DØ Job Definition

3/8/02

D. Meyer, K. De, M. Sosebee, T. Wlodek, J. Yu,

University of Texas at Arlington

1. Motivation

In the Work Plan for DØ Grid of 12/7/01 (distributed Jan 2002), section 2 calls for a job description language for DØ jobs. As a starting point for such a language, in terms of what it has to “say”, consider the following definition of a DØ job. This definition is presented in the form of the database schema that could be used to store the job in a database. It describes a logical job and its physical components. If this schema, or some version of it, can be accepted as a basic component in the Work Plan, then efforts can be commissioned to create such a database while ongoing parallel efforts are used to schedule and complete the jobs in such a database. UTA would be interested in working on the job creation tasks.

The schema was derived from an analysis of current DØ tasks that included the Monte Carlo binaries and root, and was further modified to handle the anticipated tasks of pre-fetching data files, pre-fetching software, and purging software. To this point, all tasks appear to fit into a simplified DAG that contains only linear chains, mainline merges, and mainline splits. For example, the following logical-job DAG (or any segment of it) can be incorporated into the proposed database schema:

 Thread 1

 …

 Thread 1 Thread 1

 Thread 2
 … …

 Logical Job

 Thread n

 …

 Phase 1 Phase 2 Phase 3

Figure 1 A simplified logical job DAG
The vertical dashed lines denote a change of phase of the job. Within a phase, any and all parallel tasks (as in the second phase above) must have identical construction (e.g., thread 1 does the same chain of binaries as thread 2, etc.). If any DØ task cannot fit into the above DAG (any number of merges and/or splits, so long as they are in the main line), then it would have to be submitted as multiple logical jobs. This would obviously be undesirable, so validation of this basic assumption is an important early milestone.

In this discussion, the following glossary will be used:

· Job: a logical DØ job, one task from the viewpoint of the researcher

· Phase:a segment of the job that has different parallelization than the prior segment (e.g., it denotes a split or a merge of parallel tasks).

· Thread: a series of processing steps that have to run in sequence, possibly on different execution nodes

· Package: a physical DØ job (a rectangle in the diagram)

· Binary: a single executable (code or script). Could be constructed one per package, or could be chained under the control of a script (as on the rightmost package above).

The job schema is described in the next section in a skeleton form (the elements thought to be essential to scheduling). A brief discussion of how scheduling would use this database is presented after that, because this structure must ultimately be adequate for scheduling. The last section presents a set of use cases to show how to populate this database structure for typical DØ jobs. Additional use cases are solicited for this treatment.

2. Job Schema

This section contains a description of the records and data elements that would be stored in a database for a job. Many additional data elements will eventually be added to support scheduling, monitoring, accounting, and other issues.

Figure 2 A Job Structure DAG

Job Record (One per logical job)

Job ID – unique, assigned by job construction, probably includes part of researcher’s name

Originator ID (researcher)

Origination Date & Time

Priority – policies regarding priority probably need to apply at the logical job level

Hold (yes/no) – in case jobs need to be defined but not yet scheduled

Phase Record (One per phase, at least one per job, more if parallelization differs)

 Job Parent – the logical job parent

Phase ID – sequentially assigned within a job

Early-start (yes/no) – if yes, then first package in this phase may be started without waiting for all

 packages in the prior phase to complete.

Thread Record (At least one per phase. Only one if the binaries are not parallelizable)

Phase Parent – the phase parent

Thread ID – which thread within this phase, 1 to n.

Package Record (At least one per phase. This is the indivisible unit for scheduling and running)

Thread Parent – the thread parent

Package Sequence – processing order of this package within this thread.

Status – unscheduled, scheduled, launched, successful, failed, canceled

Startup Script ID – if there is a wrapper script for this package, then this ID specifies

 its ID (as it was registered in a code server database). Any such wrapper script

 would have to be platform-independent, and its name would change if it incurs

 a version change. A wrapper script is required if there are multiple binaries

 in this package, optional if there is only one. The physical job will either be this

 script or the (single) binary’s invoking script itself.

Startup Script Parameter Set – if there is a wrapper script, this element contains its input

 Parameters (typically the names of the binary’s scripts it is to run)

Node Restriction List – if the originator requires the package to run on one of a specific set

 of nodes, then this list identifies them.

Scheduled Node – the node where this packages is actually scheduled to run or did run.

Platform ID – the type of platform of the scheduled node. Each binary in this package

 must have a version form the code server for this platform.

Binary Record (At least one per package. More if binaries are chained.)

Package Parent – the package parent

Binary Sequence – processing order of this binary within this package.

Software ID – references a software database in which this ID identifies this binary (e.g. “reco”).

Software Version – specifies which DØ version of the binary. This plus the software ID specifies

 The bulk of the parameter data for the binary (extracted from the code server).

SAM Required (yes/no) – does the binary require SAM station. This, together with the Software

 ID and Version, restricts this binary to running on specific types of platforms.

CPU Requirement – a percentage from 0 to 100 that estimates how much of a CPU this binary

 Will consume during normal operation. DØ binaries are typically 99%, while tasks

 such as software purging would be typically 10-20%.

Input Parameter Set – contains all job-specific input parameters for this binary – everything that

 was not specified by the software version itself.

Input File Names – list of the any and all input files required for this binary. Each list element

 consists of:

 Base Name – the file name excluding any locators such as URL names, directories

 Locator – an object that specifies where the input file will exist at run time (e.g., a

 URL and directory, or a SAM locator)

 Size (estimated if necessary)

 Acquisition (none/self/pre-fetch) – “one” means the file is supposed to be present. “self”

 means the binary or the wrapper script will acquire this input (using SAM or

 other grid tool) st startup. “pre-fetch” means grid middleware must fetch the file

 into the cluster’s cache before launching this binary on any node of that cluster.

 Disposition – action to be taken on input file. If file already exists, a “stickier”

 disposition here will override its present retention setting.

 RETAIN INDEF – keep in cache, researcher will have to explicitly purge

 RETAIN TEMP – keep in cache but allow delete if space is needed

 DELETABLE – after binary is done, and not needed by other jobs

Output File Names – list of any and all output files form this binary. Each list element

 consists of:

 Base Name – the file name excluding any locators such as URL names, directories

 Locator – an object that specifies where the output file will exist at run time (e.g., a

 URL and directory)

 Estimated size

 Dispositions – list of actions to be taken on output file, any logical combination of:

 FORWARD – make available to downstream binary as needed.

 SAM STORE – invoke SAM station to store

 RETAIN INDEF – keep in cache, researcher will have to explicitly purge

 RETAIN TEMP – keep in cache but allow delete if space is needed

 DELETABLE – after forwarding or storing, and after no longer needed by

 downstream binary (or, a copy has been forwarded), delete it

 (unless needed by some other job)

Estimated size of work files

Estimated run time if dedicated on a “standard” platform

Estimated or Actual Start Time – using the node’s time zone

Estimate or Actual End Time – using the node’s time zone

Invoking Script – attaches the actual script to invoke this binary, supply run-line arguments, etc.

 This was obtained from the code server using software ID, version, and target platform

 after the target node was determined.

3. Scheduling Considerations

· Input File Location: When jobs are created, the actual location of input files is not a requirement (but could be included if the researcher wishes to force access to a specific copy of a file). When the location is omitted, the scheduling tasks must locate and/or replicate the files and fill in the location. This process is of course entangled with the issues of where to run the package.

· Execution Node Restriction: When jobs are created, the node-restriction list might contain one or more nodes that the researcher or the originator (or the construction software) wishes to place on the choice of node. The scheduling tasks may choose from within this list. The list may be empty, in which case the originator has imposed no restrictions. If it has one element then the node choice has been forced by job construction.

· Phases: Scheduling software must launch the packages one phase at a time, unless a phase is flagged for “early start” (which generally requires some intelligence on the part of the task itself).

· Threads: Within a phase, threads may be launched independently. The construction of threads is necessary to achieve parallelization.

· Packages: Within a thread, packages must be launched in sequence, and only after the prior package has completed successfully. A package does not have to be launched on the same node as its predecessor. A future topic is how the control software knows that the completion was successful.

· Binaries: Within a package, binaries are always launched using a script (as is now the case). I have called for a wrapper script on top of those whenever chaining is done, such as now present in Monte Carlo jobs. A future topic for discussion is how much additional intelligence to build into this wrapper script.

· Input File Access: A binary that has an input file that is flagged with “pre-fetch” requires the scheduling software itself to place the input file on the target node before launching. This could be accomplished outside the auspices of jobs, or (better) with a distinct, additional job. See Use Case VII - Explicit Input File Pre-fetch.

· Output Storage: I have assumed that the control software will perform any required SAM stores. (The output files do not necessarily have to be stored in the central SAM record.) It is also possible to place this capability into the package wrapper script.

· CPU Resource Management: The CPU-requirement percentage is intended to guide the scheduling software to prevent overloading a CPU and possibly swamping its swap-space. There is little to be gained from simultaneously running two 99% tasks on one CPU (as opposed to back-to-back), and the higher stress could lead to more failures.

· Cache Management: I have assumed that cache purging will be handled by control software, and that the location database will retain knowledge of the “stickiness” of left-over files to make proper disposition decisions.

· Output Size Estimate: The estimate for file sizes is intended to help the scheduler make better cache purging decisions. Job-construction should be able to access historical information to provide an estimate. Halfway through a binary, it is possible to make a much better prediction if the number of events completed is known.

· Run Time Estimate: The estimate for run time is intended to help in scheduling decisions. A historical database of times on a standard CPU could be accessed by job construction to predict times on any machine. Again, halfway through a binary, it is possible to make a much better prediction if the number of events completed is known.

· Possible Binary Modification: The existing DØ binaries can be used in this approach as-is, but there are several things that could be done to them to make them better grid tasks (another future topic).

· Other Databases: References to other databases have been implied in several places, for data on nodes, clusters, file locations, and other items. A definition of those databases is deferred to any future discussion of scheduling.
4. Use Cases

Case I. Run root on local cluster for data analysis.

Figure 3 Root Analysis job DAG

No parallelization is attempted, and all input files must be acquired by SAM. SAM station would have to be running on the target node. It is not the goal of the DØ grid effort to run “just like on DØmino”, but the job structure would allow it. After this job was completed, the researcher would manually access the (local) summary file to produce a histogram or similar inspection

Note that a local cluster is assumed for several reasons. First, the researcher will have better control over the input files that are likely to be re-used in the near future. Second, she must end up with direct access to the final summary file. Third, if any general node on the grid were to be used then the input files could not be flagged as “retain indef” and thus would possibly be purged before they could be re-used.

Job Record
Job ID – meyer001

Originator ID – ddmeyer@attglobal.net

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1
 Job Parent – meyer001

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – meyer001/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – meyer001/001/001

Package Sequence – 001.

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – a list of the nodes in the researcher’s local cluster.

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – meyer001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “root” in the code server database)

Software Version – xx-xx-xx

SAM Required - yes

CPU Requirement – 80%

Input Parameter Set – from researcher, arguments and parameter filenames for this execution

Input File Names – list of the N input files required for this binary. Each list element

 consists of:

 Base Name – one of the root tuple files

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition – self (the binary handles it through SAM)

 Disposition – the researcher has control over her local cluster, so was asked what to with

 the ntuple files that had to be acquired for this job. She could have answered

 retain temp, retain indef, or deletable. Probably retain indef for a local cache.

Output File Names – list of any and all output files form this binary. Each list element

 consists of:

 Base Name – a summary file from which a histogram can be produced

Locator – not yet assigned

 Estimated Size – ask researcher, say 500KB

 Estimated run time – possibly from history

 Dispositions – retain indefinitely

Estimated size of work files – 10KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke root

Case II. Run Root with parallelization enabled.

Figure 4 Parallelized Root Analysis Use Case DAG

The researcher constructs a more complicated job (and may have to go to extra effort to make a summary-output and a concatenation script, unless the job constructsion can be made intelligent enough to do that).

The job creates a set of intermediate summary files and then concatenates them into one summary file for local inspection. SAM is asked to acquire each original input file, so SAM station would have to be running on each node. After the concatenation phase was completed, the researcher would manually access the summary file to produce histograms or further inspection of the summary. Small summary files are imperative to minimize bandwidth for forwarding.

Job Record
Job ID – meyer002

Originator ID – ddmeyer@attglobal.net

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1 (original root analysis)
 Job Parent – meyer001

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – meyer001/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – meyer001/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – empty (no restrictions)

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – meyer001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “root” in the code server database)

Software Version – xx-xx-xx

SAM Required - yes

CPU Requirement – 80%

Input Parameter Set – from researcher, arguments and parameter filenames for this execution

 Same for all binaries in phase 1)

Input File Names – list with one element consisting of:

 Base Name – original ntuple input file 1

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition – self (the binary handles it through SAM)

 Disposition – probably retain temp (researcher has no control over general grid nodes)

Output File Names – list with one element consisting of

 Base Name – summary file 1

Locator – not yet assigned

 Estimated Size – ask researcher, say 5KB

 Estimated run time – possibly from history

 Dispositions – forward, deletable

Estimated size of work files – 10KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke root

Thread Records 2 thru n for Phase 1
If there are n input files, then there will be n threads each with one package and one. One job should be able to handle more than one file.).The rest are identical to the thread-1 records above except that the input and output file base names are different.

Phase Record 2 (concatenation)

Job Parent – meyer001

Phase ID – 002

Early-start – no

Thread Record 1 of Phase 2
Phase Parent – meyer001/002

Thread ID – 001

Package Record 1 of Thread 1 Phase 2
Thread Parent – meyer001/002/001

Package Sequence – 001

Status - unscheduled.

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – a list of local nodes local to the researcher (local cluster)

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 2

 Package Parent – meyer001/002/001/001

 Binary Sequence - 001

Software ID – xxx (references “root” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 1% (we are just concatenating small files)

Input Parameter Set – from researcher, arguments and parameter filenames to concatenate

Input File Names – list of n small summary files:

 Base Name – small summary file i

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition – grid. The grid middleware must forward the file from the original

 processing node to the final node.

 Disposition: deletable (they are concatenated into final output)

Output File Names – list with one element consisting of

 Base Name – final summary file

Locator – not yet assigned

 Estimated Size – given 100 5KB files, it would be 500KB

 Estimated run time – possibly from history

 Dispositions – retain indefinitely

Estimated size of work files – 1KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke root

Note: In this case, I have assumed no intelligent wrappers around any of the scripts. Therefore, the final concatenation phase requires that the grid middleware (probably SAM as invoked by the scheduler) pre-fetch the small summary files from each original node to the final target node before starting the final phase. This final concatenation could not begin until all files are present (I assume root concatenation would normally fail if configured to expect 100 files but only 90 were present). With a bit of extra work in coding an intelligent wrapper script around the final concatenation phase, that phase could be started immediately (Early-start = yes). It could wait for input files to arrive, produce a partial result file as they did, and would simply be cancelled if not all phase-one tasks were successful. This would allow the researcher to peek at the preliminary results, and to proceed with less than 100% of the input processed.

Similarly, a wrapper around each of the phase-one packages would allow grid-FTP to be used to acquire files as needed, thus SAM station would not then be a requirement for the processing nodes of that phase. (If SAM were the ultimate source of a file, the wrapper would first ask SAM to cache the file, then grid-FTP it to the processing node).

Case III. Monte Carlo Production on farm cluster.

Figure 5 MC Production use case DAG
A “farm” cluster is assumed so that the large min-bias dataset need not be propagated throughout the grid, maintaining the current min-bias addition system. Therefore, all packages have open access to all files in the cluster’s cache through NFS or something equivalent within its own local network.

Also, I have assumed a wrapper script around the 4-binary chains to edit each result, and to forward to SAM. SAM-store capability is required on each of the nodes in the farm cluster.

The job database for the generation phase is likely to bepopulated using an automatic front-end, such as the proposed Web-based Request Submission function. “mc_runjob” would be invoked to create the scripts for both phases.

Job Record
Job ID – farm001

Originator ID – farmer@hisemail

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1 (pythia)
 Job Parent – farm001

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – farm001/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – farm001/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – the list of nodes in the farm cluster

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – farm001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “pythia” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 99%

Input Parameter Set – from original specifications, arguments and parameter filenames for pythia

Input File Names – empty

Output File Names – list with one element consisting of

 Base Name – a gen file

Locator – not yet assigned

 Estimated Size – use history to estimate, say 100MB

 Estimated run time – possibly from history

 Dispositions – forward, deletable

Estimated size of work files – 5KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke pythia

Phase Record 2 (dØgstar/dØsim/dØreco/recoA)

Job Parent – farm001

Phase ID – 002

Early-start – no

Thread Record 1 of Phase 2
Phase Parent – farm001/002

Thread ID – 001

Package Record 1 of Phase 2 Thread 1
Thread Parent – farm001/002/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – a named wrapper script to run & edit 4 binaries

Startup Script Parameter Set – the startup commands for each binary

Node Restriction List – the list of nodes in the farm cluster

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 2 (dogstar)

 Package Parent – farm001/002/001/001

 Binary Sequence - 001

Software ID – xxx (references “dØgstar” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 100%

Input Parameter Set – from farm config files via mc_runjob, restricted to the first 500 events

Input File Names – list with one element

 Base Name – the gen file

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition - none (we assume NFS makes it available locally)

 Disposition: deletable (after all phase-2 threads have used it)

Output File Names – list with one element consisting of

 Base Name – a DØg file

Locator – not yet assigned

 Estimated Size – use history to estimate, say 100MB

 Estimated run time – possibly from history

 Dispositions – deletable

Estimated size of work files – 100KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke DØgstar, from mc_runjob

Binary Record 2 of of Package 1 Thread 1 Phase 2 (DØsim)

 Package Parent – farm001/002/001/001

 Binary Sequence - 002

Software ID – xxx (references “DØsim” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 85% (sometimes waits on minbias access)

Input Parameter Set – from farm config files via mc_runjob

Input File Names – list with one element

 Base Name – the DØgstar file

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition - none (we assume NFS makes it available locally)

 Disposition: not applicable since not acquired here

Output File Names – list with one element consisting of

 Base Name – a sim file

Locator – not yet assigned

 Estimated Size – use history to estimate, say 800MB

 Estimated run time – possibly from history

 Dispositions – deletable

Estimated size of work files – 100KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke DØsim, from mc_runjob

Binary Record 3 of of Package 1 Thread 1 Phase 2 (DØreco)

 Package Parent – farm001/002/001/001

 Binary Sequence - 003

Software ID – xxx (references “DØreco” in the code server database)

Software Version – xx-xx-xx

SAM Required – yes (for storing)

CPU Requirement – 100%

Input Parameter Set – from farm config files via mc_runjob

Input File Names – list with one element

 Base Name – the sim file

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition - none (we assume NFS makes it available locally)

 Disposition: not applicable since not acquired here

Output File Names – list with one element consisting of

 Base Name – a reco file

Locator – not yet assigned

 Estimated Size – use history to estimate, say 800MB

 Estimated run time – possibly from history

 Dispositions – deletable, sam store

Estimated size of work files – 100KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke DØreco, from mc_runjob

Binary Record 4 of of Package 1 Thread 1 Phase 2 (recoA)

 Package Parent – farm001/002/001/001

 Binary Sequence - 004

Software ID – xxx (references “recoanalyze” in the code server database)

Software Version – xx-xx-xx

SAM Required – yes (for storing)

CPU Requirement – 100%

Input Parameter Set – from farm config files via mc_runjob

Input File Names – list with one element

 Base Name – the reco file

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition - none (we assume NFS makes it available locally)

 Disposition: not applicable since not acquired here

Output File Names – list with one element consisting of

 Base Name – a root file

Locator – not yet assigned

 Estimated Size – use history to estimate, say 400MB

 Estimated run time – possibly from history

 Dispositions – deletable, sam store

 Estimated size of work files – 100KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke recoanalyze, from mc_runjob

Thread Records 2 thru 20 for Phase 2

If the farmer split of the 10,000-event gen file into segments of 500 events, there are 20 independent threads in phase two. The remaining 19 threads are identical to the first one, except that the DØgstar parameter set references a different subsection of the gen file, and the input/output files have different names (via of mc_runjob).

Case IV. Re-Reconstruction / Re-Recoanalysis

Figure 6 Re-reconstruction with Re-Recoanalysis use case

Re-processing of data must be made possible on the grid, perhaps using specific clusters to better resolve database issues. One would likely construct many reprocessing jobs, each of manageable size with a multiple threads.

Job Record
Job ID – rereco002

Originator ID – rereco@fnal.gov

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1
 Job Parent – rereco001

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – rereco001/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – rereco001/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – a wrapper script to invoke both reco and recoa

Startup Script Parameter Set – the specifics for invoking the two binaries

Node Restriction List – omitted, or (more likely) the nodes of a re-reco cluster

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – rereco001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “reco” in the code server database)

Software Version – xx-xx-xx

SAM Required - yes

CPU Requirement – 99%

Input Parameter Set – from researcher, arguments and parameter filenames for this execution

Input File Names – list with one element consisting of:

 Base Name – raw input file 1

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition – pre-fetch

 Disposition – deletable

Output File Names – list with one element consisting of

 Base Name – reco file 1

Locator – not yet assigned

 Estimated Size – from history

 Estimated run time –from history

 Dispositions – store sam, then either deletable or retain temp

Estimated size of work files – 10KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke reco

Binary Record 2 of Package 1 Thread 1 Phase 1

 Package Parent – rereco001/001/001/001

 Binary Sequence - 002

Software ID – xxx (references “recoA” in the code server database)

Software Version – xx-xx-xx

SAM Required - yes

CPU Requirement – 99%

Input Parameter Set – from researcher, arguments and parameter filenames for this execution

Input File Names – list with one element consisting of:

 Base Name – reco input file 1

 Locator – not yet assigned – will likely be in the local work of the node

 Size – not yet assigned

 Acquisition – none (present after reco)

 Disposition – deletable

Output File Names – list with one element consisting of

 Base Name – root file 1

Locator – not yet assigned

 Estimated Size – from history

 Estimated run time –from history

 Dispositions – store sam, then either deletable or retain temp

Estimated size of work files – 10KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke recoA

Thread Records 2 thru n for Phase 1

If there are n input files, then there will be n threads each with one package and one binary. The rest are identical to the thread-1 records above except that the input and output file base names are different.

Case V. Explicit Software Pre-fetch

 Independent threads on target nodes

Figure 7 Software Pre-Fetch DAG
There are multiple approaches to solving the problem of having the necessary software on a general grid node. This case shows an explicit approach: management or control software determines where software is to be placed, and a package with a special script or binary is launched on one node of each such cluster to pull the software version into that cache.

 Note that once this script has been coded for this explicit task, it would be straightforward to build it into every package (using a wrapper script), and thus software pre-fetch becomes automatic and not a routine grid management task.

Note also that frequently the software needed at a cluster is simply a new version of software that is already present. In such a case, programs exist (RTPatch for example) that can take advantage of the fact that most of the new version is not different, and can send small “patch” files to the target cluster to generate the new version from the old, with an immense savings in bandwidth.

Job Record
Job ID – mgt003

Originator ID – management@fnal.gov

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1
 Job Parent – mgt003

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – mgt003/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – mgt003/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – contains one entry, a representative node on the target cluster where

 the origination software decided to place the new software.

Scheduled Node – not yet assigned

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – mgt003/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “pull script” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 10% (much higher if the patch process is used)

Input Parameter Set – from originator, the software ID and version to be pulled

Input File Names – empty list

Output File Names – empty list

Estimated size of work files – 0KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke the pull

Thread Records 2 thru n for Phase 1

If there are n different clusters that could have run this software, then there will be n threads each with one package and one binary. The rest are identical to the thread-1 records above except that the target node is different.

Case VI. Explicit Software Purge

 Independent threads on target nodes

Figure 8 Software Purge DAG

When a software version becomes obsolete, a special binary should be launched to all nodes on the grid to locate and removed the obsolete code and parameter data. This can be done by iterating over the clusters and constructing a multi-threaded job to do the purges. Such a task would typically be initiated by grid management, using scripts or codes to create the job structure specified below.

Job Record
Job ID – mgt001

Originator ID – gridmanagement@fnal.gov

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1
 Job Parent – mgt001

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – mgt001/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – mgt001/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – a list with one entry: any node in the grid, one per cluster

Scheduled Node – not yet assigned, but will have to be the one in the above list

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – mgt001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references “seek and purge” in the code server database)

Software Version – xx-xx-xx

SAM Required - no

CPU Requirement – 10%

Input Parameter Set – the software ID and version to purge

Input File Names – empty list

Output File Names – empty list

Estimated size of work files – 0KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke the purge binary

Thread/Package/Binary Records 2 thru n

If there are n different clusters that could have run this software, then there will be n threads each with one package and one binary. The rest are identical to the thread-1 records above except that the target node is different.

Case VII. Explicit Input File Pre-fetch

Figure 9 Input File Pre-fetch DAG
In the event that a researcher, or the grid management, or even control software wishes to pre-fetch data files to a target cluster, various approaches could be taken. Middleware could do this without using a job, but it might be cleaner to schedule and launch a job to accomplish this. In this case, a job could be constructed with a binary that is just a script to acquire the file (e.g., invoke SAM from the target cluster, or invoke grid FTP directly). The persistence of the acquired file is defined during this process. Pre-fetch implies that the originator is specifying the target clusters explicitly. (If control software is the originator, then it would have arrived at the target cluster after scheduling an earlier job and finding a need to pre-fetch).

It is also possible to build this capability into the package itself, using a package wrapper, in which case no explicit jobs are needed (but the issue of acquisition latency arises).

Job Record
Job ID – mgt002

Originator ID – gridmanagement@fnal.gov

Origination Date & Time – 03/05/2001/1400

Priority – mid level

Hold - no

Phase Record 1
 Job Parent – mgt002

Phase ID – 001

Early-start – not applicable to first phase

Thread Record 1 of Phase 1
Phase Parent – mgt002/001

Thread ID – 001

Package Record 1 of Thread 1 Phase 1
Thread Parent – mgt002/001/001

Package Sequence – 001

Status - unscheduled

Startup Script ID – omitted

Startup Script Parameter Set – omitted

Node Restriction List – a list with one entry: a representative node in the target cluster

Scheduled Node – not yet assigned, but will have to be the one in the above list

Platform ID – not yet assigned

Binary Record 1 of Package 1 Thread 1 Phase 1

 Package Parent – mgt001/001/001/001

 Binary Sequence - 001

Software ID – xxx (references a “fetch” script)

Software Version – xx-xx-xx, or null since it is likely version-independent

SAM Required – yes if SAM is to be invoked, no if grid FTP is to be invoked

CPU Requirement – 10%

Input Parameter Set – null

Input File Names – list with one element

 Base Name – the file to pre-fetch

 Locator – not yet assigned

 Size – not yet assigned

 Acquisition - self

 Disposition: depends on the originator. Researcher and management would likely be

 doing a retain-indef acquisition. Control software would take its cue from the

 original job that needed the file to be pre-fetched.

Output File Names – empty list

Estimated size of work files – 0KB

Estimated run time - from history

Estimated or Actual Start Time – not yet assigned

Estimate or Actual End Time – not yet assigned

Invoking Script – attaches the actual script to invoke the acquisition script

Thread Records 2 thru n

If there are n files to be pre-fetched, then there will be n threads each with one package and one binary. The rest are identical to the thread-1 records above except that the target node and input file name are different.

B1 B2

JOB STRUCTURE

JOB

PACKAGE

PHASE

BINARY

THREAD

Pull script

Pull script

reco

reco

Raw

Reco RecoA

Raw

Reco RecoA

Input File

Acquire Script

Input File

Acquire Script

Seek and Purge Bin.

Seek and Purge Bin.

.root

recoA

d0gstar/d0sim/d0reco/recoA on 500 events

.root

recoA

d0gstar/d0sim/d0reco/recoA on 500 events

Gen file, 10,000 events

pythia

Sn

S2

S1

Summ n

Summ 2

Summ 1

root

root

root

Input n

Root concat

Input 2

Summary

Input 1

Summary

Input n

Input 2

Input 1

Root

.root

.root

1
8

