JIM (SAMGrid) Job Managers

Design manifesto and developer’s guide

1 Introduction

JIM, or SAMGrid, job managers are the main part of SAMGrid job management on the Grid-Fabric boundary. JIM job managers provide a framework for instantiating SAMGrid job at the execution site as a collection of local jobs. Developed as part of the SAMGrid project, they manage the complexities of HEP jobs, most notably, “production” D0 and CDF jobs such as Monte-Carlo and reprocessing. Our job managers conform to the standard Globus GRAM protocol and rely on two more components: SAM batch adapters/idealizers and JIM sandboxing.

Note that the component presented herein is on the Fabric side of the overall SAMGrid job management developed within JIM; we therefore caution the reader against misunderstanding the scope of the component. The Grid-side (or Grid-level) job management in JIM is based on the Condor-G technology as documented elsewhere. The two levels work organically together as described in SAMGrid papers and summarized later in the document.

The primary purpose of this document is to disclose our design ideas and shed sufficient light on the implementation so that further development is facilitated. Our intended audience is therefore comprised by SAMGrid developers as well D0 and CDF collaborators who wish to extend the SAMGrid job management suite with new job types (of course, extensions of the design framework are encouraged as well). This document is not a replacement for in-line documentation and tries to avoid excessive detailing which may become de-synchronized with the code itself, i.e. our focus is on the ideas rather than the code.

The document is organized as follows. First, we sketch the whole picture of the job management in SAMGrid. We then proceed to the principal features of the job management at the Fabric boundary, i.e. our package. Next, we give some details of the physical design and implementation. We conclude with the status of this SAMGrid component.

2 Sketch of Job Management in SAMGrid
We summarize JIM job managers as follows (references to detailed papers are found under the Papers section at http://www-d0.fnal.gov/computing/grid/). At the high (Grid) level, user jobs are described logically as requests; for example, a job of type D0 Monte-Carlo has MC Request ID, specification of the D0 release version, data input (including minimum bias mix-in) as SAM dataset(s), any other control parameters and, lastly, the size of the job such as the total number of events desired. The job is presented to the Grid scheduler through extremely thin user interface:

[image: image1.png]‘Submission
Client





Figure 1. SAMGrid job management from the Grid level
The scheduler (queuing system) communicates with the Request Broker to determine the Grid site for the job to run. In initial implementation, jobs are not split across multiple sites. The Broker is embodied as the Condor-G Matchmaking Service (MMS), which is a unique SAMGrid design feature. The Broker utilizes information collected from the participating sites through the native Condor-G advertisement framework. (The MMS and the Collector, conceived in the original Condor system, were introduced at the Condor-G level through the D0-Condor collaboration under PPDG). Once advised by the Broker, the Scheduler inserts (pushes) the job into the chosen site through the Gatekeeper using the standard GRAM protocol implemented in Condor-G. The job is received by the JIM job managers described herein.

We emphasize the hierarchical structure of the job. A single Grid job is mapped onto many local (i.e. materialized in the batch system of the site) jobs. In our opinion, this provides a clear, hierarchical view of the jobs where the Grid-level job management deals only with high-level jobs, easily understood by user scientists, and detailed decomposition of the job into runnable (in the batch system) tasks is left for the Fabric-resident services. This “divide and conquer” paradigm therefore facilitates job management and scales well with the workload increase. 

Strictly speaking, our job structure is such that a Grid job is mapped (decomposed) onto one or more cluster jobs, each cluster job being scheduled at one site; it is the cluster job that is decomposed into a collection of local jobs. As of the time of wring this document, however, Grid job corresponds to only one cluster job, and in the remainder of the document we use cluster job and Grid job interchangeably.

To complete the big picture, the Fabric-side JIM job managers perform the rest of the SAMGrid job management; we now proceed to the details.

3 Principal Features

Once the JIM job manager (JJM) receives the job specification, it dispatches the job to the handler appropriate for this job type (specified by the user at the time of Grid job submission). The main purpose of the handlers is to instantiate the Grid job as a collection of local jobs. We first describe the most important part – job submission, we then touch on lookup/kill, and conclude with notes on how the overall flow of control in JJM’s is driven.

3.1 Logic of Submission

First, checks for errors are done. Note that, since SAMGrid does not rely on any experiment-specific software preinstalled at the site, there is considerably less room for errors, for example, there does not exist a possibility of user specifying a D0 release version that is not installed at the site. 

Second, the number of the jobs to be submitted is determined, based on:

· the size of the Grid job (specified as part of the request or explicitly in the Grid job definition file) in terms of Physics units such as events 

· the user-supplied CPU per event, if any,

· the locally configured capabilities of the site, in terms of recommended, or maximum, CPU per local job.

The last two quantities are harder to define in practice; in their absence, “rules of thumb” are used, e.g. the typical number of D0 MC events per job is 250. Additional considerations include whether it is desirable/possible to handle multiple output files in each phase of the job etc.

Third, the job’s starting command line with arguments is determined. For example, in D0 MC the command is “mc_runjob” with one of the arguments being the SAM request ID.

Fourth, the job is physically packaged and prepared for submission, using the JIM sandbox service, whereby the job driver is wrapped and packaged together with other files such as SAM clients.

Fifth, the actual job submission command is read from the SAM batch adapters “database” and the command is actually executed the appropriate number of times, computed in the second step. The local job ID’s are extracted from the output.

Sixth, monitoring is initiated by creating an entry in the local JIM XML database and populating it with the associated local jobs.

3.2 Monitoring

JIM Monitoring of the local jobs at the Grid-Fabric boundary has two aspects. One validates the existence of the constituent local jobs in the batch system (BS), and thus keeps the status of the Grid job as “active” as far as Grid scheduling machinery is concerned. It is very important that JJM machinery be able to validate the job’s presence. Otherwise the Grid machinery will prematurely initiate job shutdown, or, conversely, it may indefinitely “think” that the job is still running at the cluster. Thus, all the “glitches” of the batch system and/or the head-node must be carefully absorbed through retrials and other robustness mechanisms in the lookup commands. In part, these retrials are implemented in BS-specific way through BS idealizers (i.e. wrappers around batch system commands that make their reports more precise). These idealizers were added to the SAM batch adapters as part of preparing the batch system tools for addition of upper software layers. In part, retrials work at the level above the idealizers in the JJM’s themselves. We also use the term status aggregation to represent the return of a simple GRAM status after querying for multiple local jobs. Most of the time, the aggregated status is “active” or “done”; “unsubmitted” and “error” are also used.

The other aspect is primarily intended for human consumption to provide detailed information about the job states. Unlike in the first aspect, we gather and analyze detailed information about each individual local job, including their completion times, using XML databases local to sites. What is more, further detail specific to the job type at hand can be easily added to the same database by virtue of extensibility of XML data structures. For example, the states of individual Monte-Carlo phases are published in our database. (In case of D0, it is possible to display that e.g. the d0gstar phase has completed 117 out of 250 events). Some of this specific information is populated by means external to JJM’s, including the D0 MC driver, mc_runjob, or by other JIM infra-structure such as sandboxing wrappers. 

The SAM batch adapters are used again and must therefore have been configured properly for JJM’s to function.

3.3 Termination and Cleanup
Similarly to submission and monitoring, we need to provide the service of stopping (more or less reliably) all the local jobs that constitute the Grid job. The only non-trivial part of job termination is the gathering of all the standard output/diagnostic/other files, deposited by the jobs back into their sandbox. JJM’s make up a file name stem for these output files, with unique suffix such as the local job ID, appended by (for) each job. These files are combined into a tar file, log files of the JJM’s themselves are added, and the resultant single output file is returned through GRAM protocol back to the Grid (i.e. to the Grid job spool area at the submission site). 

3.4 Driving the JIM job managers

The overall flow of control is driven by the Globus job managers, as we aimed at maximizing the use of Globus toolkit and minimizing the development of thick high-level (application-specific or VO-specific) services. Here we give more detailed definition of the job managers and describe the flow of control.

When the initial GRAM (Grid job) request is received, the Globus gatekeeper spawns the Globus job manager process which uses the job manager scripts for the purposes of actually managing the jobs. SAMGrid job managers are actually these scripts driven by the external process (job manager per se as defined in the Globus terminology). This process calls the submission script, then it repeatedly calls the lookup script, and eventually the termination script, after which it exits itself.

To conform to this protocol our scripts have to return certain information in a simple format into the standard output stream, and they are required to complete their operation within a short time allotted to them (30 seconds in the earlier versions of Globus, with more freedom added later). Since the batch system response time is uncontrollable, it was technically difficult to ensure the timeliness of completion. In addition, debugging was complicated as no other messages could be output, and any accidental output would greatly confuse the job manager process. As an implementation detail, we overcame these difficulties by launching scripts in the background and carefully avoiding duplicate processes. 

Naturally, control flow would be simplified if we had developed the driver process, similar to the ALIEN environment.

4 Physical Design

The following figure depicts the internal structure of our package.

[image: image2.png]Shell Adapter., Per!

IM scripts,
Jobmanager-samgrid-XXX,

!

Concrete JM adapters

- - for job types:
Main Implementation,
run_grid_job.py, Python DO MC Adapter
AbstractIM |, DO merge Adapter
Adapter - —

‘\

CDF MC Adapter





Figure 2.The internal structure of the JIM job manager package

As we have described earlier, the Globus job manager is outside our package. The Perl to Shell adapter were written when the Globus job management bundle changed from Shell to Perl, thus incapacitating the scripts that we had developed with an earlier Globus release. The actual shell scripts provide Globus protocol conformance, including the aforementioned compensation for the batch system response time. These pass control to the main module, run_grid_job.py, which actually implements all the functionality described in the section on principal features.

The main implementation module uses a (semi-) abstract job manager adapter. Handlers of particular job types (such as D0 Monte-Carlo) are implemented in separate files. Some of the methods in this adapters are:

· getNumSubmissionTimes()

· prepareWorkArea()

· getCommandAndArguments()

We refrain from complete listing which might quickly become obsolete and refer the reader to the actual code (see below).

The bulk of the code is common for all the job types with concrete JM adapters being quite thin. To extend the package with a handler for a new job type (e.g. CDF file concatenation), one, obviously, needs to provide a subclass of the JM adapter class and then register the new (Python) file as a “known module” in the main implementation file.

5 The Code

The implementation physically resides in the CDCVS package jim_job_managers. Its src/python subdirectory contains the main, common run_grid_job.py file along with concrete “plug-ins” for the particular job types (e.g. run_grid_job_cdfmc.py). Other directories of interest are src/shell and src/perl.

The package is presently distributed via FNAL KITS. It uses, as a dependency, the jim_sandbox and sam_batch_adapters products and miscellaneous utilities common for many SAMGrid packages. When the package is distributed, the code is mostly moved from the “src” to the “libexec” directory. When SAMGrid job managers are installed, the package registers itself as the Globus job manager of the type “jobmanager-samgrid”. It is then advertised to SAMGrid by the jim_advertise package.

6 Status and Issues

The product’s core framework is deemed to be reasonably stable and we do not anticipate additional significant development in the near future. We anticipate that more RUN II job types will be adapted and added, hence we hope that this document has accomplished the goal of introducing the ideas to the future developers.

7 Suggestions

Please send your suggestions (or) comments about this document to Igor Terekhov (terekhov@fnal.gov) and Gabriele Garzoglio(garzoglio@fnal.gov). 

Last updated on Monday, August 30, 2004.












































































































































































