy Scale information.

• Association to other physics objects.

Regarding the kinematical information, some of the variables stored in
the TMBTree were redundant and could be computed from the other variables.
This will be addressed in the new format with the new base class from which
all physics objects inherit. Thus most of the kinematical variables stored in
the TMBJets class can be removed.

For the Quality/ID information we propose to keep most of the variables
present in the TMBJets. New variables can be added, for example variables
having to do with energy flow or new and updated quality variables.

It is useful to store Jet Energy Scale corrections and smearing coefficients
in the jet class to allow for systemtic studies. We propose to add variables
containing this information, which was not present in the TMBJets class.

Jets are central objects within the event and can be associated with other
physics objects such as tracks, primary and secondary vertices, trigger objects
and so on. We propose to add all such useful associations to the jet class.
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Table 21: Quality/ID attributes of TMBJets.

Attribute(s) Description Keep?
q Sum of charge of associated charged particles No
emf ET fraction in layers 1-7 Yes
emf1, emf2, emf3 ET fraction in layers 1, 2, 3 Yes
icdf, ccmg, ecmg ET fraction in ICD, CC massless gap, EC massless gap Yes
icrf ET fraction in ICD massless gap Yes
fh1f, fh2f, fh3f ET fraction in Fine Hadronic layers 1, 2 and 3+4 Yes
chf ET fraction in Coarse Hadronic layers Yes
emcc, hadcc ET fraction in the EM and hadronic part of the CC Yes
emec, hadec ET fraction in the EM and hadronic part of the EC Yes
hot Ratio of hottest to next-hottest cell Yes
mxET Hottest cell ET Yes
etaW, phiW Eta and phi RMS width Yes
cpsE De-ghosted associated CPS energy Yes
sET, vPT Scalar ET and vector pT Yes
iPT Initial ET : valid only for cone jets Yes
seedET Seed ET : valid only for cone jets Yes
split merge word Split/merge word: valid only for cone jets Yes
Nitems Number of towers Yes
n90 Number of towers with 90% of pT Yes
ntrk Number of associated tracks No
nps Number of associated preshower clusters No
algoname Algorithm name as JCCA, JCCB, etc. No
flavor Jet flavor in MC Add

Table 22: Jet Energy Scale information in TMBJets.

Attribute(s) Description Keep?
jes data lq[3] JES data correction for light jet, with stat. and syst. error Add
jes data hq[3] JES data correction for hf jet, with stat. and syst. error Add
jes mc lq[3] JES MC correction for light jet, with stat. and syst. error Add
jes mc lq[3] JES MC correction for hf jet, with stat. and syst. error Add
jes[3] JES correction currently applied to jet, with errors Add
smear coeff Smearing coefficient applied to jet Add
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Table 23: Association of TMBJets to other objects.

Attribute(s) Description Keep?
Associations Tracks (TRefArray) Yes
Associations Primary Vertex (TRef) Yes
Associations Track Jets (TRefArray) Add
Associations Matched Muons (TRefArray) Add
Associations Matched Electrons (TRefArray) Add
Associations Trigger Objects (TRefArray) Add
Associations b-ID Objects (TRefArray) Add
Associations PS clusters (TRefArray) Add

4.3.7 TMBLeBob — Unclustered Energy

4.3.8 TMBTaus

TMBTaus contains information about tau candidate objects. The current at-
tributes of TMBTaus, and our recommended modifications for CAF are shown
in Table 24.

We propose to eliminate all duplicate attributes, including some that are
uniquely determined by others. Some others that are there for historical
reasons only shall be dropped as well. All commonly used accessor functions
will be retained and several new ones will be added. Implementation of some
existing accessors will have to change because of the above restructuring, but
this will not require any change in the analysis code.

For the 4-momentum, the same coordinate system (Cartesian or Cylin-
drical) should be chosen for all objects. The energy E of the calorime-
ter cluster can be calculated from the 3-momentum, and does not need
to be retained as a data member. The charge charge, will be calcu-
lated from the associated tracks. The number of tracks in 10◦, 20◦, 30◦

cones can also be calculated on the fly, if necessary. These attributed will
therefore be dropped. The variables et 3, et 7, rms, profile, hot,

emf, chf, icdf need to be retained as they contain important informa-
tion about the shower shape and isolation. EM12 Et, EM3 Et, EM4 Et

and EM12 Et core, EM3 Et core, EM4 Et core also detailed information

1The ∆’s are taken between the vector sum of tracks & the EM subcluster to calculate
the invariant mass of the charged tracks and the π0s: e1e2 × dalpha = mass(track, cal
cluster).
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Table 24: Current attributes of TMBTaus.

Attribute(s) Description Keep?
px, py, pz Cartesian 3-momentum No
pT, eta, phi Cylindrical 3-momentum Yes
E Energy No
charge Charge No
ntrk number of tracks Yes
rms, profile, hot Cal RMS, Profile, hot-cell ratio Yes
emf, chf, icdf EM, CH, and ICD fractions Yes
ntrk1, ntrk2, ntrk3 # tracks in 10◦, 20◦, 30◦ cones No
fsh Fisher discriminant (obsolete) No
type tau decay hypothesis (1-4) Yes
nnout[4] NN output for 4 types Yes
flag Status word (Int) Yes
et 3, et 7 ET in 0.3 & 0.7 cones Yes
EM12 Et, EM3 Et, EM4 Et ET in EM layers 1+2, 3, & 4 Only EM12
EM12 Et core,... EM4 Et core Ditto in core cones Ditto
tzDCA z of leading track at DCA Yes
ett1, ett2, ett3 pT of 3 hightest-pT tracks Yes
mtrk, Mass of all tracks Yes
teta, tphi η, φ of track (Σp) Yes
tphiPS, tphiEM3 φ of leading track at PS, EM3 Yes
ettr pT sum of non-leading tracks Yes
empt, emeta, emphi, emm pT , η, φ, mass of EM subclusters Yes
emcl et1, emcl eta1, emcl phi1 ET , η, φ of leading EM subcluster Yes
emcl et2, emcl eta2, emcl phi2 ET , η, φ of 2nd EM subcluster Yes
pseta, psphi η, φ of PS cluster Yes

dalpha dalpha =
√

(∆φ)2

sin2 θ
+ (∆η)2 Yes1

e1e2
√

pT (tracks)× ET (EMcal) Yes1

Associations Description Keep?
vtxref Vertex (one TRef) ?
tracks Tracks (TRefArray) Yes
cpsptr CPS clusters (TRefArray) Yes
fpsptr FPS clusters (TRefArray) Yes
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about the shape of the shower in the EM layers, but are not being used. These
can probably be dropped. The obsolete variable fsh can be dropped. type

is an integer representing the categorization of the candidate based on hy-
pothesized decay channel (presently 1-4). nnout[4] are the outputs of each
candidate from neural networks, one for each type. Frequent re-training of
the networks makes it necessary to retain all the input variables (see below),
and member functions will be available for the user to re-evaluate the network
functions with new sets of weights. Still, it is necessary to keep the original
(reco) values of NN outputs since these are often used in selection criteria
for streaming etc. Pointers to tracks and preshower clusters associated with
the tau candidate need to be kept. The pointer to the associated vertex can
be dropped if it can be readily accessed using the track pointer(s).

4.3.9 TMBMet — Missing ET

Information about the missing ET in a event is stored in the Met branch.
The branch consists of a single object of type TMBMet which closely mimics
the interface in the met evt framework package.

The attributes of the current TMBMet are shown in Table 25. They contain
all the information from the d0reco and thumbnail version.

The basic data structure used in the TMBMet object is the BMetStruct,
defined in the met util package. It consists of five floating point numbers
of 32 bit each, representing the various components of missing and sum ET :

• MEx

• MEy

• MEz

• SET

• MET

The structure is repeated for different definitions of missing ET . See [2]
for the details. There are 29 versions of these, and most of them are only of
interest to an expert user.

The corrected missing ET is stored as a vector of of BMetQualInfo objects
(also defined in met util). Each object is at least 164 bytes plus the size of
a string identifying the jet algorithm. Its structure can be seen in Table 26.
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Finally there are ring variables, four floats each, for up to 74 eta rings.
It is not known if this information has been used in a RunII analysis so far.

The z coordinate of the vertex used to calculate the missing ET is also
kept as a single floating point value.

We suggest to split the missing ET information into a user and expert
branch and keep only the indicated variables in the user branch. All the
other information will go into the expert branch. The missing ET classes
have been recently re-organized, so it contains no remnants of the past that
can be easily removed.

All items marked Yes in Table 25 will be kept in the user branch. All
items marked No will be in the expert branch. [ One of the items marked
JES will be kept in the user branch, whichever the Jet Energy Scale group
believes to be most useful. ]

For the metqualinfos vector we suggest to keep all the information
available in the thumbnails.

4.3.10 TMBCps — Central Preshower

For the CPS, contiguous strips above threshold are clustered into single layer
clusters (SLCs). These SLCs are then divided into subclusters containing at
most five strips. Subclusters that overlap in all three layers are used to create
3D clusters. 3D clusters associated with isolated tracks, taus, and EM objects
are written to thumbnail. When writing CPS information to tmb tree, each
3D cluster is represented by a TMBCps object. Each TMBCps has the following
members:

• r

• phi

• z

• xE, uE, vE

• matchQ

• matchEQ

• xSLC Id, uSLC Id, vSLC Id

• xNStrips, uNStrips, vNStrips
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Table 25: Attributes of TMBMet.
Type Attribute Description User
BMetStruct met CAL + ICD Towers JES
BMetStruct metnoeta CAL + ICD Towers, above tower threshold JES
BMetStruct metweta CAL + ICD Towers, in eta limits, over t threshold JES
BMetStruct metT CAL + ICD Towers, over t threshold JES
BMetStruct metTM CAL + ICD + Muon correction, over t threshold No
BMetStruct metTAS CAL + ICD over eta limit, over t threshold No
BMetStruct metTBS CAL + ICD below eta limit, over t threshold No
BMetStruct metTAN CAL + ICD over eta limit, below t threshold No
BMetStruct metTBN CAL + ICD T below eta limit, below t threshold No
BMetStruct metC CAL + ICD Cells Yes
BMetStruct metCM CAL + ICD Cells + Muon correction No
BMetStruct metCAS CAL + ICD C above eta limit, above c threshold No
BMetStruct metCBS CAL + ICD T below eta limit, above c threshold No
BMetStruct metCAN CAL + ICD T above eta limit, above t threshold No
BMetStruct metCBN CAL + ICD c below eta limit, below c threshold No
BMetStruct metICD ICD Cells No
BMetStruct metNADA NADA Cells No
BMetStruct metMUON Tight Muons No
BMetStruct metD CAL + ICD Cells layers 1-14 (no CH) Yes
BMetStruct metDM CAL + ICD c layers 1-14 (no CH) + Mu correction No
BMetStruct metEM EM layers (1-7) No
BMetStruct metMG Massless Gap layers (8 & 10) No
BMetStruct metFH FH layers (11-14) No
BMetStruct metCH CH layers (15-17) No
BMetStruct metED CAL + ICD Cells below eta limit.(no threshold) No
BMetStruct metNG negative cells No
BMetStruct metT42 noise cells, based onthe CalT42 algorithm. No
BMetStruct metA META = METD + CH frac. of good jets Yes
BMetStruct metB METB = METD + CH frac. of good jets Yes
Float t Zvertex Z of the vertex used to calculate mET Yes
BMetQualInfo metqualinfos vector of Corrected mET Yes
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Table 26: Attributes of BMetQualInfo.

Type Attribute Description
string algo Jet Algo Name
BMetStruct METcorr Final Corrected Missing ET
BMetStruct CHcorr MissingET Corrections
BMetStruct JEScorr MissingET Corrections
BMetStruct EMcorr MissingET Corrections
BMetStruct MUcorr MissingET Corrections
BMetStruct MUCalcorr MissingET Corrections
BMetStruct BJcorr MissingET Corrections
float isophigoodjet MissingET isolation wrt good id objects
float isophimu
float isophiem
float isophibadjet
float isophiunclusteredenergy
float isophibadtower MissingET isolation wrt bad Towers, Cells

• dphi

• dz

• nn

• isLoose

• isTight

• p3v[3]

The first three variables are the coordinates of the 3D cluster. The next
three are the energies of the SLCs that make up the 3D cluster. matchQ is
a χ2-like term that measures the quality of the spatial match of the three
SLCs. matchEQ is an analagous quantity for the energy match of the three
SLCs. The next three variables are the id numbers for the SLCs in the
3D cluster. The following three variables are the number of strips in each
SLC. dphi and dz are the errors on the φ and z coordinates. nn is a neural
net output to discriminate between EM objects and non-EM objects, and
isLoose and isTight are boolean flags for picking EM-like clusters, based
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Table 27: Average number of CPS clusters written per event.
Skim Clusters
BID 4.7
EM1TRK 6.9
QCD 8.0

on the neural net output and the number of strips and energies in the SLCs.
Finally, p3v[3] is a unit vector from the primary vertex to the 3D cluster,
used for π0 reconstruction.

The (x,u,v)SLC Id variables identify the SLCs used in a 3D cluster, and
could be used to identify 3D clusters that share SLCs. However, it is unlikely
that this will be done, and it is recommended that these three variables be
omitted.

p3v[3] can be calculated from the position of the 3D cluster and the
desired vertex, and the algorithm is one that will not change over time, so it
is suggested that this variable also be omitted.

All other variables should be kept. r, phi, z, dphi and dz are clearly
necessary. matchQ and matchEQ are important quality variables useful in
rejecting combinatoric background. The number of strips and energy in each
SLC are used to distinguish EM-like objects from fakes. The neural net
output is not easily calculated on the fly, and isLoose and isTight only
require one bit each.

Since 3D clusters are only kept if they are associated with various physics
objects, relatively few are written per event. Typical averages are shown in
Table 27.

We would also like to consider the possibility of keeping all 3D clusters
that are classified as isLoose. Using a diEM skim, we found that the number
of clusters kept would go from 7.1 to 12.4.

In addition to the standard CPS data, the energy information for all strips
that were read out in an event (i.e. - the contents of the CPSDigiChunk)
should be available in an expert/developer branch.

4.3.11 TMBFps — Forward Preshower

As for the CPS, FPS clusters associated with isolated tracks, taus and EM
objects are written to thumbnail. Information about FPS clusters are stored
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in TMBFps objects, which contain the following members.

• E

• phi

• r

• z

• nstr (u,v)

• cntrd (u,v)

• rms (u,v)

• ecl (u,v)

• index cl

E is the energy of the cluster, and r, phi and z are the coordinates of the
cluster. The next variables are the number of strips, centroid, rms width and
energy, respectively, of the u and v layer cluster. index cl identifies which
wedge the cluster is in.

The energy and position variables should definitely be kept for the com-
mon analysis format. The other variables are likely to be used only by ex-
perts, but since less than one FPS cluster is stored per event, their impact
on the data size will be negligible. We therefore propose to keep the FPS
variables as they are, and store the same clusters as for the thumbnail.

In addition to the standard FPS data, the energy information for all strips
that were read out in an event (i.e. - the contents of the FPSDataChunk)
should be available in an expert/developer branch.

4.3.12 TMBTRefs — Overlapping Physics Objects

4.4 B-Tagging

One of the shortcomings of DØ’s way of doing b-tagging is a lack of any stan-
dard way of storing persistent b-tagging information, either as an edm chunk,
or as as a tmb tree branch. The working model has been that everyone who
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wants to do b-tagging has to run d0root macros at the analysis level, be-
ginning with the refinding of primary vertices. This way of doing things has
been developed to suit the needs of the developers of b-tagging algorithms,
who say for their part that abandoning the DØ framework has made them
much more productive and efficient. Unfortunately, this way of doing things
does not suit the needs of analyzers. For one thing, doing b-tagging at the
analysis level is slow. For another, the analyzer is presented with an interface
that is unnecessarily complex, and not well-documented.

The data format group proposes that the results of each stage of the
lifetime b-tagging analysis chain be made persistent as an edm chunk and as
a branch in the CAF. There are six such stages.

1. Refind primary vertices. This step is not part of the b-tagging algo-
rithms proper, but for some time the primary vertex algorithm used for
certified b-tagging has been different than the primary vertex algorithm
that runs in d0reco.

2. V 0-finding. The purpose of this step is to identify tracks originat-
ing from K0

S and Λ decays, so that such tracks can be removed from
consideration as candidates tracks arising from the decay of b-quark-
containing hadrons.

3. Track selection and V 0-removal. The purpose of this step is to identify
a sample of tracks originating from the hard scatter vertex to be used
as input to the lifetime b-tagging algorithms.

4. Find track jets. Track jets are found using a cone algorithm using track
as inputs. Calorimeter information is ignored, except that track jets
are eventually matched to calorimeter jets using η-φ matching. Track
jets are used to define “taggability” of calorimeter jets for all lifetime
taggers (certified tag rate functions and scale factors are always defined
relative to so-called taggable jets). Additionally, some taggers (namely
SVT) make essential use of the track jets as input to the algorithm.

5. Find secondary vertices. Secondary vertices are searched for within
track jets.

6. Apply tagging algorithm. There are currently four tagging algorithms
implemented in d0root.
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• The Secondary Vertex (SVT) algorithm uses secondary vertices as
its primary input. Calorimeter jets are not used, except that the
final results are applied to matched calorimeter jets.

• The Jet Lifetime Impact Parameter (JLIP) algorithm is based
on the impact parameters of tracks. Tracks are treated indepen-
dently. Calorimeter jets are required as an essential input to define
the jet axis so that tracks can be classified as having positive or
negative impact parameter. Matched track jets are not used di-
rectly, except to establish taggability.

• The Counting Signed Impact parameter (CSIP) is another impact
parameter based algorithm. The same general considerations ap-
ply as for JLIP.

• The Soft Lepton Tag (SLT) algorithm is based on the finding of
leptons in jets as evidence of a b-quark semileptonic decay. Cur-
rently, only muons are used. Most of the track-based infrastruc-
ture used by the lifetime taggers is not relevant for the SLT algo-
rithm.

We recommend that the results of the above six analysis steps be saved
in an edm chunk and in a tmb tree branch. In addition, we recommend that
a seventh chunk/branch be created to store the relationships among all of
the objects and algorithms involved in b-tagging.

4.4.1 Primary Vertices for b-tagging

.
Among all of the d0root objects created for use in b-tagging, vertices (pri-

mary or secondary) are the only one for which there is already an edm chunk
in existence, namely VertexCollChunk. The contents of VertexCollChunk
consist of an integer vertex type, a vertex name, and a collection of Vertex
objects.

The selection of vertex chunks for use as input for further reconstruc-
tion or analysis is done exclusively by means of the integer vertex type at-
tribute rather than the vertex name attribute. The vertex type is used to
distinguish primary and secondary vertices, as well as vertices reconstructed
using different algorithms. Many packages assume that there will be only
one VertexCollChunk of any given type, which restriction d0root must re-
spect. C++ enums of all known vertex types are stored in the header file

36



Table 28: Attributes of vertex::V0.
Attribute(s) Description
px, py, pz 3-momentum
m Mass
σm Mass error
q Total charge
x, y, z Decay vertex
σ2

ij Vertex error matrix
χ2 Vertex chisquare
PDGID Particle type
Associations Charged particles (LinkIndex<ChargedParticle>)

vertexutil/VertexType.hpp. The type that corresponds to “physics pri-
mary vertices” is VertexType=PRIMARY or 3. The first vertex in this chunk is
the one that has been selected as the best choice for the hard scatter vertex.

Primary and secondary vertices found by d0root can fit rather easily
into the existing edm vertex infrastructure by simply defining new vertex
types for each d0root vertex reconstruction algorithm. Creating additional
VertexCollChunks will not interfere with any existing code provided that
each algorithm gets a unique vertex type. Each algorithm that wants to cre-
ate a chunk should register for a type by adding an enum to VertexType.hpp.

For the CAF, primary vertex objects will be stored using class
TMBPrimaryVertex (see sec. 4.3.2), with different algorithms having different
branch names.

4.4.2 V 0’s

The next step in lifetime b-tagging is search for fully reconstructable long-
lived V 0’s (K0

S’s and Λ’s). At the CAF level, these objects will be stored in
class TMBV0 (see Sec. 4.3.2). At the edm level, it will be necessary to define
a new chunk. Rather than derive from class vertex::Vertex, we propose to
make a new class vertex::V0 (see Table 28). Class vertex::V0Chunk will
consist of a collection of V0’s.
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Table 29: Attributes of bid::FilteredTrackChunk.
Attribute(s) Description
Primary Vertex LinkIndex<Vertex>

Charged particles vector<LinkIndex<ChargedParticle> >

Table 30: Attributes of bid::TMBFilteredTracks.
Attribute(s) Description
Primary Vertex TRef

Charged particles TRefArray

4.4.3 Filtered Tracks

The next step in lifetime b-tagging is track selection. This step consists of
the following types of selections.

• Association to the hard-scatter primary vertex (2D impact parameter).

• V 0 removal.

• Quality selection (e.g. minimum number of SMT hits).

• Kinematic selection.

The output of this step consists of a collection of the selected tracks. It will
be necessary to define a new edm chunk and a new branch class for the CAF.
For concreteness, we propose the name bid::FilteredTrackChunk for the
edm chunk, with contents shown in Table 29. For the CAF, we propose class
TMBFilteredTracks, shown in Table 30.

4.4.4 Track Jets

The fourth step in lifetime b-tagging is the finding of track jets. Currently,
track jets are defined in d0root, but there is no support for track jets in
edm or tmb tree. As with calorimeter jets, the is the potential to have
different track jet algorithms. At the edm level, the results of different track
jet algorithms will be stored in different chunks with the attribute identified
by a chunk attribute (a string, presumably). At the CAF level, the track jet
algorithm will be identified by the name of the branch.
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Table 31: Attributes of bid::TrackJet.
Attribute(s) Description
px, py, pz, E 4-momentum
q Total charge
status Status word (includes taggability)
Primary Vertex LinkIndex<Vertex>

Charged particles vector<LinkIndex<ChargedParticle> >

Table 32: Attributes of TMBTrackJet.
Attribute(s) Description
px, py, pz, E 4-momentum (TMBLorentzVector)
q Total charge
status Status word (includes taggability)
Primary Vertex TRef

Charged particles TRefArray

The proposed edm track jet object is called bid::TrackJet and its con-
tents are shown in Table 31. The CAF object is called TMBTrackJet, and its
contents are shown in Table 32.

4.4.5 Secondary Vertices

The fifth step in lifetime b-tagging is secondary vertex finding. Many of
the same general considerations apply to secondary vertices as to primary
vertices (see Sec. 4.4.1). At the edm level, secondary vertices can be stored
in VertexCollChunk, with appropriate vertex type attribute. At the CAF
level, secondary vertices are stored in TMBSecondaryVertex (see Sec. 4.3.2).

4.4.6 b-Tagging Results

The sixth and final step in lifetime b-tagging is the application of the b-
tagging algorithm proper. The tagging algorithms may make use of any of
the results from the previous five steps, as well as any other results from the
event.

Some results produced by the various tagging algorithms are generic, such
as whether a given calorimeter jet is tagged tight, medium, loose, or not at
all. Other results are algorithm specific. We propose to have a common
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Table 33: Attributes of bid::BTag.

Attribute(s) Description
status Status word (includes loose/medium/tight,

positive/negative, MC flavor)
Calorimeter Jet LinkIndex<Jet>

Track Jet LinkIndex<TrackJet>

MC Particle Jet LinkIndex<Jet>

Filtered Tracks ChunkID

Table 34: Attributes of TMBBTag.

Attribute(s) Description
status Status word (includes loose/medium/tight,

positive/negative, MC flavor)
Calorimeter Jet TRef to TMBJet
Track Jet TRef to TMBTrackJet
MC Particle Jet TRef to TMBJet
Filtered Tracks TRef to TMBFilteredTracks
Data TRF Method or attribute
MC TRF Method or attribute
Scale factor Method or attribute

base class for the generic results, and derived class for the algorithm-specific
results. The base class is called bid::BTag at the edm level, and TMBBTag at
the CAF level. The contents of the base class are shown in Tables 33 and 34.
Algorithm specific classes for SVT are shown in Tables 35 and 36. Algorithm
specific classes for JLIP are shown in Tables 37 and 38. Algorithm specific
classes for CSIP are shown in Tables 39 and 40. Algorithm specific classes
for SLT are shown in Tables 41 and 42.

Table 35: Attributes of bid::BTagSVT.

Attribute(s) Description
bid::BTag base class
Secondary vertices vector<LinkIndex<Vertex> >
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Table 36: Attributes of TMBBTagSVT.

Attribute(s) Description
TMBBTag base class
Secondary vertices TRefArray

Table 37: Attributes of bid::BTagJLIP.

Attribute(s) Description
bid::BTag base class
PJLIP Tagging probability
NTrack Number of selected tracks.
Selected tracks vector<LinkIndex<ChargedParticle> >

Table 38: Attributes of TMBBTagJLIP.

Attribute(s) Description
TMBBTag base class
PJLIP Tagging probability
NTrack Number of selected tracks.
Selected tracks TRefArray

Table 39: Attributes of bid::BTagCSIP.

Attribute(s) Description
bid::BTag base class
NTrack Number of selected tracks.
Selected tracks vector<LinkIndex<ChargedParticle> >

Table 40: Attributes of TMBBTagCSIP.

Attribute(s) Description
TMBBTag base class
NTrack Number of selected tracks.
Selected tracks TRefArray
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Table 41: Attributes of bid::BTagSLT.

Attribute(s) Description
bid::BTag base class
Nmuon Number of associated muons.
Associated muons vector<LinkIndex<MuonParticle> >

Table 42: Attributes of TMBBTagSLT.

Attribute(s) Description
TMBBTag base class
Nmuon Number of associated muons.
Associated muons TRefArray

4.5 Trigger Results

[Section missing. Basic plan is to import contents of trigsimcert tree into
CAF.]

4.6 Branch and Class Names

We suggest to change the names of branches in the files and C++ classes
according to Table 43.

The changes are intended to move away from abbreviations and be inter-
nally consistent. For instance, classes for physics objects are all singular and
fully spelled out.

Branch names are often used interactively, so they leave out any prefix
and try to be short and descriptive.

Jet and EM brances will be split by algorithm. We suggest to use the
normal Jet algorithm name for branches, e.g. JCCA, JCCB, etc. For EM
branches we suggest to use EMscone and EMcnn.
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Table 43: Names of branches and C++ classes.
Old Class Name Old Branch New Class Name New Branch
TMBGlob Glob TMBGlobal Global
TMBHist Hist TMBHistory History
TMBMuon Muon TMBMuon Muon
TMBTrks Trks TMBTrack Track
TMBIsoTrks IsoTrks TMBIsoTrack IsoTrack
TMBVrts Vrts TMBVertex Vertex
TMBEmcl Emcl TMBEM (see text)
TMBJets Jets TMBJet (see text)
TMBTaus Taus TMBTau Tau
TMBLeBob LeBob TMBLeBob LeBob
TMBMet Met TMBMet Met
TMBTrig Trig TMBTrigger Trigger
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