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ABSTRACT 

 

GRID TO FABRIC INTERFACE FOR JOB MANAGEMENT IN SAM-GRID, 

A DISTRIBUTED DATA HANDLING AND JOB MANAGEMENT  

SYSTEM FOR HIGH ENERGY PHYSICS EXPERIMENTS 

 

Publication No. ______ 

 

Aditya P. Nishandar, M.S. 

 

The University of Texas at Arlington, 2004 

 

Supervising Professor:  David Levine  

Modern science and engineering are increasingly done in a collaborative fashion. These 

collaborations are multi-institutional, multi-disciplinary and geographically distributed 

environments. A computational Grid is a hardware and software infrastructure that 

provides dependable, consistent, pervasive and inexpensive access to high end 

computational capabilities. An effective computational Grid assumes the existence of a 

correctly operating large scale Grid fabric. The Grid fabric is the collection of physical 

and logical resources such as computing and storage facilities, file systems and high 

performance networks to which shared access is mediated by Grid protocols. A number 

of middleware implementations have been proposed and implemented that interface the 

user applications executing on the Grid infrastructure to the fabric, but majority of them 

assume an overly simplistic view and fail to adapt to shortcomings in the fabric. This 

thesis presents the challenges and application imposed complexities of interfacing the 
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standard Grid middleware to the underlying fabric in SAM-Grid, a software 

infrastructure that addresses the globally distributed computing needs of the Run II 

experiments at Fermilab. 
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CHAPTER I 

INTRODUCTION 

The history of mankind shows that the way we live our lives has been largely 

driven by great innovations. Humans have always found novel ways of meeting 

requirements. Whether the advent of the wheel or the personal computer, the way these 

revolutionizing tools have been used has a profound impact on the human society.  The 

thirst for knowledge has led us to a better understanding of the environment we live in. 

Understanding the fundamental nature of matter is the main goal of the high energy 

physics community. Particle physicists try to understand the nature of matter that 

surrounds us at the smallest scales possible. By studying the particles, physicists learn 

about the elementary building blocks and fundamental forces that determine the nature 

of matter and the ultimate structure and evolution of the universe. The answers to some 

of the most profound problems have been discovered by conducting high energy 

physics experiments. These experiments generate huge amount of data in which the 

answer to many fundamental questions might lie. To analyze this unprecedented amount 

of data, huge amount of computational and storage resources are required. Over the past 

decade, the field of Grid Computing has enabled distributed computing infrastructures 

called Grids capable of satisfying the unprecedented requirements of scientific and 

engineering collaborations by providing coordinated, shared access to geographically 

distributed resources. The heterogeneity of the resources, coupled with the lack of 
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administrative control of the user over the resources make enabling Grids challenging. 

These resources constitute the Grid Fabric [2]. “Fabric” refers to a “layer” of Grid 

components (underneath applications, tools, and middleware). The Fabric encompasses 

local resource managers, operating systems, queuing systems, device drivers, libraries 

and networked resources such as compute and storage resources, data sources. Grid 

applications use Grid tools and middleware components to interact with the fabric. 

Middleware is a term used to describe a logical layer of software that facilitates 

distributed applications to access and utilize the resources in a way that is transparent to 

the user and the application. Middleware provides consistency, security and privacy. 

The work presented in this thesis addresses the challenges and application imposed 

complexities of interfacing the fabric to the Grid middleware in context of SAM-Grid 

[3], a software infrastructure that addresses the globally distributed computing needs of 

the Run II high energy physics experiments at Fermi National Accelerator Laboratory 

[78] .  

It should be noted that the solutions proposed in this thesis have resulted due to 

the hard work and efforts of the SAM-Grid team. The author does not claim individual 

credit for the proposed solutions and believes that the SAM-Grid team at Fermilab 

along with the collaborators from various participating institutions should be credited 

for the success of the SAM-Grid infrastructure. In particular Igor Terekhov, Gabriele 

Gargozlio and Andrew Baranowski along with the past students from the Computer 

Science and Engineering department at The University of Texas at Arlington stationed 

at Fermilab have developed the initial prototypes for the Grid-Fabric interface for job 
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management. Drew Meyer from The University of Texas at Arlington helped with the 

initial implementation of merging jobs. The author was involved in design and 

implementation of the Grid-Fabric interface in a production environment. This involved 

among many other things, the implementation of SAM-Grid job managers having 

application specific plugins, the sandboxing mechanism (described in Chapter 5) and 

the deployment of the Grid-Fabric interface at different execution sites around the 

world. The major content of this thesis is derived from publications by the SAM-Grid 

team at numerous international conferences [6] [5] [3]. The reader is highly encouraged 

to visit the reference section for a comprehensive list of publications. 

1.1 Grids and high energy physics (HEP) experiments 

The Grid has been described as a distributed computing infrastructure for 

coordinated resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations [2]. A virtual organization (VO) is a set of individuals and/or institutions 

with some common purpose or interest and that need to share their resources to further 

their objectives [2].  High energy physics (HEP) experiment collaborations have been 

large and international for many years. The World Wide Web [9], initially developed at 

CERN [52] has provided an efficient means for geographically separated collaborators 

(as well as the rest of the world) to communicate among each other for over a decade. 

These collaborations are typically geographically distributed, dynamic in nature and 

multi-institutional involving large number of collaborators (500 physicists for D∅  [46] 

and 1000 each for CMS [48] and ATLAS [49]). Physicists are typically part of multiple 

collaborations and hence members of multiple virtual organizations. The data collected 
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from experiments are becoming orders of magnitude more voluminous. Petabytes are 

expected [50] per year. Institutions collaborating on these experiments typically want 

the computing resources that they buy to remain under their administrative control. 

Participating institutions requiring strict (Kerberos [53] at Fermilab) and varied 

authentication methods for accessing their computing resources. These characteristics 

make computational Grids [2] an ideal infrastructure for satisfying the computing 

requirements of the HEP community. In the rest of the thesis the abbreviation HEP 

refers to High Energy and Nuclear Physics. 

1.2 Need for Grid middleware – Fabric interface 

Middleware is the software that abstracts the distributed resources for the 

applications and users. More specifically, the term middleware refers to an evolving 

layer of services that resides between the network and more traditional applications for 

managing security, access and information exchange to 

1) Let scientists, engineers, and educators transparently use and share distributed 

resources, such as computers, data, networks, and instruments,  

2) Develop effective collaboration and communications tools such as Grid 

technologies, desktop video, and other advanced services to expedite research 

and education, and  

3) Develop a working architecture and approach that can be extended to the larger 

set of Internet and network users [54].  

The Grid Fabric layer provides the resources to which shared access is mediated by 

Grid protocols [2]. A resource need not be a physical entity like a compute node. It can 



 

 5

be a logical entity like a distributed file system, or a Condor [7] pool. Most of the 

institutions of the HEP collaborations have local resources at their disposal. 

Traditionally these resources have been used by the HEP community in an isolated 

manner and under local administrative policies. The existing fabric is configured to 

satisfy the needs of local users and safeguard the resources by having a myriad of 

security mechanisms to control access to the local resources. Interfacing existing fabric 

to the Grid middleware is challenging, especially when the fabric is deficient in 

providing services that are required for the efficient and complete operation of the Grid. 

Middleware implementations like the Globus®1 Toolkit [55] try to compensate for the 

deficiencies in the fabric services by incorporating these services in the middleware. A 

service is an entity that provides some capability to its clients by exchanging messages. 

A service is defined by identifying some sequence of messages that cause a service to 

perform some operation. By encapsulating operations in terms of message exchanges, 

service orientation isolates the users from details of location of the service and how the 

service is implemented. The Grid Resource Allocation manager (GRAM) [10] is the 

component in the Globus® Toolkit responsible for managing Grid resources. GRAM is 

a basic library service that provides capabilities to do remote-submission job start up. 

The user application utilizes the Grid fabric via the GRAM interface. The current 

GRAM implementation has very limited functionality, making it difficult to deploy 

complex data and compute intensive applications. With respect to Grid computing in 

general, "application" refers to a "layer" of Grid components (above infrastructure and 

                                                
1 ® Globus Toolkit is a registered trademark held by the University of Chicago. 
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resources). An application is a name used to identify a set of software that will execute 

computational jobs, manage data (access, store, read...) and has many attributes. Any 

application when invoked (executed) includes information that allows tracing back to 

the individual who is responsible for the execution.  

1.3 Summary of work and thesis outline 

 The work presented in this thesis highlights the need for a Grid-Fabric interface 

and discusses an implementation in the context of SAM-Grid, an infrastructure 

currently deployed for satisfying the computational needs of the Run-II (D∅  and CDF 

[47]) experiments at Fermilab. The main focus of this thesis is on the job management 

aspect of the interface Grid-Fabric interface. In the rest of the thesis, the term SAM-

Grids refers to the SAM-Grid infrastructure as described in Chapter 3. The Grid-Fabric 

interface refers to the layer of software (as described in Chapter 2) between the core 

Grid middleware and the fabric layer. The rest of the thesis is organized as follows. 

Chapter 2 provides a brief background on Grid computing. It briefly describes 

the evolution of Grid computing and various interpretations of the Grid concept.  

Differences between conventional distributed computing environments and the Grid 

computing environment have been highlighted and an effort has been made to 

distinguish between various types of Grids, difference between computational Grids and 

peer to peer Grids. It concludes with a brief description of the DØ and CDF [47] 

experiments at Fermilab and the role of SAM-Grid in satisfying the computing and 

storage needs of these two HEP experiments.  
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Chapter 3 gives the reader a brief overview of the SAM-Grid architecture. The 

three main components (job handling, data handling and information and management) 

are described. Chapter 4 states the problem and the goal of this thesis. Chapter 5 

proposes a solution within the SAM-Grid framework. Chapter 6 discusses some results, 

particularly in the increased efficiency of SAM-Grid due to the Grid-Fabric interface 

and the occurrence of the “Black Hole Effect”. This thesis concludes with Chapter 7 

highlighting the contributions of this thesis. 

This work was partially supported by the Department of Computer Science and 

Engineering, Department of Physics at the University of Texas Arlington, TX, USA; 

and Fermi National Accelerator Laboratory, Batavia, IL, USA, FNAL-PO-546763 and 

conducted with the United States Department of Energy SciDAC program, the Particle 

Physics Data Grid (PPDG), and the Grid for UK Particle Physics (GridPP). 
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CHAPTER II 

BACKGROUND 

2.1 A brief introduction to Grid computing 

In today’s daily life, electric power has pervaded almost every aspect of modern 

human life. It is so ubiquitous that we hardly notice it or ponder about its source and 

method of distribution. In fact its presence is felt only by its absence. When designing 

and developing a new electric device, the device just has to adhere to the required 

voltage and current specifications, and not be concerned about the origin of electric 

power. The device essentially can use a defined interface (electric socket) and tap into 

the electric Grid.  

With the increase in network speeds and proliferation of the personal computer, 

computer scientists started exploring the idea of a computational Grid. The arrival of the 

personal computers in 1980s, sophistication and advances in chip manufacturing 

technologies, increase in high speed networks, emergence of new paradigms for 

distributed computing and the ever increasing need to communicate and share 

information made designing computational Grids the next logical step in the evolution 

of distributed computing. Emerging computational Grids have enabled geographically 

distributed collaboration of scientists to collaborate on a previously unimagined scale. 

Harnessing idle compute cycle when people in different time zones are not using them, 

peer to peer networks for data sharing, distributed resource sharing between different 
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high energy physics experiments are some of the applications domains for different 

types of Grids.  

In this chapter a brief history of Grid computing is presented. Differences 

between Grid environments and other related distributed environments are highlighted; 

different views on what Grids really mean, followed by a brief discussion of Grid 

computing in the context of the Run-II experiments (D∅  and CDF) at Fermilab is 

presented.  This chapter is not meant to be an exhaustive description of Grid 

technologies or the history of Grid computing. Rather the attempt is to provide the 

reader with a brief description of this emerging field. The reader is highly encouraged to 

visit the references for a more thorough understanding of different concepts. The author 

also believes that Grid computing is in an evolutionary stage. As most of the 

technologies in the field of computer science, contemporary Grid technologies may be 

soon outdated. The emphasis of this chapter is not on specific technologies or tools, but 

on the underlying concepts.  

2.2 Evolution of Grid computing 

Grids are large scale shared distributed systems. Distributed computational 

systems consist of diverse end systems. These end systems typically consist of 

computing elements, computer systems like CPU and memory, storage elements like 

disks, NAS, tapes etc, and connected via high speed networks [1]. During the last three 

and a half decades the number of transistors per chip has increased by six orders of 

magnitude as shown in figure 2.1. Gordon Moore [58] made a famous observation in 

1965 regarding the number of transistors that can be fabricated on a chip. 
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Transistor = 20 x 2 (yr-1965) / 1. 5. 

This popular observation by is termed as Moore’s law.  

 

Figure 2.1 Moore’s law (Source [58]) 

 

Moore observed an exponential growth in the number of transistors per 

integrated circuit and predicted that this trend would continue. According to the 

formula, at present the capacity (number of transistors per chip) of a single chip doubles 

every 18 months. This is highlighted from the fact that a personal computer’ s 

processing power has gone from 100,000 IPS in 1975 to 1000 MIPS in 2000 [1]. In 

terms of quantity, approximately 100 million personal computers are produced per year. 

This has resulted in geometric decrease in system cost performance [1]. Large 

quantitative change will push computational capability, resulting in large qualitative 
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change.  The storage technologies have shown significant acceleration in terms of 

capacity. [1] States that between 1970 and 1988 there was a steady increase of 29% in 

the areal (bits per unit area) density of storage devices, and in recent years the increase 

is almost 60%. A personal computer in 2001 is as fast as a supercomputer of 1990 [29]. 

Personal computers now ship with up to 100 gigabytes (GB) of storage, as much as an 

entire 1990 supercomputer center [29]. 

Xerox PARC [59] estimates that a $100 computer in 2022 will have the 

capability of 500,000 MIPS (million instructions/sec), 1 terabyte of RAM, and 2 

terabytes of disk. Probably the most important aspect from distributed point of view is 

the exponential increase in the communication performance. According to a recent 

article in ZD-Net [11] [79], Gartner [66] analysts recently released a list of 10 

predictions for enterprise businesses. The predictions cover technology, economics, and 

social boundaries that will morph during the next eight years.  One of the predictions is 

that bandwidth is becoming more cost-effective than computing. Network capacity will 

increase faster than computing, memory, and storage capacity to produce a significant 

shift in the relative cost of remote vs. local computing. Cheap and plentiful bandwidth 

will catalyze a move toward more centralized networks services, using Grid computing 

models and thin clients.  This is based on the fact that optical technologies are growing 

at a more rapid rate than processors (silicon) or memory. Figure 1.2 below, derived 

from [1] highlights these trends in networking and computing technologies.  
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Figure 2.2 Major milestones in networking and computing technologies (Source: [1]). 

 

One important contribution that computational Grids can make is that they can 

accelerate the deployment of high bandwidth communication infrastructure, because 

doing so enhances the value of computational elements [1].  Thus the advances in 

computational, storage and communication technologies coupled with the increasing 

need of modern scientific, engineering and business applications have given the rise to 

the concept of computational Grids.  

2.3 Definitions of Grid Computing 

Grid technologies and architectures have proliferated significantly in the past 

couple of years. The number of academic Grids has increased approximately six times 

in past couple of years, and the trend is ongoing. This section describes the essential 

characteristics of Grids, and highlights the differences between traditional distributed 
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computing environments and the more recent peer to peer computing. According to 

Buyya [12], the four main aspects that characterize a Grid are  

1) Multiple administrative domains and autonomy. Grid resources are 

geographically distributed across multiple administrative domains and owned by 

different organizations. The autonomy of resource owners needs to be honored 

along with their local resource management and usage policies. 

2) Heterogeneity. A Grid involves a multiplicity of resources that are 

heterogeneous in nature and will encompass a vast range of technologies. 

3) Scalability. A Grid might grow from a few integrated resources to millions. This 

raises the problem of potential performance degradation as the size of Grids 

increases. Consequently, applications that require a large number of 

geographically located resources must be designed to be latency and bandwidth 

tolerant. 

4) Dynamicity or adaptability. In a Grid, resource failure is the rule rather than the 

exception. In fact, with so many resources in a Grid, the probability of some 

resource failing is high. Resource managers or applications must tailor their 

behavior dynamically and use the available resources and services efficiently 

and effectively. 

Resource sharing is the core concept of Grid computing, but there is less agreement 

on issues such as, unique characteristics of Grids, the functionalities that Grid support, 

programming model suitable for Grid computing or even abstractions to model and 

represent Grids [13].  Many definitions of Grids have emerged as different prototypes 
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were developed and deployed. Grids may be viewed from the utility perspective, where 

the consumers obtain resources from utility providers or from a resource sharing 

perspective as mentioned by [2]. Most of the scientific Grids, including SAM-Grid 

adhere to the resource sharing perspective and utilize the Globus® Toolkit developed at 

Argonne National Laboratory [57] and ISI [56] as their core middleware. Another 

significant view regarding the Grid is Grid as a high-performance distributed 

environment. Some popular definitions for Grids are 

1) “A flexible, secure, coordinated resource sharing among dynamic collection of 

individuals, institutions and resources” [2] 

2) “A single seamless computational environment in which cycles, communication, 

data are shared and in which the workstation across the continent is no less than 

the one down the hall” [41] 

3) “Grid is a type of parallel and distributed system that enables the sharing, 

selection, and aggregation of geographically distributed "autonomous" resources 

dynamically at runtime depending on their availability, capability, performance, 

cost, and users' quality-of-service requirements.” [80] 

4) “A wide area environment that transparently consists of personal computers, 

workstations, graphic rendering engines, supercomputers and non traditional 

devices: e.g. TVs, toasters, etc.” [39] 

5) “Grid computing involves the distribution of computing resources among 

geographically separated sites (creating a "Grid" of resources), all of which are 



 

 15

configured with specialized software for routing jobs, authenticating users, 

monitoring resources, and so on [50].  

The natural question that arises is “What makes Grids different from traditional 

distributed environments?” Would sharing the printer on the network, networked file 

systems and utilizing idle cycles in a network of workstation constitute Grid 

computing? Next section describes the operational characteristics of a Grid 

infrastructure and highlights the aspects that make Grids unique from traditional 

distributed environments. The literature resource for this and the next section is derived 

from [13]. 

2.4 Grids and traditional distributed systems 

The definitions described in the previous section focus on how a Grid system 

can be constructed, i.e. the components, layers, protocols and interfaces to be provided 

by the Grid system are described. Buyya and Chetty [33] describe computational Grids 

as an extension of the scalable computing concept: Internet-based networks of 

geographically distributed computing resources that scientist can share, select from, and 

aggregate to solve large scale problems.  The fundamental differences between 

traditional distributed systems like PVM, MPICH etc. and Grid systems lie in the 

semantics as shown in Table 1.1. [80] Highlight the differences between clusters and 

Grids from a resource management perspective. The key distinction between clusters 

and Grids is mainly in the way resources are managed. In case of clusters, the resource 

allocation is performed by a centralized resource manager and all nodes cooperatively 

work together as a single unified resource. In case of Grids, each node (a Grid node can 



 

 16

be thought as an execution site) has its own resource manager and don't aim for 

providing a single system view. [81] Provide a comparison between Grid computing 

and peer to peer computing.  

 
Table 2.1 Comparison of conventional distributed environments and Grids 

(Source:  [13])  
 

Conventional distributed 
environments 

 

 
Grids 

 
A virtual pool of computational 

nodes. 
 

 
A virtual pool of resources. 

 
A user has access (credential) to all 

the nodes in the pool. 
 

 
A user has access to the pool but typically 
does not have access to individual nodes. 

 
 

Access to a node means access to 
all resources on the node. 

 

 
Access to a resource may be restricted. 

 
The user is aware of the 

capabilities and features of the 
nodes. 

 

 
The user has little or no knowledge about 
each resource. 

 
Nodes belong to a single trust 

domain. 
 

 
Resources span multiple trust domains. 

   

The Grids focus on the user [14]. This is perhaps the most important, and yet the 

most subtle, difference. Previous systems were developed for and by the resource owner 

in order to maximize utilization and throughput. In Grid computing, the specific 

machines that are used to execute an application are chosen from the user's point of 
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view, maximizing the performance of that application, regardless of the effect on the 

system as a whole. It is these differences that make the Grid a more usable system than 

its predecessors. Figure 2.3 illustrates a layered Grid architecture. 

 

Figure 2.3 A layered architecture for computational Grids and related technology ([34]). 

 

Throughout this thesis when Grids are mentioned, it implies a virtual 

organization specific distributed infrastructure that distributes compute resources among 

geographically separated sites, all of which are configured with specialized software for 

routing jobs, authenticating users and monitoring resources.  
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2.5 High energy physics and Grid computing 

Particle physics laboratories and universities around the world are working to 

create a global data Grid, a new technology with the potential to put the power of the 

world's computing capacity at the fingertips of everyone with a computer. Grid 

technology pools computing power over the Internet, linking and managing global 

computing resources for solving the fantastically challenging computer problems of 

particle physics research. It allows physicists to access worldwide distributed 

computing resources from their desktops as if they were local [73]. Professor Steve 

Lloyd, Chair of the UK Particle Physics Grid, mentioned that, “Individual scientists 

using the Grid won't need to know where the data is held or which machines are running 

their programs. So, whereas a PC on the web provides information or access to services, 

such as banking or shopping, a PC on the Grid offers its computing power and storage” 

[43] . 

The study of the fundamental particles at the highest energies depends on huge 

devices called particle accelerators. Fermilab’s four-mile Tevatron, the world's highest-

energy particle accelerator to date, can reach an energy level of 0.980 trillion electron 

volts (TeV) for each of its particle beams: clockwise-circulating protons and 

anticlockwise-circulating antiprotons [74]. While the particle accelerators are located in 

a few selected locations around the world, the collaborations of physicists analyzing the 

data from them are geographically distributed. High energy physics (HEP) experiments 

have grown to be more challenging and more expensive over every decade. The 

challenges have not only grown in terms of investigation of rare particle interactions, 
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but also in terms of the data generated by the accelerators. The physics phenomena 

studied are statistical in nature and huge amount of data (petabytes) is needed to derive 

significant conclusions. The amount of data collected from the detectors is 

approximately 100 terabytes per year. This coupled with simulated and reconstructed 

data amounts to 400 terabytes per year. 

2.6 Grid computing for Run-II experiments using SAM-Grid 

The DØ experiment was proposed for the Fermilab proton-antiproton Tevatron 

Collider in 1983 and approved in 1984. After 8 years of design, testing, and 

construction of its hardware and software components, the experiment recorded its first 

antiproton-proton interaction on May 12, 1992. The data-taking period referred to as 

"Run 1" lasted through the beginning of 1996. Collisions were studied mainly at an 

energy of 1800 GeV in the center of mass (the world's highest energy), with a brief run 

taken at 630 GeV. Currently, the DØ Collaboration consists of more than 500 scientists 

and engineers from 60 institutions in 15 countries. The Run-II commenced in 2001 with 

an improved particle accelerator with greater energy and more data [46].  

SAM-Grid is a distributed data handling and job management system, designed 

for experiments with large (petabyte-sized) datasets and widely distributed production 

and analysis facilities. It mainly caters to the needs of Run-II experiments. SAM-Grid 

[3, 4, 5] was started at the Fermi National Accelerator Laboratory in January 2002 and 

it is one of the first Grids deployed for the HEP community. The project is conducted as 

a collaborative effort between physicists and computer scientists and it is financed by 

the Particle Physics Data Grid (PPDG) [75], in the US, and GridPP [76], in the UK. The 
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goal of the SAM-Grid is to enable fully distributed computing for the DØ and CDF 

experiments, integrating standard Grid tools with in-house software, when the standards 

do not provide an appropriate solution. The components now in production provide a 

versatile set of services for data transfer, data storage, and process bookkeeping on 

distributed systems.  The job management components are built around standard Grid 

middleware from Condor and Globus®.  SAM-Grid is used by DØ and CDF, and is 

being tested for use by MINOS [60].  

 

Table 2.2 Comparison of HEP applications on SAM-Grid 
(Source: [83])  

 
Activity 

 

 
Description 

 
No. of Users 

 
CPU-IO  

 
Time per job 

 
Reconstruction 

 
Data filtering 

 
Small (~5) 

 
CPU + IO 

 
10 Hours 

 
Monte Carlo 

 
Data simulation

 
Small (~10) 

 
CPU  

 
10 Hours 

 
Analysis 

 
Data mining 

 
Large (~100) 

 
CPU + IO 

 
0.5 – 5 Hours 

 
 

Table 2.3 Data generated and consumed by HEP applications on SAM-Grid 
(Source:  [83])  

Activity Data input 
Per job 

Data output  
Per job 

Input per year Output per 
year 

 
Reconstruction 

 

 
1-5 GB 

 
1-5 GB 

 
100 TB 

 
100 TB 

 
Monte Carlo 

 

 
N/A 

 
10 GB 

 
N/A 

 
1-5 TB 

 
Analysis 

 

 
100 GB 

 
1-5 GB 

 
varies 

 
varies 
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CHAPTER III 

A BRIEF REVIEW OF THE SAM-GRID ARCHITECHTURE 

3.1 Introduction to SAM-Grid 

A Grid has been described as a distributed computing infrastructure for 

coordinated resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations [2]. A virtual organization (VO) is a set of individuals and/or institutions 

with some common goal.  Resource sharing takes place according to a set of predefined 

rules. These resources are typically computers, data, software, expertise, sensors, and 

instruments. A Grid environment can be considered as a problem-solving environment. 

A problem solving environment (PSE) has been defined as a computer system that 

provides all the computational facilities necessary to solve a target class of problems 

[15]. SAM-Grid provides a problem-solving environment for two of the largest High 

Energy Physics (HEP) virtual organizations, namely the DØ collaboration and the CDF 

collaboration.  

The SAM-Grid architecture is composed of three major components: the data 

handling component, the job handling component and the monitoring and information 

component. This logical division is mostly natural as it closely follows the organization 

of the standard middleware like Globus® and best capitalizes on the software already 

developed at Fermilab for the experiments. The most notable of this in-house software 

is the Sequential Access via Metadata (SAM) [84], the data handling system of the 
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experiments. Figure 3.1 shows an architectural diagram of SAM-Grid. Figure 3.2 shows 

the SAM-Grid services.  

 

Figure 3.1: The SAM-Grid architecture (Source [4]) 

 

3.2 Job Management  

A vital component of any computational Grid is its job management system. 

The Sam-Grid Job management system provides a very lightweight interface (Job 

Client in Figure 3.1) to the users. This interface is designed to support a multitude of 

high energy physics applications, like Monte-Carlo simulation, data reconstruction and 
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data analysis. The interface is extensible and handles application specific job 

interdependencies. 

 

Figure 3.2 SAM-Grid: Service perspective (Source [6]) 

 

Scheduling of jobs (Job Scheduler) to resources and negotiating access to them 

with the help of an automatic resource selection service (Request Broker) is handled by 

the job management infrastructure as shown in figure 3.3. The Broker analyzes the job 

requirements and selects the best resource available for the job, according to a 

dynamically configurable algorithm. The scheduling and the brokering capabilities are 

provided by the Condor-G [8] middleware. The Condor-G system leverages software 
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from Globus® and Condor to allow users to harness multi-domain resources as if they 

all belong to one personal domain. 

 

Figure 3.3 Job control flow in SAM-Grid. 

 

Thanks to the efforts of the Particle Physics Data Grid (PPDG) collaboration, 

the Sam-Grid team along with the Condor team enhanced the Condor-G matchmaking 

[4] framework, thus enabling to implement high level functionality on top of the 

Condor-G framework. The Condor-G framework uses Globus® protocols like GRAM, 

GASS [17] RSL [72] and the security framework GSI [16] to negotiate access and 

manage jobs submitted to the Grid resources. GSI (Grid Security Infrastructure) is the 
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Grid middleware component, Public Key- based security component, provided by the 

Globus® Toolkit. GASS simplifies the porting and running of applications that use file 

I/O to the Globus® environment. The Globus® Resource Specification Language 

(RSL) provides a common interchange language to describe resources.  

The Grid to Fabric Interface which is the main focus of the work presented in 

this thesis is the layer between the core Grid middleware and the Grid fabric. The fabric 

typically consists of a batch queuing systems, computing resources and storage 

resources. The batch system has the responsibility of managing the jobs when they are 

submitted to the execution site via SAM-Grid’s Grid to Fabric interface. The job 

execution time and execution host parameters are controlled by local policies enforced 

by the batch system. 

3.3 Monitoring and Information Management 

Monitoring and information management is an important aspect of any 

distributed system. In order for the fabric resources to interface to the Grid middleware, 

the resources should at a minimum provide an interface for the discovery of the 

resources. Monitoring of resources helps in planning and adaptation of the application 

behavior. It provides the user a view of various states that the application is going 

through, and helps in detection of faults and failures. Collecting and managing a variety 

of information in a Grid environment presents significant challenges as outlined below. 

Some desirable properties for monitoring and information system in a Grid environment 

are mentioned by [18] as follows. 
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1) Platform independence: A Grid typically contains nodes running on different 

operating systems, so platform independence is a must for any monitoring and 

information system.  

2) Scalability with respect to number of producers and consumers: Because a Grid 

is a large scale system, scalability is one of the biggest problems to be solved. A 

system has to be scalable to any number of information producers without 

response time being affected too much. The system also has to be scalable to the 

number of consumers (requests) it receives.  

3) Ability to survive node / link crashes: In a Grid system a node crash should be 

considered the rule and not the exception, the same holds for network links. 

Because of this, a good system should be designed such that a disappearance of 

a node, either by a crash or crash of the network connecting the node, should 

have no impact on the overall system, no matter which node crashed. 

4) No restrictions on the data type of information: Good information/monitoring 

system should not put any restrictions on the data type of the information being 

used in the system. Doing so enables users of the system to create their own data 

types, giving a much richer and more extensible system. 

5) Security: Security is of course also a very important property. The information 

being accessed through an information/monitoring system (IM) is not something 

that most people would like to share with just anyone. Proper authentication and 

authorization should therefore be present. 
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6) Minimal resource consumption: A system should always try to minimize 

resource consumption because an information management system is a 

secondary system and resources should be saved for the actual computational 

work being performed. 

7) Lightweight user interface: A lightweight and easy to use user interface should 

be the rule for any good system. 

The SAM-Grid monitoring and information management component satisfies the 

above properties by leveraging from existing technologies like Globus® MDS [19], 

Xindice [70] XML database and the Condor advertisement framework. The Monitoring 

and Discovery System (MDS) is the information services component of the Globus® 

Toolkit and provides information about the available resources on the Grid and their 

status. The Monitoring and Directory Service is the Globus® Toolkit implementation of 

a Grid Information Service (GIS). The MDS has the ability to function as a white pages 

directory for retrieving information associated with a particular name (distinguished 

name). Examples for such lookups are the number of CPUs and the operating system 

associated with a particular machine.  Apache Xindice is a database designed to store 

XML data. It is a native XML database. The monitoring and information is categorized 

as  

1) Static information: This type of information is typically constant for a 

sufficiently long period of time. Figure 3.4 below shows the static attributes of 

an execution site.  
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2) Dynamic information: Information associated with entities that change their 

state frequently over a period of time. Some dynamic entities in SAM-Grid are, 

the data handling component (SAM projects) conveying information regarding 

the data staged, amount of data necessary to start job execution and jobs in the 

batch queue. Figure 3.5 captures the dynamic attribute “Projects” [71]. “Projects 

or “Analysis Projects” is a SAM specific term explained in the next section. It 

refers to the activity of retrieving and processing data (files) via the SAM data 

handling system.  

3) Historic information: Message logs and information regarding the history of 

jobs executed on a compute cluster as well as appropriate synthesis of the static 

and dynamic information constitutes the historical information. This kind of 

information is typically used for bookkeeping purposes and for reproducibility 

of scientific results. Debugging messages are logged by each service on the Grid 

to a centralized log server. These message logs are of interest to developers only 

and in case some error condition occurs. Messages are using the UDP network 

protocol. 

Two different models are used to publish and extract the aforementioned 

information types. The static information is used by the broker to match the job 

requirements with the site attributes. The static information is published to the 

information repositories using a push model. The push model records the changes 

independent from the external interest in the information at a particular time instant. 

External entities may comprise of users accessing the static information.  
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Figure 3.4 Static <attribute, value> pair of an execution site [87] . 

 

 

Figure 3.5 Dynamic attributes of an execution site [87]. 
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For the push model monitoring, the SAM-Grid uses a XML database 

infrastructure (Xindice) that is used by the configuration framework. As for the 

configuration infrastructure, a library has been developed to facilitate the insertion and 

the update of information to the database. This event-driven monitoring infrastructure is 

currently used to log the statuses associated with the user jobs [20]. The push model is 

adopted by the logging infrastructure (historic information), albeit in an unreliable 

(UDP packets) manner.   

Retrieval of dynamic information is related to the time of request of such 

information by an entity (such as a user, broker or a load balancer). The dynamic 

information is gathered according to a pull model. The technology used by the SAM-

Grid for its pull model monitoring is the Globus® MDS, complemented by the 

information collector of the resource selection service provided by the Condor-G 

framework. 

Monitoring via the web is enabled by a set of PHP [61] scripts that present a 

consistent hierarchical extensible view of the whole system. The web interface is 

developed by collaborating with NorduGrid [62].  

3.4 Data Handling System 

Data intensive problems require large scale data management methods to 

transfer the data needed for solving the problem to the machine assigned to solve it. 

Data intensive applications such as high energy physics and bioinformatics require both 

computational and data management solutions to be present in the Grid infrastructure. 

The data handling component comprises of the SAM system. The SAM project started 
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in 1997 to handle the data handling needs of the DØ experiment. SAM is an acronym 

for ‘Sequential Access to data via Metadata’. The term sequential refers to the layout of 

physics events stored within files, which are in turn stored sequentially on tapes within 

a Mass Storage System (MSS) [63]. SAM performs the task of transparently delivering 

files and managing caches of data. It is the sole data management system of the DØ 

experiment; other major experiments like CDF have also started using this system.  

The information that follows in this section has been derived from [21] and [22]; 

more details are available in [21], [22] and [84] about SAM. SAM has been designed as 

a distributed system, using CORBA (Common Object Request Broker Architecture) 

[65] as the underlying framework. The system relies on compute systems, database 

servers and storage systems distributed over the world robotic tape libraries like Enstore 

[63] are present at select locations. All the storage elements support the basic 

functionalities of storing/retrieving a file. Metadata catalogs, Replica catalogs, data 

transformations, and databases of detector calibration and other parameters are 

implemented using Oracle©2 relational databases. Figure 3.6 illustrates the various 

software layers for data handling and management.  

The SAM architecture is organized by physical groupings of compute, storage, 

network resources termed as Stations. Certain Stations can directly access the tape 

storage; others utilize routes through the ones that provide caching and forwarding 

services. The disk storage elements can be managed either by a Station or externally, 

those managed by Stations together form logical disk caches which are administered for 

                                                
2 Oracle is the registered trademark of Oracle Corporation. 
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a particular group of physicists. Stations own the resource partitions, yet they do not 

have exclusive control over them. For instance, for the same set of compute resources, 

there can be two different Stations sharing the compute elements but with distinct and 

disjoint disk storage elements. This aids in running production and development 

Stations sharing the compute elements and tape storage systems but with discrete sets of 

files, catalogs, and disks. In SAM, service registration and discovery has been 

implemented using CORBA Naming Service, with namespace by Station Name. APIs 

to services in SAM are defined using CORBA IDL (Interface Definition Language) and 

can have multiple language bindings. UDP is used for event logging services and for 

certain Request Manager control messages. Each disk storage element has a stager 

associated that serves to transfer or erase a file by using the appropriate protocol for the 

source and destination storage elements. Rcp, kerberized rcp, bbftp, encp and Gridftp 

provide the file transfer protocols. Each Station has a Cache Manager and Job Manager 

implemented as a Station Master server. The Cache Manager provides caching services 

and also the policies for each group. Request Managers, which are implemented as 

Project Master Server, take care of the pre-staging of file replicas and the book-keeping 

about the file consumption. The project master executes for each dataset to be delivered 

and consumed by a user job. Storage Manager Services are provided by a Stations file 

storage server that lets a user store files in tape and disk storage elements.  

The metadata catalog provided by SAM allows users and applications acting on 

behalf of the user to search for data according to physics parameters. Instead of having 

to know a file by its name, the physicists are able to retrieve and store data according to 
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the description of the physics processes involved in production the desired data.  In a 

typical use case for data retrieval, the user or the application acting on behalf of the user 

explores the data to be retrieved by describing pertinent conditions. They thus create a 

dataset comprising of files. An Analysis project [71] refers to the activity of retrieving 

and processing files. Every time a user processes a dataset, the SAM system creates and 

starts an analysis project. All the data processed by an application is recorded in the 

SAM system and is essential for reproducibility. 

SAM has been in successful use for handling the Monte Carlo data on the order 

of terabytes produced off-site from Fermilab. Over 650 TB of data is stored for the DØ 

experiment in the mass storage system. 

 

Figure 3.6 Software layers for data handling and data management (Source [63])  
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CHAPTER IV 

PROBLEM STATEMENT 

The goal of this thesis is to design, develop and implement an interface between 

the core Grid middleware technologies and the fabric. The application and fabric 

imposed complexity for data and compute intensive applications like HEP applications 

provided the impetus for defining such an interface. Success was measured as a ratio of 

the number of physics events requested to the number of physics events produced. 

 

 

Figure 4.1 Gray area between core Grid middleware and fabric 

 

Applications
High Level Grid Services 

Core Grid Middleware 
Job Management, Security, Data handling, etc. 
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CHAPTER V 

GRID TO FABRIC INTERFACE IN SAM-GRID 

The Grid Fabric layer provides the resources to which shared access is mediated 

by Grid protocols [2]. A resource need not be a physical entity like a compute node. It 

can be a logical entity like a distributed file system, or a Condor pool. In data intensive 

Grids and computational Grids like SAMGrid, the fabric typically consists of, but is not 

limited to logical entities like a compute cluster, distributed compute nodes (e.g. Condor 

pool) and a distributed file system. It is important to point here that a resource is 

identified by its interface, for example a compute cluster may use NFS storage access 

protocol to stage in the executables, input et cetera at the compute nodes of a cluster. 

From the Grid perspective, the internal protocols and implementation are not important. 

The most important aspect which separate Grids from a cluster based environment is the 

lack of control over the local policies and resources. This lack of control over the fabric 

and the policies that control it makes the development of Grid technologies and their 

deployment challenging. Richer functionality offered by the fabric in terms of 

coordinated access, enables sophisticated sharing operations [1]. The resources owned 

by the collaborating members of a virtual organization form the fabric layer of the Grid 

architecture.  

SAM-Grid resources are mainly contributed by the members of the two high 

energy physics experiments, DØ and CDF.  The Condor pool at the University of 
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Wisconsin is a major resource, thanks to the PPDG collaboration. The experience of the 

SAM-Grid team suggest that the existing fabric has a myriad of configurations tailored 

for operating in an isolated environment, which assume among many other things, user 

accounts, complete or no access to compute and storage resources and single 

administrative domain. At a minimum, the resources should implement enquiry 

mechanism, by which their state, structure and capabilities are discovered [1]. For 

computational resources like clusters, a mechanism for starting jobs on the worker 

nodes, enquiry of these jobs and their termination if necessary and capability of 

inquiring the state of the local resource management system like batch systems.  

Grid Middleware like Globus® Toolkit provide the basic bag of services for 

implementing Grid infrastructure for virtual organizations. The Globus® Grid Toolkit is 

a set of low-level tools, protocols and services that has become a de facto standard for 

basic Grid computing infrastructure. The deployment of Complex data intensive 

applications like high energy physics application when deployed on a Grid 

infrastructure, give rise to interesting set of problems. This chapter which is the crux of 

the work presented in this thesis concentrates on the problems arising in deploying high 

energy physics applications on the Grid infrastructure in a production environment. In 

particular we highlight the challenges in interfacing the fabric to the Grid middleware 

and the solutions proposed and implemented in the context of the SAM-Grid to 

overcome those challenges.   

The three tier architecture of the SAMGrid uses Globus® and Condor-G as its 

middleware for job management. Condor-G is deployed at the submission site and the 
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GRAM gatekeeper service provided by the Globus® Toolkit is deployed on the head 

node (gateway node) of the execution sites. A gatekeeper is a process used to take 

incoming job requests and check the security to make sure they are allowed to use the 

site resources. The gatekeeper process is responsible for starting up the job-manager 

process after successful authentication.  

The Globus® Resource Allocation and Management (GRAM) service provides 

for the management and remote execution of jobs defined using a standard Resource 

Specification Language (RSL). Currently, the GRAM has very limited functionality, 

making it difficult to deploy complex data intensive applications. The GRAM runs a 

jobmanager service that is responsible for job execution and monitoring, and accepts 

jobs defined using a standard Resource Specification Language (RSL).  

High energy physics community has been traditional using resources at 

individual institutions like universities and government labs for satisfying their 

computational and storage needs. Applications like Monte Carlo simulations have been 

traditionally executed in a very controlled environment and make many assumptions 

regarding resources on which they execute.  Assumptions like locally available data, 

availability of a shared file system, application code installed on every node of a cluster 

or in a shared area accessible by the worker nodes et cetera are commonplace. The 

present Grid services like the Globus® jobmanager service lack the support for 

application specific environment. Extensions to the RSL for dealing with application 

specific environments have been proposed by [23]. These extensions are right steps 

towards the final goal, but still lack the stability, required in a production environment.   
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Data staging is an important aspect of executing data intensive applications on a 

Grid infrastructure, the current data staging capabilities at present lack the support for 

caching, and tracking the data usage, necessary for reproducibility and statistical 

purposes. High energy physics applications operate on huge data of the order of 

hundreds of gigabytes. Data staging facilities integrated with GRAM are useful for 

retrieval of files of the order of few hundred megabytes. These files are typically log 

files and output and error streams of the job execution. The output and error streams of 

the job execution might not convey sufficient information to the user, and valuable 

information might be lost as well as the loss in computing time. Retrieval of application 

specific logs, which indicate to the user the behavior of the application, is limited by the 

local resource management system.  

The Globus® Toolkit jobmanager service, instantiated by the GRAM service at 

the gateway provides interface to only standard scheduling systems like Condor, PBS 

and LSF. Separate plug-ins have to be written for scheduling systems like Batch 

Queuing System (BQS) [64] used by the DØ collaborators in Lyon-France at the Centre 

de Calcul l’IN2P3 (CC-IN2P3), Farm Batch System Next Generation (FBSNG) [24] 

developed at Fermilab and McFarm [85] developed at The University of Texas at 

Arlington. The standard plug-ins implemented for the Globus® Toolkit fail to 

implement site specific features out of the box. Tweaking the plug-ins to incorporate 

site specific features, like avoiding preemption, utilizing access to high performance 

local storage and adapting to specific fault conditions requires manual intervention of 
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site administrators who might not be familiar with the Grid protocols or the 

implementation language for the plug-ins.   

GRAM Jobmanagers do not provide facility for retrieval of application specific 

logs. Temporary disruptions or slow communication between the local resource 

management software like batch scheduler and the Jobmanager might lead to the false 

conclusion that the application has failed or worse completed successfully, thus leading 

to a resource leak.  

5.1 Job Managers 

5.1.1 GRAM Job Managers 

The Globus® Resource Allocation Manager (GRAM) is the lowest level of 

Globus® resource management architecture. GRAM provides an API for submitting, 

monitoring, and terminating Grid jobs. When a job is submitted by the Grid scheduler, 

the request is sent to the gatekeeper of the remote computer. The gatekeeper handles the 

request and creates a job manager for the job. The job manager starts and monitors the 

remote program, communicating state changes back to the submission site, which is the 

GRAM client. When the remote application terminates, normally or by failing, the job 

manager terminates as well. 

The job manager is typically started by the Gatekeeper service. It interfaces with 

a local scheduler (e.g. condor_schedd for the Condor batch system) to start jobs based 

on a job request RSL string. One job manager is created by the gatekeeper to fulfill 

every request submitted to the gatekeeper. It starts the job on the local system, and 

handles all further communication with the client.  
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Figure 5.1 Globus® job management on the gateway node 

 

It is made up of two components:  

1) Common Component - translates messages received from the gatekeeper and 

client into an internal API that is implemented by the machine specific 

component. It also translates callback requests from the machine specific 

components through the internal API into messages to the application manager.  

2) Machine-Specific Component - implements the internal API in the local 

environment. This includes calls to the local system, messages to the resource 

monitor, and inquiries to the MDS. 
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5.1.1.1 Limitations with GRAM Job Managers 

The current Globus® GRAM implementation suffers from several problems and 

limitations with the current Globus® GRAM implementation. A major limitation is that 

the standard RSL fields understood by the GRAM lack the functionality of staging files 

of the order of gigabytes, this is because GRAM relies on the Globus® Global Access 

to Secondary Storage (GASS) protocol, which is a fast and secure protocol not meant 

for transferring files greater than a few hundred megabytes. During a job submission, a 

GASS client is started on the execution node to handle the data transfers. It uses the 

RSL parameters to determine what files and what location they need to be transferred to 

and from. The GASS client communicates with a GASS server that is started by 

Condor-G on the submission site. GASS is used for transferring files like small 

executables, and redirections of standard input and standard output to and from the 

remote execution host. The main issue we are attempting to address is the lack of 

support by the GRAM for arbitrary execution environments. Specifying a job that 

requires a special execution environment requires mangling the semantics of a standard 

RSL request. The content of this section is derived from [23] and [6].  

5.1.1.1.1 Lack of Flexibility  

One of the goals of Grid computing is to support submission of jobs to a Grid of 

multiple compute clusters, either in a local area (a “campus Grid”) or a wide area (e.g. a 

national or global Grid). These clusters will all be running their own batch systems, 

which may not all be the same. The GRAM provides a very useful (and necessary) 

mechanism for translating a GRAM job specification in RSL into a job submission 
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script for a variety of batch systems, using the scheduler-specific plugin architecture as 

shown in figure 4.1. This is straightforward since the RSL job specification is restricted 

to very few fields, basically just those that would be used by the default fork 

jobmanager. Unfortunately this means that information that could be useful for the 

batch scheduler on a cluster compute resource is not available. For example, as part of a 

special agreement, the University of Wisconsin at Madison runs some of the DØ jobs 

on their condor cluster without pre-emption. The intention to take advantage of this 

local policy must be expressed at the time of local job submission. The submission 

command is specific and cannot be expressed using the standard job-managers. Another 

example is the special option used at the IN2P3 computing centre in Lyon, France, to 

inform the scheduler that a job plans to access data via HPSS [81], the local mass 

storage system. In case of HPSS downtime, the batch system can schedule those jobs 

specially, avoiding crashes due to denial of access to the data. This option is also site 

specific and cannot be part of the standard job managers. In general, the job-managers 

do not provide a way to customize the interface to the local batch system. The main 

issue here is that the GRAM assumes that an appropriate computational resource has 

already been identified by a resource broker or scheduler based on some resource 

requirements for the application (e.g. architecture, operating system, memory, software 

availability et cetera), so the job is submitted to a particular node in the Grid that 

satisfies these requirements. Hence the standard RSL job submission request only 

provides job execution details, not resource requirements. This is different to a typical 

job specification for a batch system, where the user specifies both the job and its 
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resource requirements in one submission script, and the batch system provides the 

resource broker and scheduler as well as a job manager. Thus, problems arise when jobs 

are submitted to the GRAM using standard RSL that has no resource requirement 

specifications. The GRAM passes this information on to the local scheduler using the 

scheduler-specific plugin, but this does not include resource information. Even if 

information on resource requirements is added to the RSL job submission script, it is 

thrown away by the GRAM and not passed to the batch system. This is not a problem if 

the cluster has homogeneous nodes, but for a heterogeneous cluster resource 

requirement information is useful (and in many cases, necessary) for the batch 

scheduler to be able to effectively schedule the job. 

5.1.1.1.2 Inefficiency and lack of scalability 

Another potential problem with the GRAM is inefficiency. Submitting and 

executing jobs on a remote system will inevitably introduce some inefficiency. Monte 

Carlo simulations constitute a major percentage of Grid applications. These simulations 

typically operate on independent data for the same executable. For every Grid job 

submitted to the gateway we have three ports and a GRAM Job Manager process, on the 

average commodity machine this limits the number of Grid jobs to a few hundreds. 

Most batch systems support parameter sweep applications by providing a mechanism 

for queuing multiple jobs with multiple input parameters and output data. However the 

GRAM supports only individual jobs. The inefficiency in this method mainly comes 

from two places: 
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1) Files need to be transferred before and after each job execution. The same files 

used in each execution, such as the executable, cannot be shared by multiple 

jobs, and must be staged in repeatedly.  

2) Mutual authentication must be performed for each submission and file staging.  

The SAMGrid aggregates multiple local jobs to form a single Grid job. This 

aggregation is not part of the standard GRAM Job Managers. GRAM uses a simple, 

standard format for specifying jobs to the GRAM is necessary for interoperability on 

the Grid. However it comes at the cost of potential loss of flexibility and efficiency. 

Ideally the GRAM would also offer a mechanism for handling more advanced job 

information when the client application and the local scheduler support it. 

5.1.1.1.3 Robustness 

The GRAM Jobmanagers cannot react to temporary problems when interacting 

with the local scheduler. If the batch server is managing hundreds and thousands of 

jobs, it responds slow and is misconstrued by the GRAM Jobmanagers as a failure.   

5.1.1.1.4 Comprehensiveness 

The Globus® job-managers interface to the local batch systems only. There are 

a series of other fabric services that in general need notification when a job enters a site. 

The data handling system could start pre-staging the input data, while the job is idle in 

the scheduler queue. The monitoring system can observe the status of the job in the 

queue, while it is not running; this cannot be achieved if the job is responsible for 

sending monitoring information. Database accesses common to all the batch processes 

can be aggregated, thus reducing dramatically network traffic. 
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5.1.2 SAM-Grid Job Managers 

The SAMGrid Job Managers try to overcome the deficiencies of the GRAM job 

managers, by utilizing the set of services developed as part of the Grid-Fabric interface. 

As shown in the figure 5.2, an application specific environment is provided by the 

application specific plugin in the SAMGrid job manager. A single GRAM job manager 

is started for multiple local jobs; according to local or virtual organization policies (i.e. 

the split factor is configurable). This aggregation is also convenient for the Grid users, 

who can manage their Grid jobs as single entities, irrespectively of their local 

multiplicity. Large scale data staging for local jobs is done by the sophisticated data 

handling service provided by SAM. The interactions with the local batch system, or 

rather its “idealizer”, are mediated via a layer of abstraction, called the “batch adapter”. 

The batch adapter is a virtual service that is set up at installation time to reflect the 

specifics of the configuration of the local batch system. Using this extra layer of 

indirection we could customize the Grid-fabric interface to the batch system of every 

collaborating site, reflecting the peculiarities of the local policies and hardware/software 

configuration. The idealizers are batch system specific plugins that use the batch system 

in an efficient way and provide basic fault detection and tolerance to the higher job 

management layers. To provide interoperability the SAMGrid job manager is driven by 

GRAM job manager as shown in figure 5.2. 
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Figure 5.2 SAM-Grid job management. 

 

The overall flow of control is driven by the Globus® job managers, the aim here 

is to maximize the use of Globus® toolkit and minimize the development of 

application-specific or VO-specific services.  

5.1.2.1 Flow of control for SAM-Grid Job Managers  

When the initial GRAM request is received by the gatekeeper service running in 

the gateway node, it spawns the GRAM Job Manager process which interfaces with the 
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SAMGrid job manager for the purposes of actually managing the jobs.  The GRAM Job 

Manager relies on the SAMGrid job manager for submitting jobs, polling for existing 

jobs and terminating jobs. The SAMGrid Jobmanagers can be also thought of providing 

a job management service. SAMGrid job managers in turn return certain information 

like job submission success, whether the job is active or not and if the termination of the 

job was successful in the case of job termination to the GRAM Jobmanager. This 

information has to be returned in a certain specific time frame. Since the batch system 

response time is uncontrollable, it is technically difficult to ensure the timeliness of 

completion. As an implementation detail, the timing constraints are avoided by 

launching the processes in the background which look for the requested information and 

carefully avoiding duplicate processes. 

5.2 Sandboxing Mechanism 

5.2.1 Introduction to sandboxing 

Sandboxing is a popular technique for creating confined execution 

environments, which could be used for running un-trusted programs. A sandbox limits, 

or reduces, the level of access its applications have - it is a container [77]. The term 

sandboxes are used in numerous contexts. Sandbox environments range from those that 

look like a complete operating environment to applications within, to those that provide 

a minimum level of isolation (to a few system calls). The term Sandboxing within this 

thesis and the SAM-Grid terminology in general is used in a complementary sense to 

the popular notion associated with security.  
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Sandboxing in SAM-Grid provides a container service. SAM-GRID provides a 

container service which is responsible for bringing the user code in and carrying the log 

files and output out of the sandbox area. The physical implementation of creating a 

sandbox translates to creating a directory as in UNIX terminology. The sandboxing 

term is widely used in terms of a secure environment in which code that is not trusted 

(for example mobile agents) is executed. System call by the foreign code are trapped 

and inspected for maliciousness. SAM-Grid sandboxing does not trap system calls, 

though such functionality could be added on later. 

5.2.2 Need for sandboxing in Grid environments 

In a Grid environment the compute nodes are typically shared among many 

virtual organizations. The need for a sandboxing abstraction of the execution 

environment and related services like intra-cluster data transfers stem from the 

following characteristics of prevalent configurations at execution sites.  

1) In a typical cluster based environment of many execution sites, standard 

software is installed on the worker nodes by installing it in an exported shared 

file system like NFS. Standard software here implies application specific 

software, special libraries and numerous other packages that help execute the 

application, also referred to as “infrastructure” packages such as interpreters, 

compilers, archiving tools et cetera. 

2) Cluster based computing typically has a durable local storage area (home area), 

where the jobs and agents (such as batch systems) acting on behalf thereof can 
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safely deposit small files. These files include both those needed to bootstrap the 

job (input) and any logs produced (output). 

3) Intra-cluster file transfer mechanisms are different for different batch systems. 

Most systems relied on a shared file system; some used batch systems with 

built-in file transfer mechanisms, etc. Development of a uniform job submission 

interface, which could be used by standard Grid middleware, was severely 

complicated by this heterogeneity of job file transfer mechanisms.  

The first characteristic is in keeping with the model of submitting jobs to locally 

owned resources, and the as the applications become more Grid aware, the application 

developers  are lifting the requirement by developing tools to envelop their applications 

and provide appropriate run-time environment. Dynamic installation of application 

specific software environment on the worker nodes is a very important aspect for 

deployment point of multidisciplinary Grid applications on the worker nodes of an 

execution site. Dynamic installation on a worker node consists of user code and other 

run-time environment augmented with additional infrastructure packages like 

interpreters, data handling client software et cetera. In SAMGrid, this type of dynamic 

deployment is accomplished by the packaging API provided by the sandboxing 

mechanism (also known as the sandboxing service).  

The second characteristic is almost always implied. The home area concept has a 

long history and is part of the broader concept of an account, whereby computer access 

is controlled statically. Grid computing strives to provide a fuller and much more 

dynamic resource control by virtue of sophisticated authorization frameworks. Thus, it 
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has become increasingly necessary to be able to move job files in and out of the 

execution node bypassing home area.  The sandboxing mechanism in SAM-Grid 

obviates the home area concept. Incidentally, both of the above characteristics involve 

usage of a shared file system such as NFS [86]. Shared file systems have suffered from 

the issues of performance bottleneck (because of the centralized topology and UDP-

based communication) and low security (NFS authentication is IP based). The 

sandboxing mechanism provides complete independence of the shared file system.  

Experiences in deploying the SAM-Grid infrastructure indicate the well-known 

issue of dramatic variation of the computing environment of the execution sites. 

Development of a uniform job submission interface, which could be used by standard 

Grid middleware, is severely complicated by this heterogeneity, especially when the 

mechanisms of intra-cluster file transfer are considered.  Most systems rely on a shared 

file system; some use batch systems with built-in file transfer mechanisms. To be 

independent of the local intra-cluster file transfer mechanism, a data transport service in 

the form of a GridFTP [44]  [26] server is instantiated, if not already available. In SAM-

Grid a job execution site has a GridFTP server running on the head node. GridFTP is 

the Grid version of the File Transport Protocol for moving large datasets between 

storage elements within a Grid. The head node generally refers to a node in a cluster 

through which jobs are submitted. Most of the execution sites in SAM-Grid have the 

head node running a gatekeeper and have the monitoring software installed. A head 

node is networked to a group of worker nodes and has the batch system server or 

scheduler running on it. If a job execution site does not have a GridFTP server running 
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on its head node, then a dynamic GridFTP server is instantiated by the sandboxing 

service for intra-cluster sandbox transfers. This ensures a uniform, secure (X509 based), 

robust and scalable (multiple transfers) file transfer mechanism to transfer data between 

the nodes in the cluster, in particular the head node and one or many worker nodes. 

5.2.3 Sandboxing in SAM-Grid 

 During job submission, a user typically supplies or specifies what program to 

execute on the Grid, for example the name of the executable and optionally the input 

files and the place to deposit the output of the execution. When the user specifies some 

inputs such as application name, product dependencies, optional input dataset and an 

archive containing the software and configuration files needed to run the application, 

the archive should be transported to the execution site. This archive is sometimes 

referred to as the input sandbox. Depending on the information collected by the 

resource broker the job is scheduled on an execution site. When the execution or the run 

is complete, the output if any is collected and deposited in either a user specified place 

or some default location depending on the data handling system. The output and the 

history of the execution, i.e. the logs could be deposited in separate locations. The 

output of the job, such as the error and output streams, relevant log files and output files 

is called the output sandbox. It should be noted the SAM-Grid handles the large input 

and output data files and potentially the product releases via the SAM data handling 

service, hence dramatically reducing the size of the output and input sandboxes, since 

these files do not need to be part of them.  As highlighted in section 5.2.2, application 

specific software is typically installed on the worker nodes via shared file system 
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leading  to the possibility of version mismatch if the brokering is not sophisticated, in 

terms of the deciding if a version of software is compatible with the application to 

execute, for example if an user program uses python 2.2 [27] libraries and the execution 

site has python 2.1, either the resources at that site are rendered useless because of 

version mismatch or if the broker does not know the versions of the software and 

schedules the job on the execution site in question, the user program is bound to crash. 

Either case is unacceptable. Hence the need to dynamic deployment of software 

environment on the worker node, this includes instantiation of services on the worker 

node, setup of the environment required for the user program and handling and transfer 

of the input and output sandboxes.   

The Grid Security Infrastructure relies on the machine clock to determine the 

validity of the security tokens (X.509 proxies). If the system clock is running slow then 

the security mechanism fails because the security token (X.509 proxy is not valid). In 

addition of requesting the site administrators to run ntpd [82][82], the sandboxing 

service shield’s the application from slow clocks at the worker nodes by introducing 

artificial delays during the bootstrapping process at the worker node. The sandbox 

manager is responsible for deploying the sandbox on the worker node, it checks if the 

system clock of the worker node is within the specified range with respect to the 

timestamp on the security token, if not an artificial delay is introduced. 

SAM-Grid sandboxing service offers a suite of Python API’s and command line 

interface. Table 5.1 provides the list of API’s along with description. As an 

implementation detail, the API is accessed via an object of the python class named 
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Sandbox. An object of this class is created by the SAM-Grid jobmanager during the job 

submission and during the output collection, when all the local jobs finish. 

 
Table 5.1 SAM-Grid sandboxing python API’s 

 
Python API 

 

 
Description 

 
sandbox_create( char *name, [char *f ile] ) 
 
name = Name of the sandbox area 
file = Optionally the name of the input sandbox. 
 

 
Implementation currently is 
limited to creation of a directory 
in a predefined location. This 
directory location is called the 
sandbox area or the work 
directory. If an input sandbox is 
supplied, a soft link is created in 
the sandbox area.  
 

 
sandbox_add(char *workDir, PyObject *files) 
 
workDir = Absolute path to the sandbox area on 
the file system. 
files = A python list object containing files to         
be added in the sandbox area. 
 

 
Add files specified as a python list 
object into the sandbox area. 
Currently this is implemented by 
creating soft links pointing to 
relevant that are to be added. 

 
sandbox_package (char *name, char *command, 
[ PyObject *environ ], [ char *output ], [ char* 
template ]) 
  
name = Name of the sandbox 
command = command to be executed by the 
bootstrapping code. 
environ = Python dictionary object used to 
specify arbitrary environment for the user 
program. 
output = Name of the self extracting archive 
template = Used to create the bootstrapping code. 

 
Starts the dynamic GridFTP 
server if the site is not using one 
for intra-cluster transfers. Creates 
a self extracting archive 
containing the software 
environment required for the user 
program to successfully execute 
on the worker node, containing 
the bootstrapping code and 
GridFTP client software. 
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5.3 Uniform interface to batch systems - Batch Adapters 
 

5.3.1 Need for Batch Adapters 

Interfacing fabric components like the batch system to the Jobmanager layer is 

one of the most important aspects of the job management of any successful Grid 

middleware. The Globus® toolkits GRAM Jobmanagers provide interface to various 

popular batch systems like PBS, Condor and LSF. The GRAM Jobmanagers also 

provides the capability of plugins for any arbitrary batch system. As mentioned in 

section 5.1.1.1.1 the GRAM Jobmanagers are inflexible because the GRAM RSL does 

not allow any arbitrary parameters, which might result in the efficient use of the 

Compute Nodes by the batch system. 

The SAMGrid overcomes this inflexibility by providing an API for interfacing 

arbitrary batch systems via the Batch Adapter layer.  The SAM Batch Adapter layer is a 

python API which serves as an interface between the SAM-Grid Jobmanager and batch 

systems used for submitting user jobs. The API is fully configurable and does not make 

any assumptions about underlying batch systems. It has an administrative interface that 

can be used for adapter configuration. Once it has been configured, it will contain 

knowledge about all batch systems available at the execution site. 

The execution site can have any number of batch systems available for 

submitting and running user jobs. For each of those batch systems there should be an 

adapter configured. As an implementation detail, the batch adapter configuration is kept 

in a local python module which gets updated every time a valid administrative 

command is executed. Adapter configuration consists of batch commands and queues 
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available to users, as well as of the default batch system limits. Batch commands are 

described by their type (e.g., job submission command) and command string which may 

contain any number of predefined string templates (e.g. qstat %__BATCH_JOB_ID__). 

They can be associated with any number of possible outcomes characterized by the 

command exit status, as well as by its output string which also may contain templates 

(e.g. JobId=%__BATCH_JOB_ID__ Status=%__BATCH_JOB_STATUS__).  It is 

important to note here that the Batch Adapter API does not execute batch commands. It 

simply provides functionality for preparing commands before their execution, as well as 

for analyzing their outcome. It is responsibility of the API user, which is the SAM-Grid 

Jobmanager, to execute commands and interpret their results. There are several types of 

batch queues that can be configured for a given adapter. The Batch Adapter API does 

not make any assumptions about client usage of those queues, so that different clients 

may use the same type of queue for different purposes. Adding new queue types is 

straightforward, which makes the API flexible and extensible. The batch queues can 

have different limits configured, and those limits override the default adapter limits. 

5.3.2 Batch Adapter – Jobmanager interaction 

The SAM-Grid Jobmanager utilizes the Batch Adapter API to get the 

information regarding job submission, job lookup, and job termination and also the 

information about interpreting the result of each of the aforementioned commands. The 

Jobmanager reads the template, replaces the appropriate fields and executes the action. 

The Batch Adapter API has adapters for different batch systems. To make the Grid-

Fabric interface portable on any execution site, the Batch Adapters are configured with 
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a “Grid” adapter. This adapter serves as an extra layer of indirection and return to the 

SAM-Grid Jobmanager the specific idealizer to invoke as shown in the figure 5.3. 

During the job submission by the SAM-Grid Jobmanager, the Jobmanager invoke the 

Batch Adapter API to query for the command to submit to the batch system by 

specifying the “Grid” adapter. The Grid adapter returns the job submission command to 

the Jobmanager layer as well as the template for interpreting the outcome of the 

submission and information regarding return status is also provided. The job submission 

command for the Grid adapter is not a batch system command, but rather the 

information (path to) regarding the batch idealizer to invoke. This interaction is 

transparent to the Jobmanager layer. 

 

Figure 5.3 Batch Adapter – SAM-Grid Jobmanager interaction 
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The batch idealizers as discussed in the next section are responsible for 

incorporating fault tolerance during the interaction with the batch scheduler and provide 

for incorporating local policies regarding resource limits, like cpu limits, queues to 

submit et cetera. For example during the job submission if the local batch system has 

special flags to enable access to a high capacity durable storage for storing the output of 

the job, or if the local batch system has an efficient implementation of the API for 

looking up submitted jobs, the idealizer layer takes into consideration such local 

optimizations.  

5.4 Batch System Idealizers 

5.4.1 Need for Batch System Idealizers 

Batch scheduling systems are typically the local resource manager for compute 

nodes at an execution site. In a typical configuration, jobs are submitted to the compute 

nodes via the interface provided by the batch system. For example to submit, poll and 

remove jobs to the PBS batch system the command line interface is qsub, qstat and qdel 

respectively. In an interactive job submission session, the user typically specifies a job 

queue (for PBS and its clones) or the list resources on which the job should execute via 

the classAd mechanism for the Condor batch system.  

5.4.1.1 Scratch management on worker nodes 

Modern batch systems typically have some kind of scratch management 

mechanism on the worker nodes providing a temporary area on the worker node where 

the job files are staged via some intra cluster transfer mechanism, execution is triggered 

by a batch system daemon running on the worker node and the temporary area cleaned 
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(removed) when the job execution is done and necessary output transferred. If the batch 

system does not provide scratch management, it results in the disk on the worker node 

getting full, eventually leading to an unusable worker node if the temporary areas 

created for individual jobs are not cleaned manually.   

5.4.1.2 Limit on local job names 

Batch systems like OpenPBS and BQS have limit on the characters that are used 

to name the job. For example PBS has a 10 character job name limit; BQS has a 20 

character job name limit. It is hence essential to map a Grid job name greater than the 

local batch system limit to a job name with characters within the local batch system 

limit.  

5.4.1.3 Job lookup failures 

The SAM-Grid was initially interfaced to three different batch systems: PBS, 

BQS, and Condor. After submitting jobs on the order of hundreds, the SAM-Grid 

periodically polls their status. In our experience, all of these batch systems, especially 

when under stress, have failed to report the status of the local jobs, either because the 

polling request (condor_q for Condor and qstat for PBS) timed out (as observed for 

PBS, or because the batch system temporarily couldn’t find the job in the queue for 

BQS). It should be noted that this transient condition would not disrupt the activity of 

an interactive user. To the contrary, it causes the Grid to consider the job terminated, 

thus creating a resource leak.  
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5.4.1.4 Black hole effect 

Physics simulations using Monte Carlo methods constitute a major percentage of 

Grid applications. It’s their inherent parallelism that lends them to execute on 

computational Grids. Parallelism is a way to accelerate the convergence of a Monte 

Carlo computation. If N processors each execute an independent copy of a Monte Carlo 

computation, the accumulated result will have variance N times smaller than a single 

copy.  Grid jobs in production Grids like SAM-Grid manifest themselves into multiple 

local jobs at an execution site. Most of the execution sites have a mix of dedicated and 

non-dedicated computational resources, managed by a network batch queuing system 

such as Condor, PBS and BQS, operating in distributed, networked environments. 

When a Grid job is instantiated at the execution site it usually outnumbers the compute 

elements (nodes), resulting in local jobs getting queued in the batch system. The batch 

system schedules these local jobs on compute resources as they become available. The 

application relies on some basic services provided by the compute nodes, if any of these 

required services malfunction; the application fails and is evicted by the batch system. 

The batch system and the monitoring software typically do not deal with application 

specific failures. If other jobs of the same application are scheduled on the faulty node, 

it is bound to fail. From the application point of view the compute resource in question 

is as good as unavailable, but the batch system might continue to schedule jobs on the 

same compute node causing spurious high turnaround, and eventually yielding very low 

throughput for the Grid job. This effect is called the Black Hole effect, and the compute 

nodes which malfunction with respect to the application are called black holes. The 
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effect is not limited to only Monte Carlo jobs, but can manifest itself for any type of 

application. 

5.4.2 SAM-GRID Batch System Idealizers 

The aforementioned problems are solved in the Grid-Fabric interface layer by 

providing a level of abstraction on top of the batch systems, with the purpose of 

increasing the reliability of the interaction with them. This layer is the “idealizer”, as it 

idealizes the behavior of the underlying batch system. The Batch System Idealizers 

provide features like aggregating polling requests in order to reduce the stress to the 

batch system, providing a scratch management service by bootstrapping the executable, 

providing a mapping between the Grid job names (Global job ID) and local batch 

system constraints regarding the limit on number of characters to be used for the job 

name. The idealizers shield the Grid application from black hole effects by statistically 

determining the faulty nodes. Retrials are incorporated with exponential back off for job 

lookups, thus providing a buffer to deal with transient failures. The Batch System 

Idealizer layer gives full consideration to local batch system configurations and takes 

advantage of some of the custom built services. For example the qselect command for 

the BQS batch system is an optimized version of the qstat command to poll jobs in the 

batch system. On the Condor cluster at the University of Wisconsin, a job submitted to 

a category of special nodes had high priority and no preemption.  
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CHAPTER VI 

EXPERIMENTAL RESULTS 

The SAM-Grid infrastructure has been actively used for producing simulated 

events using Monte Carlo methods for the DØ collaboration since March 2004. 

Efficiency of the Grid infrastructure for producing Monte Carlo events is measured as 

the ratio of number of simulated physics events produced by the SAM-Grid to the 

number of events requested. 

Efficiency of Monte Carlo production
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Figure 6.1 Efficiency of Monte Carlo production using SAM-Grid 
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Figure 6.2 Monte Carlo production using SAM-Grid 

 

As shown in figure 6.1, the average efficiency (indicated by the pink line) of 

SAM-Grid was improved from 67% to 95% over a period of six weeks. As seen from 

the figure the SAM-Grid efficiency increased from 65% to 90% after the second week. 

The main reasons for this increase were the incorporation of retrials with exponential 

back-off at different layers (for example SAM-Grid job managers and batch idealizers) 

Number of events produced 
Efficiency =                                                              X 100 

 Number of events requested 
 



 

 63

of the Grid-Fabric interface; this improved the performance of the system when the 

central database server was heavily loaded. A lightweight mechanism for transferring 

data from other SAM Stations was developed. This mechanism improved on the process 

of fetching input data by running SAM projects on the execution site and then selecting 

the required files from all the retrieved files. Instead of fetching all the files in a dataset 

and then selecting from them, only file identities were retrieved and the necessary files 

were retrieved using these file id’s from preferred replica locations. Aggregating 

requests to the database and working closely with site administrators were some of the 

other contributing factors for the improvement of efficiency. 

Figure 6.1 also shows the efficiency of three execution sites individually. The 

brown line shows the efficiency for CCIN2P3 execution site in Lyon, France. The 

efficiency for this site was better than the efficiency of the other two sites shown in the 

graph for most of the weeks. The primary reason being that the cluster was operated and 

supported 365 days a year. Configuration related issues like migration of worker nodes 

from Red Hat Linux 7.3 to Red Hat Linux 9 and pre-emption on the University of 

Wisconsin’s Condor cluster were the main causes of inefficiency due to 

incompatibilities between the glibc libraries. On the Manchester cluster (indicated by 

sky blue color) the main causes of inefficiency were issues relating to system clock 

skew on the worker nodes and the frequent deactivation of the local data handling 

interface (SAM disks) due to manual interference by the local users.   

Figure 6.2 illustrates the Monte Carlo event production corresponding to the 

period during which the efficiency was measured. It is important to note that the 
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number of events requested fell during the 4th week, but the efficiency increased as 

illustrated in figure 6.1. A special mention of a particular category of failures that was 

observed in two of the execution sites (University of Wisconsin and Manchester). As 

discussed in section 5.4.1.4, even if a single node in the cluster is ill configured and 

makes the jobs scheduled on it crash, the batch system keeps sending idle jobs to it, 

leading to the whole queue of jobs crashing. In the SAM-Grid framework, A single Grid 

request is mapped into multiple local jobs. Typically the number of local jobs exceeds 

the compute resources, resulting in local jobs being queued in the batch system.  

Reduction in efficiency due to the black hole effect 
for a 35 node Condor cluster. 
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Figure 6.3 Reduction in efficiency and throughput due to “Black Holes” 
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The detrimental effect that these ill configured nodes (Black Holes) have on the 

efficiency of a Grid job due to the failure of local jobs is illustrated in Figure 6.3. 

At the University of Wisconsin’s Condor cluster, one of the worker nodes had 

configuration problems (older version of the GNU tar utility). This dual processor 

worker node failed every job scheduled on it and contributed to two “Black Holes”, thus 

reducing the maximum efficiency of the Grid submission. This problem was fixed by 

statistically determining faulty nodes and eliminating them for the application via the 

Batch System idealizers. Lessons learned in deploying SAM-Grid for DØ Monte Carlo 

production and the resolutions of problems are discussed in detail in [6]. The Black 

Hole effect is discussed in detail in [41]. 

SAM-Grid infrastructure currently has around 13 execution sites. Figure 6.4 

shows the number of events produced from March 2004 for 7 execution sites. Around 2 

million physics events were produced during this period from these execution sites, 

which is approximately equivalent to ~19 years in wall clock time of a single 1GHz 

processor (300 seconds per physics event). 

Figure 6.5 illustrates the number of global (also known as Grid) jobs submitted 

to SAM-Grid. The figure shows the Grid jobs submitted to three execution sites, the 

Condor cluster at University of Wisconsin- Madison (Red line), consisting of single and 

dual processor machines running Linux (Red Hat 9). Approximately 200 jobs can start 

simultaneously on the cluster. The blue line indicates the Grid jobs submitted to the 

CCIN2P3 in Lyon, France running Linux (Red Hat 7.2). The batch queuing system is 

BQS and the cluster can execute 130 jobs concurrently in the queue to which the Grid 
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jobs can be submitted. The green line indicates the amount of Grid jobs submitted to the 

30 (Dual processor) machines PBS cluster at the Manchester University, UK. 

 

Figure 6.4 Number of physics events per execution site from March 

 

A typical production Grid job, translates into multiple cluster jobs depending on 

the number of events requested and the site configuration. For example a 50,000 event 

Grid job is translated into 200 local jobs queued in the batch system if the site 

configuration parameter in 250 events per local job. 
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Figure 6.5 Number of Global (Grid) jobs created in a month. 
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CHAPTER VI 

CONCLUSIONS 

7.1 Conclusions 
 

Grid computing is an active area of research and development. The number of 

academic Grids has jumped six-fold to 500 through the year 2004 [82]. The “customer 

base” of scientists, who are often also application writers, drive Grid developers to 

produce tangible solutions. History indicates that technologies have always been driven 

by need of applications which have a large user base. In 1998 Tim Berners-Lee’s need 

to communicate his own work and the work of other physicists at CERN led him to 

develop HTML, HTTP, and a simple browser, which form the crucial elements of 

today’s World Wide Web [9].  

SAM-Grid has been developed to satisfy the needs to Run-II experiments at 

Fermilab. The DØ collaboration has been extensively using the SAM-Grid 

infrastructure for its computing needs, and the CDF collaboration has started using the 

Grid framework for Monte Carlo production. The CMS [48] experiment has expressed 

interest [45] in some of the services that the Grid-Fabric interface offers. A solution to 

the problem of interfacing the fabric to the Grid middleware as described in Chapter 4 

has been presented in Chapter 5 by  
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1) Implementing extensible application specific Jobmanager, thus providing due 

consideration to the application imposed complexities and leveraging the use of the 

SAM data handling system. 

2) Providing a sandboxing service for dynamic installation of execution environment at 

the worker nodes. 

3) Interfacing the Grid fabric with existing Grid middleware like Globus® and Condor. 

4) Handling the inefficiencies of the local resource managers, such as batch systems. 

5) Providing a virtual service, Batch Adapters, to interface different batch systems to 

the Grid middleware via simple API’s. 

The efficiency measurements presented in the last chapter, as well as the SAM-

Grid team’s experience in deploying Grid technologies suggest that the major cause of 

inefficiencies in a practical Grid of heterogeneous resources are the issues related to the 

configuration of the fabric. The greatest asset that SAM-Grid has is the SAM data 

handling system. Most of the contemporary Grid’s lack a sophisticated data handling 

system. 

Fabric elements like computing clusters and the services provided by the Grid-

Fabric interface are prone to misconfigurations. Knowledge transfer between Grid 

software developers and site administrators is crucial. There is a more human aspect to 

a working Grid than the software aspect. If the site administrators migrate to a new 

version of the operating system or create directories in disk areas used by the data 

handling system, this typically causes application failing. Sophisticated site 
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configuration tools and more Grid ware fabric elements can make the Grid function in a 

better way from the user’s perspective. 

7.2 Future research 

The Grid software development is getting oriented towards services 

architecture, the open Grid services architectural (OGSA [30] [31]) effort is working to 

take Grid technologies and integrate them into a Web services [32] framework. Efforts 

are underway in various standardization bodies, like Global Grid Forum (GGF) [83] to 

document "best practices", implementation guidelines and standards for Grid 

technologies. As Grid technologies mature, so will the Grid fabric. SAM-Grid is now 

concentrating on data reprocessing and analysis applications for the DØ collaboration. 

Significant challenges lie in utilizing the fabric for data reprocessing as the size of input 

sandboxes increase. Fault tolerance in the job management system is of prime 

importance, when thousands of local jobs are launched simultaneously.  Fabric 

misconfigurations have been a major source of inefficiency, as sophisticated Grid aware 

fabric make inroads, some of the services in the middleware and the Grid-Fabric 

interface, which compensate for the fabric deficiencies can be removed, at the same 

time new sophisticated services like advance resource reservation can be added. The 

fabric management tools developed by the EU DataGrid project are steps in the right 

direction [28]. It should be noted that currently there is no such thing as “THE GRID” 

“THE GRID” is a vision, more likely to be a conglomeration of interoperable Grid.
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