Measurement of the Top Quark Mass

Michael Begel
University of Rochester

for the DØ Collaboration

Frontiers in Contemporary Physics
Nashville, Tennessee
May 2005
Top Production

Top quarks are mainly produced in pairs via strong interactions at the Tevatron

- Heaviest known elementary particle
- Decays before it hadronizes
- $m_t > m_W$
- Constrains mass of the Standard Model Higgs

Top mass is a fundamentally interesting quantity
Classifying Top

\(t \rightarrow Wb \) is \(\approx 100\% \)

\(t \rightarrow Wb \) is \(\approx 100\% \)

dilepton:
- low BR, low BG

lepton + jet:
- BR & BG are manageable

Need to reconstruct electrons, muons, jets, \(b \)-jets, and missing transverse energy

at the Tevatron, the top is produced almost at rest and the decay products are much lighter; they have good angular separation in the lab frame and high transverse momentum
Jet Energy Scale

Top mass measurements require clean mapping between reconstructed objects and partons

- Reconstruct jets using iterative cone algorithm with midpoints ($R_{cone} = 0.5$)
- Calibrate jet energies to particle level
- Map jets to partons
- Correct jet energies to parton level
Jet Energy Scale

Top mass measurements require clean mapping between reconstructed objects and partons

- Response of calorimeter to jets is the dominant systematic uncertainty
- Jet energy scale derived from samples of
 - zero and minimum bias events
 - photon + jet events
 - Z + jet events
 - dijet events
 - in data and simulation
Jet Energy Scale

Top mass measurements require clean mapping between reconstructed objects and partons

- Response of calorimeter to jets is the dominant systematic uncertainty

\[E_{corr} = \frac{E_{meas} - O}{R \times S} \]

Response Correction
Showering Correction
hadronic response
particles in-&-out of cone
uninstrumented regions

Michael Begel
Dilepton Channel

Signature

- Two leptons
- Two neutrinos
- Two b quarks
Dilepton Channel

Signature
- Two leptons
- Two neutrinos
- Two b quarks

Event Selection
- Two high-p_T leptons
- Missing E_T
- Two or more high-p_T jets

Backgrounds
- Diboson (WW, WZ, ZZ)
- Drell-Yan
- $Z \rightarrow \tau\tau$
- $W +$ jets with fake lepton
Dilepton Event Selection

eμ Channel
- electron $p_T > 15$ GeV, $|y| < 1.1$ or $1.5 < |y| < 2.5$
- muon $p_T > 15$ GeV, $|y| < 2$
- $\Delta R(e, \mu) > 0.25$
- $\not{E}_T > 25$ GeV
- $\Delta \phi(\mu, \not{E}_T) > 0.25$
- at least two jets with $p_T > 20$ GeV and $|y| < 2.5$
- $H_T > 140$ GeV

ee Channel
- two electrons $p_T > 15$ GeV, $|y| < 1.1$ or $1.5 < |y| < 2.5$
- exclude $80 < M_{ee} < 100$ GeV
- $\not{E}_T \geq 40$ GeV if $M_{ee} < 80$ GeV
- $\not{E}_T \geq 35$ GeV if $M_{ee} > 100$ GeV
- at least two jets with $p_T > 20$ GeV and $|y| < 2.5$
- sphericity > 0.15

L ≈ 230 pb$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>$t\bar{t}$</th>
<th>Z/γ^*</th>
<th>$Z \rightarrow \tau\tau$</th>
<th>WW/WZ</th>
<th>fake e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\mu$</td>
<td>8</td>
<td>5.2 ± 0.6</td>
<td>0.02 ± 0.02</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.2</td>
<td>0.20 ± 0.06</td>
</tr>
<tr>
<td>ee</td>
<td>5</td>
<td>1.9 ± 0.3</td>
<td>0.59 ± 0.09</td>
<td>0.13 ± 0.08</td>
<td>0.14 ± 0.09</td>
<td>0.07 ± 0.03</td>
</tr>
</tbody>
</table>
Matrix Weighting Method

- Underconstrained kinematics given two neutrinos
- Scan potential top masses
- Solve for top momentum
 - assume two leading jets correspond to the b jets
 - \Rightarrow 4 solutions per tt
 - include detector resolution effects
- Calculate weight as a function of m_t for each event using Dalitz-Goldstein-Kondo method

$$w = f(x) f(x) \times p(E_\ell^* | m_t) p(E_\ell^* | m_t)$$

PDF probability that observed lepton energy comes from top quark with mass m_t
Matrix Weighting Method

- Choose value of m_t with maximum likelihood
- Form binned likelihood with signal and background templates

$m_t = 175$ GeV signal template

$m_t = 120$ GeV signal template

$WW \rightarrow e\mu$ background template

$Z \rightarrow \tau\tau$ background template
Dilepton Mass Results

230 pb^{-1} sample, 13 events selected, 2 events expected background

$m_t = 155^{+14}_{-13} (\text{stat}) \pm 7 (\text{sys})$ GeV

Average fit mass vs. input m_t

slope ≈ 1
offset ≈ 0
Dilepton Mass Results

8% CL with respect to 175 GeV

\(m_{\text{fit}} = 155 \text{ GeV} \)

input \(m_t = 175 \text{ GeV} \)

\(\delta m = 13.5 \text{ GeV} \)

Source Uncertainty

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistical</td>
<td>(+14/-13 \text{ GeV})</td>
</tr>
<tr>
<td>systematic</td>
<td>6.7 \text{ GeV}</td>
</tr>
<tr>
<td>jet energy scale</td>
<td>5.6 \text{ GeV}</td>
</tr>
<tr>
<td>event generation</td>
<td>3.0 \text{ GeV}</td>
</tr>
<tr>
<td>calibration</td>
<td>1.1 \text{ GeV}</td>
</tr>
<tr>
<td>background</td>
<td>1.0 \text{ GeV}</td>
</tr>
<tr>
<td>underlying event</td>
<td>1.0 \text{ GeV}</td>
</tr>
<tr>
<td>PDF</td>
<td>0.9 \text{ GeV}</td>
</tr>
<tr>
<td>total</td>
<td>15 \text{ GeV}</td>
</tr>
</tbody>
</table>
Lepton + Jets Channel

Signature

- One lepton
- One neutrino
- Two b quarks
- Two light quarks
Lepton + Jets Channel

Signature
- One lepton
- One neutrino
- Two b quarks
- Two light quarks

Event Selection
- One high-p_T lepton
- Missing E_T
- Four or more high-p_T jets

Backgrounds
- W + jets
- Multi-jet with fake lepton
Lepton + Jets Channel

Signature
- One lepton
- One neutrino
- Two b quarks
- Two light quarks

Event Selection
- One high-p_T lepton
- Missing E_T
- Four or more high-p_T jets
- b tagging

Advantages of b tagging
- Reduce backgrounds—increase S/B
- Reduce possible jet permutations
 - 0 tags: 12 ways to assign 4 jets to partons
 - 1 tag: 6
 - 2 tags: 2
Secondary Vertex Tagger

- Explicitly reconstruct 3D vertices using tracks in jets.

- Identify as a b jet if the signed decay length significance $L/\sigma > 7$.

$\sigma(d_0) = 11 + 42 \text{ GeV}/p_T \mu m$

- 60% of $t\bar{t}$ events have at least one b-tagged jet
- 4% of $W + 4$ jet events have at least one b-tagged jet
Low-Bias Discriminant

Aplanarity

Choose variables with minimal dependence on m_t
Low-Bias Discriminant

Discriminant purity: 51%
b-tag purity: 76%
Lepton + Jet Event Selection

- isolated e or μ with $p_T > 20$ GeV ($|y_e| < 1.1, |y_\mu| < 2$)
- $E_T > 20$ GeV
- low-bias discriminant > 0.4
- ≥ 4 jets with $p_T > 20$ GeV and $|y| < 2.5$
- at least one jet permutation consistent with $t\bar{t}$ with $\chi^2 < 10$
- at least one b-tagged jet
- ≥ 4 jets with $p_T > 15$ GeV and $|y| < 2.5$
- at least one jet permutation consistent with $t\bar{t}$

<table>
<thead>
<tr>
<th>Channel</th>
<th>topological analysis</th>
<th>b-tagged analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e+jets</td>
<td>μ+jets</td>
</tr>
<tr>
<td>Actual</td>
<td>49</td>
<td>45</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>27.5 \pm 2.2</td>
<td>20.4 \pm 0.9</td>
</tr>
<tr>
<td>W + jets</td>
<td>9.5 \pm 0.45</td>
<td>22.0 \pm 2.6</td>
</tr>
<tr>
<td>multijets</td>
<td>12 \pm 0.55</td>
<td>2.6 \pm 0.5</td>
</tr>
</tbody>
</table>

$\mathcal{L} \approx 230 \text{ pb}^{-1}$
Topological Analysis

- Scan over potential top masses
- Reconstruct top quark
 - 4 jets \Rightarrow 12 unique solutions
 - 2 neutrino p_z choices
 - \Rightarrow 24 unique solutions
- Perform constrained kinematic fit
 - require both W’s have mass $\approx M_W$
 - require mass of the two Wb pairs be equal
 - choose minimum $\nu |p_z|$
 - choose permutation with best χ^2
- Form binned likelihood with signal and background ($W+4$ jet) templates
Topological Analysis

- Scan over potential top masses
- Reconstruct top quark
 - 4 jets \Rightarrow 12 unique solutions
 - 2 neutrino p_z choices
 - \Rightarrow 24 unique solutions
- Perform constrained kinematic fit
 - require both W’s have mass $\approx M_W$
 - require mass of the two Wb pairs be equal
 - choose minimum $\nu |p_z|$
 - choose permutation with best χ^2
- Form binned likelihood with signal and background ($W + 4$ jet) templates
230 pb^{-1} topological sample
44.2 ± 6.6 $t\bar{t}$ events

$m_t = 169.9 \pm 5.8 \text{ (stat)} \pm 7.8 \text{ (sys)} \text{ GeV}$
Lepton + Jets Mass Results

230 \(pb^{-1} \) \(b \)-tagged sample

49.2 ± 6.3 \(tt \) events

\(m_t = 170.6 \pm 4.2 \) \((\text{stat}) \) \pm 6.0 \((\text{sys}) \) GeV
Lepton + Jets Mass Results

Entries: 193
Mean: 7.103
RMS: 1.787

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>+6.8 / −6.5</td>
</tr>
<tr>
<td>Jet Resolution</td>
<td>±0.9</td>
</tr>
<tr>
<td>Gluon Radiation</td>
<td>±2.6</td>
</tr>
<tr>
<td>Signal Model</td>
<td>+2.3</td>
</tr>
<tr>
<td>Background Model</td>
<td>+0.7</td>
</tr>
<tr>
<td>b-tagging</td>
<td>—</td>
</tr>
<tr>
<td>Calibration</td>
<td>±0.5</td>
</tr>
<tr>
<td>Trigger Bias</td>
<td>±0.5</td>
</tr>
<tr>
<td>MC Statistics</td>
<td>±0.5</td>
</tr>
<tr>
<td>Total</td>
<td>+7.8 / −7.1</td>
</tr>
</tbody>
</table>

Run II Preliminary

Source Uncertainty (GeV):
- **topological:** +6.8 / −6.5
- **b-tagged:** +4.7 / −5.3

Jet Energy Scale:
- **topological:** ±0.9
- **b-tagged:** ±0.9

Jet Resolution:
- **topological:** ±2.6
- **b-tagged:** ±2.4

Gluon Radiation:
- **topological:** +2.3
- **b-tagged:** +2.3

Signal Model:
- **topological:** +0.7
- **b-tagged:** ±0.8

Background Model:
- **topological:** ±0.7
- **b-tagged:** ±0.7

Calibration:
- **topological:** ±0.5
- **b-tagged:** ±0.5

Trigger Bias:
- **topological:** ±0.5
- **b-tagged:** ±0.5

MC Statistics:
- **topological:** ±0.5
- **b-tagged:** ±0.5

Total:
- **topological:** +7.8 / −7.1
- **b-tagged:** ±6.0
Lepton + Jets: Ideogram

Method based on same kinematic fit with same low-bias discriminant D_{LB}, but improves statistical sensitivity by

- using all jet/ν solutions for fitted mass m, uncertainty σ, and χ^2
- calculating event-by-event likelihood taking into account all jet/ν solutions and the probability that the event is background (D_{LB})

best permutations have most weight

$$w_i = \exp(-\chi_i^2/2)$$

$$L(m_t, P_{sample}) = \sum_i w_i \left[P_{evt} S(m_i, \sigma_i, m_t) + (1 - P_{evt}) BG(m_i) \right]$$

background shape from Monte Carlo simulation

$$S(m_i, \sigma_i, m_t) = \int dm' G(m', m_i, \sigma_i) BW(m', m_t, \Gamma_t)$$

signal likelihood based on Gaussian resolution and Breit-Wigner

gives relative weight to signal and background term according to estimated per event purity $P_{evt}(D_{LB}, P_{sample})$ so that the events that are most likely top count the most
Lepton + Jets: Ideogram

Lepton + jets selection without b-tagging

- e or μ with $p_T > 20$ GeV
- ≥ 3 jets with $p_T > 20$ GeV
- ≥ 4 jets with $p_T > 15$ GeV
- lowest $\chi^2 < 10$, no cut on D_{LB}

$\mathcal{L} \approx 160 \text{ pb}^{-1}$

$m_t = 177.5 \pm 5.8 \text{ (stat)} \pm 7.1 \text{ (sys)}$ GeV

mean expected statistical uncertainty: 4.6 GeV
Summary

DØ has measured the top mass in two channels with 0.25 fb^{-1} of Run II data.

We are currently improving the jet energy scale and our use of the jet energy scale within the top mass measurement.

Expect improved results soon.