	Revision: 0.2
	Future Production Paths Using Generic Job Types in Samgrid

Future Production Paths Using Generic Job Types in Samgrid

1 Introduction

This document is intended for users who want to enable running new DZero applications using Samgrid as described in Generic WBS for DZero Applications [1]. The document describes two generic job types introduced in Samgrid that can be used to run new DZero applications. Users can also run existing DZero applications like Monte Carlo (MC) or Reconstruction (reco) with special uses cases using these generic job types. The document also details characteristics that DZero application should exhibit to classify under either of the two generic job types. It also details other requirements that need to be satisfied to run a new DZero application successfully on Samgrid.
2 Who should use this document?
 This document assumes that the reader –
· has basic understanding of Computational Grids and Samgrid

· is a valid member of DZero VO with at least one certificate/identity registered with DZero VOMRS/VOMS

· wants to run new DZero applications through Samgrid or wants to run existing applications in a special way
· has basic knowledge about DZero Data System, SAM, can create datasets in SAM
3 Generic Job Types in Samgrid
Samgrid supports two generic job types’ dzero_direct_io_type and dzero_indirect_io_type. These job types can be used to run future DZero applications using Samgrid. Generic job types differ based on how the Samgrid jobs are split into the local jobs and based on how the local jobs receive their input files. When the job starts at worker node, Samgrid is responsible for fetching the job files, input files if any and bootstrapping the job environment before the control is passed to D0runjob. Except for merging jobs, D0runjob is responsible for generating the SAM metadata for the output file and storing the file to SAM based on the information available to D0runjob in its macro. This section describes the two generic job types in detail.
3.1 Generic job type dzero_direct_io_type
Any DZero application that is similar to reprocessing application can be run via Samgrid using generic job type dzero_direct_io_type.
Job type dzero_direct_io_type exhibits following behavior –

1. At the forwarding/head node, Samgrid job is split into number of OSG/Batch (local) jobs such that every local job processes exactly one input file.

2. Samgrid job needs to start a SAM project for accounting purposes to fetch one input file from SAM per batch job.

A sample Samgrid JDF for a dzero_reconstruction job using dzero_direct_io_type generic job is as shown below -
	job_type = dzero_direct_io_type

dzero_application_name = dzero_reconstruction

sam_application_name = d0reco

sam_application_family = reconstruction

sam_experiment = d0

sam_universe = prd

group = d0production

station_name = samgrid-osg-test

input_dataset = parag-test-d0reco-dataset-6

check_consistency = true

test_run = true

instances = 1

events_per_file = 5

d0_release_version = p17.09.07

jobfiles_dataset = d0repro_jobfiles_p17.09.07_samgridV7-6

grid_resource_requirement_string = fngp-osg.fnal.gov:2119/jobmanager-condor

Figure 1: Samgrid JDF for dzero_reconstruction using dzero_direct_io_type
New JDF parameters are supported by Samgrid to allow users to fully express the properties of their application. These parameters are –
1. dzero_application_name:

This parameter is the name of your new application. D0runjob should also know about your application with same name so that it can use appropriate plugins and run your application correctly. As explained later, this parameter is also needed in the configuration of product jim_job_manager. Example: dzero_reconstruction, dzero_merge, etc
2. sam_application_name:

This parameter is the application name as registered with SAM. For example, in ApplicationFamily('certification', 'recocert', 'p21.10.00'), the sam_application_name is recocert.
3. sam_application_family:

This parameter is the application family as registered with SAM. For example, in ApplicationFamily('certification', 'recocert', 'p21.10.00'), the sam_application_family is certification.
4. runjob_directives:

Some DZero applications could be complex and the user may be required to provide additional macro parameters to D0runjob. These parameters need not have any significance in the context of Samgrid but are required by D0runjob to process your application. This additional information can be forwarded to D0runjob through the request system, but Samgrid also supports passing this information to the D0runjob via Samgrid JDF parameter runjob_directives.
For example, to run your application, if D0runjob needs two parameters in its macro, say, param1 and param2 with values value1 and value2 respectively, you can add following line to the Samgrid JDF.
	job_type = dzero_direct_io_type

...

runjob_directives = {param1 = value1}{param2 = value2}

Figure 2: runjob_directives in Samgrid JDF
Opening and closing braces ({ })are required to pass multiple parameters to the D0runjob. Samgrid will forward these parameters to D0runjob by adding following information to the D0runjob macro –
	[jdl]

...

param1 = value1

param2 = value2

Figure 3: runjob_directives in D0runjob macro
3.2 Generic job type dzero_indirect_io_type

Any DZero application that is similar to Monte Carlo application can be run via Samgrid using generic job type dzero_indirect_io_type.

Job type dzero_indirect_io_type exhibits following behavior –

1. If the parameter input_dataset is specified in Samgrid JDF, the Samgrid job is split into number of OSG/Batch (local) jobs such that every local job processes exactly one input file. User can specify number of events to process per file via parameter events_per_file in the Samgrid JDF. If the parameter input_dataset is not specified in Samgrid JDF, the Samgrid job is split into number of jobs based on number of events to generate/process per local job. This behavior is similar to MC jobs running from first stage.
2. Samgrid job will not start a SAM project to fetch input file(s) from SAM per batch job.

Job type dzero_indirect_io_type supports new Samgrid JDL parameters dzero_application_name and runjob_directives as described in Section 3.1.
A sample Samgrid JDF for a dzero_monte_carlo job using dzero_indirect_io_type generic job is as shown below -

	job_type = dzero_indirect_io_type

dzero_application_name = dzero_monte_carlo

station_name = samgrid-osg-test

sam_experiment = d0

sam_universe = prd

group = d0production

Optional runjob_numevts and events_per_file

runjob_numevts = 18

events_per_file = 6

test_run = true

check_consistency = true

instances = 1

PYTHIA REQUEST

runjob_requestid = 50196

d0_release_version = p17.09.08

jobfiles_dataset = d0mc_jobfiles_p17.09.08_samgridV7-7

minbias_dataset = parag-Zerobias_p17_06_03MC_set1

grid_resource_requirement_string = fngp-osg.fnal.gov:2119/jobmanager-condor

Figure 4: Samgrid JDF for dzero_reconstruction using dzero_indirect_io_type
4 Steps involved in running a new DZero Application on Samgrid

This section details the steps required to run DZero applications using generic job types described in previous sections.
Step 1: Make your application part of a DZero portable distribution of executables.
a. Contact DZero members responsible for the executable, to help you with this.
b. Test your application code.
c. Your application should be able to run standalone on any node in a given cluster.
d. Your application should not depend on availability of UPS/UPD environment and SAM services on the machine it is run on. However, you may expect that SAM client commands are available in the PATH.

Step 2: Make sure your application can be run through D0runjob. This requires development on D0runjob plug-in. Talk to the D0runjob developers/maintainers to make this happen.

Step 3: Decide which of the generic job types described in the previous sections best fits your needs. Answer following questions to help you with your decision.
a. Does the metadata of the output file(s) need SAM process id or project id? In other words, does your application need to start SAM project to fetch input files? If so the input files will be fetched using “sam dh get lite” command and the status of consumed files will not be recorded.
b. Is your application similar to reconstruction programs? I.e. Your application does not depend on generating events when run but depends on processing an input file?

If answer to above questions is

a. Yes: select dzero_direct_io_type
b. No: select dzero_indirect_io_type
Step 4: Store the DZero executable and D0runjob in SAM. Official releases of D0runjob and DZero executable are usually available in SAM. Work with the D0runjob developers and DZero executable maintainers to achieve this.
Step 5: Create job files dataset in SAM containing DZero executable and D0runjob.
Step 6: In case of dzero_direct_io_type, request for a new application family to be declared in SAM.
Step 7: Create a SAM request if required by your application.

Step 8: Talk to the REX group and request them to add configuration parameters to jim_job_manager related to your application. This step is not required if you are using generic job type to run native Samgrid job types like dzero_reconstruction or dzero_monte_carlo in a special way. Configuration of jim_job_manager on the Samgrid head node and the OSG/LCG forwarding nodes should have configuration info as shown in Figure 5 and Figure 6. Replace “dzero_application_name” with the actual name you want to use for your application.
	 <dzero_application_name>

 <events number_per_output_file="xxx" />

 <accelerator bootstrap_time="180" interval="180" />

 </dzero_application_name>

Figure 5: jim_job_manager configuration tag for dzero_indirect_io_type generic job type

	 <dzero_application_name>

 <accelerator bootstrap_time="180" interval="180" />

 </dzero_application_name>

Figure 6: jim_job_manager configuration tag for dzero_direct_io_type generic job type

You can also ask REX group to configure data transfer queues and SAM storages similar to the native Samgrid applications.
Step 9: Create a Samgrid JDF for your application. Many JDF parameters are common. For more information on the parameters, refer to the Samgrid manual.
A sample Samgrid JDF for running dzero_recocert job on Samgrid OSG test node using dzero_direct_io_type generic job is as shown below –
	job_type = dzero_direct_io_type
dzero_application_name = dzero_recocert

sam_application_name = recocert

sam_application_family = certification

sam_experiment = d0

sam_universe = prd

group = d0production

station_name = samgrid-osg-test

input_dataset = parag-recocert-input-dataset-p17.05.01-1

check_consistency = true

test_run = true should be used for testing jobs only

For production run do not specify test_run
test_run = true

instances = 1

d0_release_version = p17.05.01

jobfiles_dataset = d0repro_jobfiles_p17.05.01_samgridV7-8

grid_resource_requirement_string = fngp-osg.fnal.gov:2119/jobmanager-condor

Figure 7: Samgrid JDF for dzero_recocert using generic job type
A sample Samgrid JDF for running dzero_monte_carlo job starting from D0gstar stage on Samgrid OSG test node using dzero_indirect_io_type generic job is as shown in Figure 8. D0runjob knows details about the stages it needs to process through the runjob_requestid parameter.
	job_type = dzero_indirect_io_type

dzero_application_name = dzero_monte_carlo

station_name = samgrid-osg-test

sam_experiment = d0

sam_universe = prd

group = d0production

test_run = true should be used for testing jobs only

For production run do not specify test_run
test_run = true

check_consistency = true

instances = 1

runjob_requestid = xxxxx
d0_release_version = p17.09.08

jobfiles_dataset = d0mc_jobfiles_p17.09.08_samgridV7-7
input_dataset = xxxxxx

grid_resource_requirement_string = fngp-osg.fnal.gov:2119/jobmanager-condor

Figure 8: Samgrid JDF for dzero_monte_carlo from D0gstar stage using generic job type
Step 10: If you want to run your Samgrid job on the OSG or LCG cluster, store your proxy/credentials in the MyProxy server (myproxy.fnal.gov) used by Samgrid.

Step 11: Submit Samgrid job using the JDF file you created for your application by running following commands from d0mino0x –
	d0mino01$ source /fnal/ups/etc/setups.sh
d0mino01$ setup jim_client

d0mino01$ samg submit my.jdf

Figure 9: Samgrid JDF for dzero_monte_carlo from D0gstar stage using generic job type
5 Future Generic Job Types
This section lists possible Generic Job Types that could be implemented in the future. Based on the limited input and use/test cases available from the DZero Experiment at the time of implementation of the above Generic job types, generic job types mentioned below were not considered for development in Samgrid –
1. dzero_indirect_io_type splits jobs based on one input file per batch job when the input_datset is specified in the Samgrid JDF. A variation to this generic job type would contain a single file input_dataset. The Samgrid job will be split into batch jobs based on the event ranges to be processed by local jobs. This type of job will be similar to phase datasets in Monte Carlo.
2. One could potentially have generic job types for merging application. For historic reasons, merging was done in the context of Samgrid and not in the context of D0runjob. If this changes in future and D0runjob becomes responsible for merging files, having generic job type for merging is a viable option.

6 References

[1] Generic WBS for D0 Apps on Grid. (https://plone4.fnal.gov/P0/CD-OPMQA/project-management-activities/d0-grid-production-computing-initiative/subject-docs)
	Author: Parag Mhashilkar
	Last Modified: April 23, 2008
	Page 7

