
Application-sensitive resource tuning in the SAM-Grid

The purpose of this document is to cover aspects of the SAMGrid configuration that can
establish specific storage resource utilization patterns via use of pre-defined application
types.
Data request prioritization and data queuing along with optimal storage resource selection
are tasks that help ensure consistent efficiency of the system. These tasks are particularly
difficult to accomplish in the system that needs to routinely support multiple concurrently
running production activities(applications). To address these tasks, SAMGrid offers
means to group processing resources into independent patterns that best suit each
individual production activity. These patterns are enabled by XML based language that
can flexibly describe variety of storage resources, storage queues, applications and
respective relationship policies in such a way resources involved in production can be
used more efficiently.

SAMGrid approach is based on relating an activity/application
(dzer o_r econst r uct i on, dzer o_r eco_mer ge, bi nar y_f et ch, f ss_st ager ,
etc.) to a set of configured resources (input_storage, output_storage, batch adapter
handler) that such described activity/application is more efficient in using. For example,
DZero's r eco may be instructed to use a specific storage type for the raw data by
configuring a link between the SAMGrid dzer o_r econst r uct i on application type
and the input_storage element which points to the desired storage location.

As the result, we have defined several new elements in the j i m_conf i g and
j i m_j ob_manager s products. In general, Ji m_conf i g is responsible for the
description of site resource elements. These elements now include information extended
to support variety of storage resources. The j i m_j ob_manager s configuration defines
the way applications are allowed to use the resources as defined in j i m_conf i g.

The proper way of defining new elements from scratch in the JIM configuration
framework is to tailor both j i m_conf i g and j i m_j ob_manager s products. In order to
do so the following commands can be used : “ups conf i gur e_compl ex_si t e
j i m_conf i g” and “ups t ai l or compl ex j i m_j ob_manager s ” . If a configuration
exists, it is best to revert to interactive expert mode that is available by using the
j i m_conf i gur e. sh tool. The tool will read the product configuration and will make
the configuration text available for editing using ‘vi ’ . Example commands are
“ j i m_conf i gur e. sh j i m_conf i g” and “ j i m_conf i gur e. sh
j i m_j ob_manager s ” .

Resource configuration elements (jim_config)
Here is an example XML coding used to describe site wide resources. That includes
storage, fcp, amd fcp groups.

output_storage

 <out put _st or age
 name=" uni que name of t he subset "
 l ocat i on_sel ect or _al gor i t hm=" r andom| l ocal | af f i ni t y"
 l ocat i on_sel ect or _pat t er n=" [af f i ni t y r egex: :] <out put
l ocat i on r egul ar expr essi on>[| | [af f i ni t y r egex: :] <out put l ocat i on
r egul ar expr essi on>] " >
 [<f cp_queue name=" r ow_unmer ged_t mbs" / >]
 [<f cp_queue name=" r ow" / >]
 </ out put _st or age>

input_storage
 <i nput _st or age
 name=" uni que name of t he subset "
 l ocat i on_sel ect or _al gor i t hm=" r andom| l ocal | af f i ni t y"
 l ocat i on_sel ect or _pat t er n=" [af f i ni t y r egex: :] <st at i on
node r egul ar expr essi on>[| | [af f i ni t y r egex: :] <st at i on node
r egul ar expr essi on>] " >
 [<f cp_queue name=" r ow_unmer ged_t mbs" / >]
 [<f cp_queue name=" r ow " / >]
</ i nput _st or age>

fcp_queue_group

<f cp_queue_gr oup name=" <name>"
 queue_sel ect or _al gor i t hm=" r andom| l ocal | af f i ni t y"
queue_sel ect or _pat t er n=" [af f i ni t y r egex: :] <queue sel ect i on
r egul ar expr essi on>[| | [af f i ni t y r egex: :] <queue sel ect i on r egul ar
expr essi on>] " / >

The “out put _st or age” type element defines a group of locations that may be used to
place files which are generated by one of the SAMGrid applications.
The “ i nput _st or age” type element defines a group of station nodes that may be used
to receive incoming data (note the difference between output and input storage groups in
the “ l ocat i on_sel ect or _pat t er n” definition).
The queue group defines a set of data queues that should be used in conjunction with the
selected storage.
 All resource type elements share the attributes “name” ,
“ l ocat i on_sel ect or _pat t er n” , and “ l ocat i on_sel ect or _al gor i t hm” .

Resource attributes:

• “name” : a string to be referenced in the j i m_j ob_manager s configuration.
Must be unique.

• “ l ocat i on_sel ect or _pat t er n” , “queue_sel ect i on_pat t er n” : Its
purpose is to initialize the algorithm which will ultimately select a pair of strings
for a particular application. The input to that algorithm varies by the type of

considered resource. For i nput _st or age, f cp_queue_gr oup or
out put _st or age elements we have:

o i nput _st or age, the input text is “sam dump st at i on –di sks ” .
o out put _st or age, the input text is the set of all possible strings (i.e.

permutations of all possible letters).
o f cp_queue_gr oup, the input text is the set of all fcp queue names as

listed in the already-selected storage definition element.
• l ocat i on_sel ect or _al gor i t hm . The interpretation of the

<queue |l ocat i on>_sel ect or _pat t er n varies depending on the value of
this attribute. For “ r andom” and “ l ocal ” values of the algorithm, the pattern acts
as the POSIX regular expression filter. This expression filters the input as
represented by plain text coming from dynamic part of the selection algorithm
defined above. A similar rule applies to the “af f i ni t y” algorithm selection. The
difference is in the algorithm pre-selection of the particular regular expression
component based on the affinity definition (the left side of the “ ::” term)
Among the set allowed by the pattern, single element is selected. At the moment,
the selector algorithm supports only 3 modes: “ r andom” , “ l ocal ” , and
“af f i ni t y ” .

o The “ l ocal ” mode selects the element at the host where the application is
currently running. The mode applies for f nal - f ar m, where all storage is
local to all applications.

o The “ r andom” mode makes a random choice among available candidates
allowed by the filter pattern.

o The “af f i ni t y” mode enables selection based on the host name where
application is running. The leftmost part of the double colon (“ : : ”) is the
affinity regexp string establishes the mapping of the matching host name
to the selection pattern for the desired set of queue, input, or output
storages. Thus, the final selection pattern will only apply to host names
that match the leftmost part of the double colon expression. The same host
name may match several af f i ni t y expressions. In such a case, the result
of application of the respective rightmost parts of the af f i ni t y
expressions is aggregated. In the case where the host match is not found
among listed af f i ni t y expressions, the selections are made based on a
random pick from all strings that match the aggregated list of alternative
“default” expressions and that do not contain the double colon qualifier.
All af f i ni t y expressions (whether containing the double colon or not)
must be separated by a double pipe (“ | | ”). If that is not maintained, the
parts separated by the remaining double pipe are treated as a regular
storage selection expression and thus may not be classically valid.

Application type configuration elements (jim_job_managers).
In addition to the applications that SAM-Grid already supports
(dzer o_r econst r uct i on, dzer o_r eco_mer ge, dzer o_mont ecar l o, etc.), two

new types have been introduced: bi nar y_f et ch and f ss_st ager . These new types
are “sub-applications” used by dzer o_r econst r uct i on, dzer o_r eco_mer ge, etc.

The element “bi nar y_f et ch” is a placeholder to configure input storage for the DZero
executables, mc_r unj ob, Monte Carlo card files, etc. The element “ f ss_st ager ” is a
placeholder for the buffer output area used by FSS stagers.

Each application type can have i nput _st or age and out put _st or age elements.
Below is the XML representation for these two elements:

<i nput _st or age name=” name of t he st or age" " >
 <pr ot _f cp queueName=" sam_f cp queue name" / >
</ i nput _st or age>

<out put _st or age name=” name of t he st or age" >
 <pr ot _f cp queueName=" sam_f cp queue name" / >
 </ out put _st or age>

Both out put _st or age and i nput _st or age elements may contain a pr ot _f cp
element. This element defines the f cp queue GROUP name to throttle number of
concurrent transfers to/from the respective storage. The queue group is used to resolve
the actual fcp queue name on a case by case basis. Thus, all fcp queues in that group must
be configured and run on all nodes that may be picked by storage selection rules defined
above. Fcp queues can be configured by tailoring the sam_f cp product (see below). Note
that the configuration of i nput _st or age and out put _st or age alone does not enable
the use of f cp. Use of the fcp queue group can only be declared in the storage reference
part of application itself. If f cp_queue_gr oup is not found in the j i m_conf i g, the
name of the queue as set in the pr ot _f cp is used in place of the queue name itself.

These are examples of application configurations:

<dzer o_r econst r uct i on>
 <l ocal _dat a_buf f er >
 <i nput _st or age name=" name of t he st or age" / >
 <out put _st or age name=" name of t he st or age" / >
 </ l ocal _dat a_buf f er >
 </ dzer o_r econst r uct i on>
The “ i nput _st or age” element defines the raw data storage location, while the
“out put _st or age” element defines the durable location used for the DZero
reconstruction application. The presence of i nput _st or age orout put _st or age is
optional.
 <dzer o_r eco_mer ge>
 <l ocal _dat a_buf f er >
 <i nput _st or age name=” name of t he st or age" / >
 </ l ocal _dat a_buf f er >
 </ dzer o_r eco_mer ge>

The “ i nput _st or age” element defines the location for files that should be merged in
the by the application. Output storage is pre-defined and is set to “enstore pnfs” ,so the
“out put _st or age” element is not allowed.

 <bi nar y_f et ch>
 <l ocal _dat a_buf f er >
 <i nput _st or age name=" bi nar y_st or age" / >
 </ l ocal _dat a_buf f er >
 </ bi nar y_f et ch>
The “ i nput _st or age” element defines the storage for the DZero executable, Monte
Carlo card files, etc. The application does not produce an output, So the
“out put _st or age” element is not allowed.

 <f ss_st ager >
 <l ocal _dat a_buf f er >
 <out put _st or age name=" f ssBuf f er " >
 <pr ot _f cp queueName=" f ssBuf f er " / >
 </ out put _st or age>
 </ l ocal _dat a_buf f er >
 </ f ss_st ager >
The “out put _st or age” element defines the location of the FSS stager buffer area. This
area must be visible to an FSS stager. Files that are stored to durable or permanent
storages are initially staged here by the job. The “ i nput _st or age” element is not
needed.

The f cp configuration:
In contrast to previous releases, the new sam_f cp supports multiple f cp daemons that
can run on the same host. Each daemon is named after the queue that defines the daemon
port number, timeout and transport mechanism used when transferring files. In order to
enable sam_f cp on the worker nodes, $SAM_CLI ENT_DI R/ et c/ sam_cp_conf i g. py
needs to be modified to select sam_f cp as the transport protocol of choice.

This is an example of 2 f cp queues configured in Lyon, France:
 <f cp_queue name=" def aul t " >
 <f cp_por t por t =" 7788" / >
 <max_xf er s t r ansf er s=" 5" / >
 <t r ansf er _mechani sm name=" j i m_gr i df t p" / >
 <t i me_out val ue=" 3600" / >
 </ f cp_queue>
 <f cp_queue name=" f ssBuf f er " >
 <f cp_por t por t =" 7789" / >
 <max_xf er s t r ansf er s=" 3" / >
 <t r ansf er _mechani sm name=" j i m_gr i df t p" / >
 <t i me_out val ue=" 3600" / >
 </ f cp_queue>

Configuration example: the CCIN2P3 data flow
Access to the binary input is multiplexed between HPSS and the ccsvl i 16 node,
effectively increasing the bandwidth dedicated to binary transfers. Before the cut, this
access was serialized from HPSS only.
The IO load of the head node can be controlled by tuning the number of concurrent
transfers for the sandbox input and r ecoT output.

Note: The tag next to the arrows indicates the maximum number of concurrent transfers.
“ Inf.” stands for unlimited.

ccd0.
(headnode)

HPSS

Sandbox input

Binary(exec) input

recoT output

Raw input

Inf.

1

Inf.

Inf. Workers

In2p3 SAMGrid Dataflow setup (reco and merge). Before the cut.

Shared
bandwidth

Inf.

The following page shows the configuration of the site resources (j i m_conf i g), the
application types (j i m_j ob_manager s), and sam_f cp. The arrows indicate the links
between the site and application configurations.

 j i m_j ob_manager s configuration j i m_conf i g and
 sam_f cp configurations

split
bandwidth

ccd0.
(headnode)

ccsvli16

HPSS

Sandbox input

Binary(exec) input

recoT output

Raw input

5

5

1

3

3

inf

Workers

In2p3 SAMGrid Dataflow setup (reco and merge). After the cut.

 <dzero_reconstruction>
 <local_data_buffer>
 <input_storage name="hpss_storage" />
 </local_data_buffer>
 </dzero_reconstruction>

<input_storage name="hpss_storage"
location_selector_algorithm="random
" location_selector_pattern="rfio" />

<output_storage name="fssBuffer"
location_selector_algorithm="random
"
location_selector_pattern="ccd0.in2p3
.fr:/samgrid/jim/jim_sandbox/buffer"
/>

<input_storage name="binary_storage"
location_selector_algorithm="random"
location_selector_pattern="ccsvli16|rfio
" />

<fss_stager>
 <local_data_buffer>
 <output_storage name="fssBuffer">
 <prot_fcp queueName="fssBuffer" />
 </output_storage>
 </local_data_buffer>
 </fss_stager>

 <binary_fetch>
 <local_data_buffer>
 <input_storage name="binary_storage" />
 </local_data_buffer>
 </binary_fetch>

<dzero_reco_merge>
 <local_data_buffer>
 <input_storage name="hpss_storage" />
 </local_data_buffer>
 </dzero_reco_merge>

<fcp_queue name="fssBuffer">
 <fcp_port port="7789" />
…
</fcp_queue>

<fcp_queue name="default">
 <fcp_port port="7788" />
 <max_xfers transfers="5" />
…
</fcp_queue>

