
4/10/00
Philosophy and Plans

Introduction
– Philosophy behind our code management

system

– Constraints on the system

– Choices that we’ve made
• Details

– Some operational details

– How to improve it

4/10/00
Philosophy and Plans

Philosophy behind our code management
system
– Use tools that exist

– Improve the existing tools as needed

– Write new ones only when necessary

Upside
– Could get started ASAP

– Saved development time/work

Downside
– Had to make compromises

– Had to rewrite some tools after we’d started
using them

– Maintenance is, perhaps, harder

4/10/00
Philosophy and Plans

Constraints
– Tight version control, history

– C++
• Severe coupling requires “monolithic” builds

• “non-standard” compilers

– Multi-platform support

– Multiple simultaneous versions

– Multiple widely dispersed developers
• most/many are non-expert

– Remote development sites
• Remote distribution by non-experts

4/10/00
Philosophy and Plans

Choices
– CVS

• free, widely used

• good version control

• allows/facilitates multiple remote developers

– SoftRelTools build system (Babar)
• free

• natural use of CVS

• naturally allows good version control

• naturally allows monolithic builds

• multi-platform support

• multi-compiler support

– UPS/D, Fermilab’s Unix Product
Support/Distribution

• free

• allows multiple versions to co-exist on a single
machine

• has good remote distribution capabilities

4/10/00
Philosophy and Plans

Choices (details)
– CVS

• http://www.loria.fr/~molli/cvs-index.html
especially the reference manual at:
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html

• We “release” only tagged (cvs rtag) versions.
This allows remote developers to share code
using cvs (cvs checkout and update from the
trunk’s “head)

4/10/00
Philosophy and Plans

Choices
– SoftRelTools build system

– http://runIIcomputing.fnal.gov/runiiweb/
cmgt.html

– Basic structure is:

Disk Base

releases Packages

t1 t2 . . .
p1 p2 . . .

v1 v2Bin lib include

p1 src

v9

p2 src

4/10/00
Philosophy and Plans

Choices (details)
– SoftRelTools

• Build system is based on gmake

• Collection of makefile fragments
– supply the make targets and rules

• Packages contain
– GNUmakefile in each directory

– define make variables that direct that specify
what needs to be done in each directory and if
there are subdirectories that need to be
processed.

– Ctest/Ctbuild
• http://www-d0.fnal.gov/software/cmgt/ctest/

ctest.html
a bit out of date, but...

• an interface to SoftRelTools that replaces the
GNUmakefiles (except the top level one) with
straight text files to direct the build.

4/10/00
Philosophy and Plans

Choices (details)
– UPS/D, Fermilab’s Unix Product

Support/Distribution
• http://www.fnal.gov/docs/products/ups/

• UPS (Unix Product Support)

• users see as “setup <product>”

• Allows multiple versions of a single “system”
product to be available simultaneously

• totally rewritten by FNAL Computer Division
– less intrusive, can be installed and used totally

within a single non-privileged user’s resources.

– Can be installed in a shared mode either
privileged or non-privileged.

» Privilege allows “#!/usr/local/bin xxx”

– UPD (Unix Product Distribution)
• used is pull new versions of products from a

distribution node and declare them to the local
ups database:

– fnkits.fnal.gov

– www-d0.fnal.gov

– any others

4/10/00
Philosophy and Plans

Choices (details)
– UPD (Cont)

• Can be used to pull only the structure of a given
release, or the whole thing

– upd install -h www-d0.fnal.gov
D0RunII <ver> -q dist

all packages needed
the links etc
ready to build

– upd install -h www-d0.fnal.gov
D0RunII-bin <ver> -q $SRT_SUBDIR

everything from the previous one
plus binaries corresponding to $SRT_SUBDIR

4/10/00
Philosophy and Plans

Choices (details)
– UPC (Unix Product Census)

• Allows a remote site to compare their UPS
database with the one(s) at the distribution sites.

– UPP (Unix Product Pull)
• Allows automated Census (ala UPC) with mail

various forms of notification.

• Allows automated installation (UPD) if you’ve
got the fortitude.

– We have never tested either of these for lack of
time.

4/10/00
Philosophy and Plans

Some Operational Details
These remarks are in response to an email question from Kors
Bos which seems to reflect a lot of confusion from users,
especially the remote and new users.

– A release
• Has a name, ie) t00.84.00, preco03.07.00

we will be able to identify particular data sets by
the name of the release that produced them.

• A release includes everything needed to do
development and to build custom executables.

– A collection of tagged (cvs rtag) package
versions. These are specific instances of each of
the D0 packages.

– Instructions (via ups table file) to “setup”
specific versions of external products needed
during a build.

– The binaries, (bin/, lib/ etc) needed by the build
system to build your executables

– The executables built by the build system except
for those used only for regression testing.

– The rcp files and other data files needed to run
pre-built executables or the ones you build.

4/10/00
Philosophy and Plans

Some Operational Details
– A “golden” release

• Originally was meant to be a release that built
and tested without errors.

• Due to the difficulty of producing these, it now
means (for the “t” series) a release with a d0reco
executable. Soon this will be tightened to mean a
d0reco that runs.

• These are tar’d up for distribution via UPD from
www-d0.fnal.gov

4/10/00
Philosophy and Plans

Some Operational Details
– Release Sequences

• “t” releases are the normal “test” releases done
roughly one/week on IRIX, Linux and OSF.
Most development will be done against these.

• “nt” releases contain a subset of the packages in
the corresponding “t” release. They are done
only on the NT operating system. Development
for NT (Level 3 etc) will be done against these.
They also catch errors that are missed by the
other compilers.

• “production” releases are releases meant for a
particular production environment. They are
meant to satisfy the need of the experiment to be
able to trace exactly what code was used at each
step of the data taking, reconstruction, analysis
chain. They are based on a particular “t” release
but the code goes through much more
verification. Since verification takes a while,
these are usually too old to use for code
development. Currently we have “pmc” (monte
carlo), “preco” (reconstruction) and will have
“l3” (level3) plus others.

4/10/00
Philosophy and Plans

Some Operational Details
– Release Sequence Disk Residency

• “t” and “nt” releases will typically stay on disk
for 3-4 weeks. They are removed when we need
the disk space.

• “production” releases will stay on disk for much
longer and will be available in an archived form
“forever”. Though they are extremely stable,
they can’t change, they are a poor choice to use
for code development.

4/10/00
Philosophy and Plans

Some Operational Details
– Which releases to use.

• Code development
– “t” or “nt” releases

• Looking at some muon tracks.
– Depends on what you are doing:

» to develop methods: “t” or “nt”

» to study the results produced by a “preco”
release: “preco”, the one that produced the
data probably

• Reconstruct all events and look at efficiencies
– Probably “t” or “nt”

– BUT if you want the efficiency for a given data
set, you need the preco that was used to create
the data set.

• Reconstruct all events just simulated
– depends

» if part of a “challenge”, both the pmc
release and the preco release that needs to
be used will be specified. Accountability
the key. We need a well defined, single
valued efficiency.

4/10/00
Philosophy and Plans

Some Operational Details
– Which releases to use (cont)

• Run the latest D0 Monte Carlo
– “t” release

– BUT if part of a challenge or to measure the
efficiency of a real data set, the “pmc” release
will have to be agreed upon by the collaboration.

4/10/00
Philosophy and Plans

How to improve it
– We all know the system isn’t perfect

• Ask three people and they’ll give you three
different answers as to how it isn’t perfect. If
any two of those don’t conflict on the majority
of points I’d be surprised.

– Don’t go off and invent something new!
• We don’t have time to do major

build/distribution system development until after
we have gotten the experiment up and get the
first data out.

– Work with what we have
• incremental improvements are always welcome

• fixes/correction are actively sought.

– Be patient
• Most of the components are maintained by

others (non-D0) who have to satisfy more than
just D0. It takes time to get all the approvals and
to do the testing needed.

4/10/00
Philosophy and Plans

How to improve it
– Be patient (cont)

• BUT if you don’t hear a response in a reasonable
time, remind us, and keep doing it. You are
entitled to a yes/no response at least, and a
reason.

– Don’t be too clever at getting around perceived
deficiencies in the system.

• If there is a real problem/error it needs to be
fixed.

• If there is functionality that needs to be added,
that needs to be done too.

• Most of the time there is a “legal” way to do
what you need to do. You just don’t know it.

Too often workarounds are done in ways that
make the system more fragile. Those come back
to bite us again and again. We are trying very
hard to make the system robust. Cute/clever
workarounds don’t help.

4/10/00
Philosophy and Plans

How to improve it
– Who to contact

• For errors/corrections
d0-release-mgr@fnal.gov (Paul and I)

• For questions as to what’s available, possible
– d0-release-mgr@fnal.gov (Paul) for

SoftRelTools and the build system

– jonckheere@fnal.gov (me) for the rest

• For suggestions for added functionality
– jonckheere@fnal.gov to see if it might already

exist and is possible followed by

– d0rug@fnal.gov to see if there is any support or
need for it.

– Real code!
• If you can show that a changed is “easy” by

supplying real code, that would be best

– Documentation!
• Corrected/new documentation is always needed.

• Best to send us the entire corrected text to just
replace the old version unless it’s an extremely
simple correction.

4/10/00
Philosophy and Plans

How to improve it
– Bottom line

• Ask before you do a lot of work! We’ve seen too
much good work thrown away because it
couldn’t be fit into the whole.

• People willing to work within the system
improving it are welcome but:

– The improvements must be coordinated. That’s
part of my job.

– The improvements must be agreed upon by the
collaboration which in this case means D0Rug.

• People who want to rewrite it should come back
in a couple of years.

