Data Format Working Group Report

Herbert Greenlee

Group Members
Frederic Deliot
Herbert Greenlee
Slava Kulik
Adam Lyon
Serban Protopescu
Gordon Watts

Why a Common Analysis Format?

 New tmb++ format replacing/combining dst and tmb (maybe).

— Tmb++ includes contents of old tmb plus cluster and preshower
raw data (in addition to CalDataChunk and L1L2Chunk).

* Tmb++ getting too big for disk.

* Try to make analysis easier and more efficient:

- Faster 1/0.
- Less software development/maintenance by analysis groups.
— Easier to share data and algorithms among analysis groups.

— Make life easier for new analyzers by moving toward standard
analysis format.

Requirements for Common Analysis
Format

e (Content.
— Can be satisfied by tmb or root tuple.
e Small size.

— ThumbNailChunk smaller than root tuple, but standard tmb is
bloated with raw data chunks (getting worse with tmb++).

e Fastreading.

— Root tuple much faster than tmb (factor of ten) because of tmb
unpacking.

* Rapid analysis code development cycle.

- Root tuple much faster than tmb because of framework link time.

Requirements for Common Analysis
Format (cont.)

e Accissible via sam, including parallel projects.

— Sam fully integrated into framework for reading dOom files; sam
not integrated into root.

e Portable to non-D0 computers.

— Root tuple usually more portable than tmb (less coupled to
dOlibrary).

e FEase of use/learning curve.

- Root tuple easier to learn than tmb/framework.

Collaboration Feedback

View e-mail feedback on dOdfwg web page:
- http://www-d0.ftnal.gov/Run2Physics/working_group/data_format/

Should there be a common analysis format?

- Some say yes, some happy with status quo.

CAF should have good performance (reading, skimming).
CAF should be complete enough for most analyses.

CAF should have good documentation (better than current
tmb_tree).

Customizable (add, drop variables).

Rapid development cycle (complaints about tmb/framework
development cycle).

Feedback (cont.)

Not coupled to dOlibrary. Portable.

Object-oriented vs. flat.

— People on both sides of this issue.

— Flat sometimes viewed as simpler.

Raw data.

- Some people wanted cal cells.

Algorithm development.

— Some people in favor. Others opposed (WZ group, especially).

— Main reason cited for algorithm development in root is speed of
development cycle.

— Edmroot mentioned as option.

The DO Data Processing Chain

Production Farm

v

Common Sample Group

v

Analysis (batch)

dOcorrect

Analysis (interactive)

. \ dOroot
/

Alternatives to Root Tuple

e Keep thumbnail

— Size requirement can easily be met by dropping raw data chunks.
— Improvements to thumbnail (esp. development cycle) useful anyway.
— Read speed will be much worse than root because of unpacking.
— Strong coupling to dOlibrary.

— People/physics groups will continue to develop their own tuples.

e Edmroot

— Faster development cycle.

— Chunks not optimized for analysis.
* Too slow (ThumbNailChunk) or too big.
— Strong coupling to dOlibrary.

* Possibility to use special root exe, but still need chunk headers.

CAF Use Cases for Existing Analyses

* Analyzer continues to run batch analysis from tmb++.

— Still possible.
- Getting slower, data not on disk.
— Discouraged unless analyzer really needs tmb++ data.

* Analyzer converts batch part of analysis to run from common root
tuple, interactive part of analysis stays the same.

— Minimal changes.
— Analyzer (& DO0) benefits from faster root I/O, data 1s on disk.

— Perfectly acceptable.

CAF Use Cases for New Analyses

Analyzer produces own skims from common root tuples.

Analyzer produces own custom format tuples from common root
tuples.

Analyzer uses common format tuples for interactive part of his
analysis.

— Probably skimmed from centrally produced tuples.

— Analyzer may add or drop branches, including adding his own
custom branches.

— Analyzer benefits from reduced coding burden.

Analyzer uses tmb++ for batch part of his analysis.

— Should be done only if needed data not in CAF.

The Root Tree Data Model

Tree event consists of collection of branches and subbranches
(depending on splitting level).

— (Su)branch I/O can be turned on and off individually.

Branch contents can be a single class or a flat collection of standard
variable types. We recommend using class-type branches.

— In the long run, people are more productive with classes than flat data
(need good documentation).

— MakeClass can provide a “flat view” of branch data for people who
prefer to work that way.

Root has no built in tree event class to contain branches.

— DO should provide its own root event class (TMBEvent) to handle root
data in framework. Should be much simpler than edm::Event (no
bookkeeping).

Processing Root Data in Batch.

* Option 1: cint + compiled root macro.

- Simple, but many features lacking: framework, rcp system, event
model. Difficult to write large programs.

e Option 2: Compiled program, no cint.

— Although this could be done without the framework, we think that
the framework provides many useful features (packages, rcp
system) and 1s the way to go.

Root Data in Framework

* Need a way for multiple framework packages to cooperate in the
processing of root data.

— Need root event class (TMBEvent), that can be passed from
package to package (like edm::Event, but lighter).

e Large programs (like tuple-maker) can be split into reusable
components (framework packages).

- Root event writer.

- Root event reader.

— Edm to root data import (tuple-making, branch filling).
— Root to edm data export.

- Filters, skimming.

e Users can modify standard programs by adding one package.

Analysis Formats — Features

Type Objects Content DOlibrary Coupling
Thumbnail DOom Classes Full Strong
tmb_tree Root Classes Full Weak
top_tree Root Classes Full Weak
Athena Root Structs Full Weak
reco_analyze Root N Full None
wz_analyze Root N Partial None
qcd_analyze Root N Partial None
AADST Special Partial None
Edmroot Root Classes Full Strong

Analysis Formats — Performance for
Data Events

Event Size Read Speed* Read Speed

(kb/event) (events/sec) (Mb/sec)
Thumbnail 22.5 11.4 0.25
tmb_tree (objects) 18.5 157 2.8
top_tree (objects) 9.3 254 2.3
top_tree (MakeClass) 9.3 355 3.2
Athena (MakeClass) 6.32 910 5.6
gcd_analyze (MakeClass) 21.1 441 9.1
higgs_multijet (MakeClass) 0.6 7407 4.3

Algorithm Development in Root?

e All general interest algorithms should run in the framework.

- Remember, some analyses will still be done from tmb++.

— Algorithm results should be stored in chunk, not just available
from function call.

* Only way to ensure proper parameters.
e Root algorithms (e.g. dOroot) acceptable, provided:
— Can be run in framework (framework import interface).
— Can store results in chunk (framework export interface).

— No root algorithms currently meet both of above requirements.

Recommendations

The Common Analysis Format should be a root tree.
— But thumbnails and framework are still important.
— All general interest algorithms should run in frameowrk.

There needs to be a parallel sam interface for root tuples.

The CAF tree should be lightly coupled to dOlibrary (for
portability).

There should be a well-defined & documented procedure to do
fast skimming based on a subset of data in an event (partial event
reading).

There should be a well-defined & documented procedure to add
custom branches.

CAF tuple branches should be object-oriented.

Recommendations (cont.)

e DO should request the root team to make MakeClass work with the
CAF, if necessary.

— But there should not be changes or concessions in the CAF design
because of the current MakeClass.

e The CAF should be based on tmb_tree.

— Most general purpose, most object-oriented of formats studied.

— Contents need further review.

e Use best features and contents from various formats.

— B-1d should be added.

— Jet and EM cluster branches should be split into separate
algorithms.

— Redundant information should be removed.

Recommendations (cont.)

* An infrastructure should be developed to allow processing of root
data in the framework (i.e. by multiple packages).

- TMBEvent class that can pass from package to package.
- Utility packages (read root event, write root event).
— Branch filling packages.

- Skimming packages.

 CAF root tuples should be produced by CSG (provided resources
can be found to do the job).

Recommendations (cont.)

e Documentation.

— Multiple use cases.

* Interactive analysis.

* Making CAF tuples from thumbnails.
* Skimming.

* Adding branches.

* Non-DO computers.

- Automated documentation system of tuple contents based on class
headers.

Summary

* Draft report available on dOdfwg web page.

— http://www-d0.fnal.gov/Run2Physics/working_group/data_format/dOdfwg_report_v1.pdf

