Testing SM in Top Quark Decays

Daniel Wicke
(Bergische Universität Wuppertal)

for the CDF and DØ collaborations

Outline

• Introduction
• W-Helicity
• Top Charge
• Branching fraction
• Summary
Introduction

The Top Quark

- Discovered by CDF and DØ in 1995.
- Completes set of quarks in SM.
- Quantum numbers as for up-type quarks.
- Production and decay properties fully determined within SM.
- Mass is the only free parameter.

Only few of its predicted properties verified
The $p\bar{p}$ Accelerator Tevatron

- Circumference 7 km.
- $p\bar{p}$ collisions
- Run I (1987-1995)
- Run II (since 2001)
 Collision energy 2 TeV
- 2 experiments, CDF and DØ, record events.
 $\mathcal{L} > 1 \text{ fb}^{-1}$ on tape.
Top Production & Decay Channels

Strong production mechanism.
Electroweak production (single top) covered by W. Wagner

- Top quarks produced in pairs
- In SM top quark decays to bW (~ 100%).
 Can this be verified? Does it show expected properties?

- Decay modes are defined by W-decays:
 - Dilepton $(2b + 2l + 2\nu)$
 - Lepton+jets $(2b + 2q + l\nu)$
 - Alljets $(2b + 4q)$

Cleanest channel: Dilepton.
Golden channel: Lepton+jets.
W-Helicity in Top Decays

Does the top decay show the expected spin structure?

SM: only lefthanded particle couple to Ws ($V-A$ coupling), W is lefthanded or longitudinal.

- **Longitudinal W**
 - SM: $f_0 = 70\%$

- **Left-handed W**
 - SM: $f_- = 30\%$

- **Right-handed W**
 - SM: suppressed ($f_+ \approx 0$)

In W-restframe lepton from W stays (preferably)

- orthogonal to b
- along b-direction
- opposite to b-direction

An admixture of $V+A$ wouldn’t change longitudinal contribution.

Daniel Wicke, Testing SM in Top Quark Decays, W-Helicity in Top Decays

Sensitive Observables

Lepton transvers momentum, p_{T}^{lept}
SM suppresses leptons against W direction
no ambiguities

Lepton-\(b\)-quark inv. mass, M_{lb}^2
Uses b and l 4-vectors only.

Angular distributions, $\cos \theta^*$:
Angle θ between lepton and direction from where the top came in W restframe.
Full reconstruction of $t\bar{t}$ kinematics
Uses t, W and l 4-vectors.
CDF Results using M_{lb}^2

Dilepton and $l+\text{jets}$ on 695 to 750 pb$^{-1}$

- Single and double b-tag separately
- One measurement per event
- Compares rec. M_{lb}^2 to $V \pm A$ templates

Dilepton

- Veto against $Z \rightarrow ll$
- Use 2 assignments
 - \times 2 measurements per event
- Compares rec. M_{lb}^2 to templates

Combined result

\[f_+ = -0.02 \pm 0.07 \]
\[f_+ < 0.09 \quad 95\% \text{CL} \]
DØ Results using cos θ

Dilepton and l+jets channel with $\sim 370 \text{ pb}^{-1}$.

l+jets channel
- Compares rec. $\cos \theta^*$ to $V \pm A$ templates

Dilepton channel
- Special difficulty: find W restframe.
- Assumes m_t; use all 4 solutions.
- Repeat reconstruction with smeared momenta 100 times to account detector resolution.

Combined results (assuming SM $f_0 = 0.7$)

\[f_+ = 0.08 \pm 0.08 \pm 0.05 \]

\[f_+ < 0.24 \quad 95\% \text{CL} \]
CDF Results using \(\cos \theta^* \)

Two method in \(l+\text{jets} \) channel with \(\sim 1 \text{ fb}^{-1} \):

Template based

Compares rec. \(\cos \theta^* \) to templates \(l+4\text{jets} \) using “best” \(\chi^2 \) assignment.

Unfolded \(\cos \theta^* \)

Unfold w/ migration matrix, compare to theory \(l+4 \) or more jets using all assignments; weighed.

Results obtained assuming SM \(f_0 \) \((f_0 = 0.7): \)

\[
\begin{align*}
 f_+ &= -0.05 \pm 0.06 \pm 0.03 \\
 f_+ &< 0.11 \quad 95\%\text{CL}
\end{align*}
\]

Results obtained assuming SM \(f_+ \) \((f_+ = 0): \)

\[
\begin{align*}
 f_0 &= 0.606 \pm 0.12 \pm 0.06 \\
 f_0 &= 0.59 \pm 0.12 \pm 0.07
\end{align*}
\]
Top Quarks Electrical Charge

Do objects used to reconstruct tops add up to the expected charge?

Requires reconstruction of:

- W charge \rightarrow lepton charge
- b-quark charge \rightarrow jet charge (more involved)
Jet charge

Sum charge of tracks in b-jet

- Errors from in- and out-of-cone tracks
- Statistical method
- Weighting with p_T helps

$$Q_{\text{jet}} := \frac{\sum q_i \cdot p_{T_i}^{0.6}}{\sum p_{T_i}^{0.6}}$$

Calibration

- Using double (vertex) tagged $b\bar{b}$ dijets w/ soft μ ($\Delta \phi \leq 3.0$)
- Soft μ determines b charge, Q_{Jet} calibrated on opposite jet.
- Disentangle b, \bar{b}, c, \bar{c} contributions to obtain pure b-jet Q_{Jet} distribution
Top Quark Charge Analysis

- Need to assign b-jet to right top
 Choose best fit to top hypothesis
- Combine lepton and b-jet charge to top charge
 (leptonic and hadronic side):

\begin{align*}
Q_{\text{lep}} &= |q_t + q_b| \\
Q_{\text{had}} &= |-q_t + q_b|
\end{align*}

- Templates generated from standard model MC.
 Exotic case by permuting jet charge.

DØ Result (370 pb$^{-1}$)

Unbinned likelihood ratio also accounting for remaining background yields

$$|q_{\text{top}}| = \frac{4e}{3}$$

excluded at 94% CL.
Flavour of Top Decay: V_{tb}

Deviation from SM prediction $|V_{tb}| \simeq 0.999$, $BR(t \to bW) \simeq 100\%$?

Various SM extensions allow for $|V_{tb}| \ll 1$

Investigate ratio of 0, 1 and 2 b-tagged top events to infer

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

CDF expected fractions as function of $R \cdot \epsilon_{b-tag}$

Daniel Wicke, Testing SM in Top Quark Decays, Flavour of Top Decay: V_{tb}
DØ Analysis

$l+$jets channel using 230 pb^{-1}.

- Measure R and $N_{tt\bar{t}}$ simultaneously.
- Tagging probabilities for different jet types required (obtained separately)
- Use kinematic discriminant in 0 b-tag sample to improve separation of signal and background.
- Binned max. likelihood to fit R and $N_{tt\bar{t}}$.
Results

DØ (230 pb⁻¹)

$l+$jets

\[
R = 1.03^{+0.19}_{-0.17} \\
R > 0.64 \quad 95\% \text{ CL} \\
|V_{tb}| > 0.80 \quad 95\% \text{ CL}
\]

CDF (162 pb⁻¹)

$l+$jets and dilepton

\[
R = 1.12^{+0.27}_{-0.23} \\
R > 0.62 \quad 95\% \text{ CL} \\
|V_{tb}| > 0.78 \quad 95\% \text{ CL}
\]

Conversion assumes

\[|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1\]

A long way to SM \(|V_{tb}| \approx 0.999\)

Daniel Wicke, Testing SM in Top Quark Decays, Flavour of Top Decay: \(V_{tb}\)

Further Results

Many other tests of the SM in top decay have been performed:

H⁺ in top decays
Investigate decays of top events
Limits on BR$(t \to bH^+)$ set for various H^+ decay modes and masses.

t' search
Check reconstructed top mass distribution
CDF: 760 pb^{-1}: $M_{t'} > 258$ GeV at 95% CL

tt' Resonance
Investigate $m_{tt'}$-distribution.
CDF and DØ: Compatible with SM.

CDF: 680 pb^{-1}: $M_{Z'} > 725$ GeV at 95% CL
for $\Gamma(Z') = 1.2\%M_{Z'}$.
Summary

- Testing SM in top decay is gaining more and more interest.
- **W-Helicity**: No hint for an admixture of $V + A$

 $CDF (\ 1 \text{fb}^{-1})$: $f_+ < 0.09 (95\% \text{ CL})$

- **Electrical Charge**: Exotic charge value disfavoured

 $DØ (370 \text{ pb}^{-1})$: $4e/3$ excluded at 94\% CL

- **Decay Flavour**:

 $DØ (230 \text{ pb}^{-1})$: $R > 0.64 (95\% \text{ CL})$

- Several additional searches for deviations available.

No significant deviations from Standard Model observed (yet).