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Abstract

Evidence for Electroweak Top Quark Production in Proton-Antiproton Collisions at
sqrt(s) = 1.96 TeV

Thomas Gadfort

Chair of the Supervisory Committee:
Professor Gordon Watts

Physics

We present the first evidence for electroweak single top quark production using nearly

1 fb−1 of Tevatron Run II data at
√

s = 1.96 TeV. We select single-top-like data events

in the lepton+jets decay channel and separate them from backgrounds using the matrix

element analysis method. This technique uses leading order matrix elements to compute

an event probability for both signal and background hypotheses. Using the expected signal

acceptance, background, and observed data we measure the single top quark cross section:

σ (pp̄ → tb + tqb + X) = 4.6+1.8
−1.5 pb

The probability for the background to have fluctuated up to give at least the cross section

measured in this analysis is 0.21%, which corresponds to a Gaussian equivalent significance

of 2.9σ.
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Chapter 1

INTRODUCTION

The field of high energy physics is the study of all fundamental particles and their

interactions at extremely short distances, which are described by a quantum field theory

known as the Standard Model of particle physics. The Standard Model is an extremely

successful framework which predicts and calculates quantities that can be measured in high

energy physics experiments. Perhaps one of the most notable predictions of the Standard

Model is that of the top quark. This particle was predicted long before it was discovered in

1995 because the Standard Model required a particle with its charge and intrinsic spin to

conserve several of the fundamental symmetries built into the model.

The top quark is unique because of its large mass, which is nearly that of a gold atom.

Because of its large mass, creating top quarks requires a tremendously energetic particle

accelerator. Such an accelerator exists, called the Tevatron, located at the Fermi National

Laboratory, which collides protons (p) and antiprotons (p̄) at a center of mass energy of

1.96 TeV. An aerial view of the accelerator facility is shown in Figure 1.1. At the Tevatron

the top quark is primarily studied when a top (t) and antitop (t̄) quark are produced

together; this process occurs for roughly one out of every five billion pp̄ collisions. The

Standard Model also predicts that the top quark can be produced singly at the Tevatron;

however, it is expected to occur at half the rate of top-antitop production, or in nearly one

out of every ten billion collisions.

Measuring single top quark production is interesting for several reasons, but perhaps

the most compelling reason is that one can test the unitarity of the matrix (VCKM ) that

governs how quarks mix. If unitarity is violated (i.e. V V † 6= I) it would provide clear

evidence for physics beyond the Standard Model such as a possible fourth quark generation.

Models which predict new processes that are not allowed by the Standard Model can also
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be tested by measuring the single top production rate. For instance, many theories beyond

the Standard Model predict a large “flavor changing neutral current” rate which could

enhance the single top production rate by one order of magnitude. Finally, single top

is important to measure because it represents one of the largest irreducible backgrounds

for Higgs production at the Tevatron. The Higgs particle is predicted by the theory that

explains why fundamental particles have mass and remains the only Standard Model particle

not to have been found by high energy experiments.

Figure 1.1: Aerial view of the Fermilab accelerator complex.

An outline of this thesis is as follows. Chapter 2 of this thesis gives an introduction to

the Standard Model of particle physics. Also described in this chapter is the motivation

for measuring properties of the top quark along with a detailed description of single top

quark production. Chapter 3 describes the Tevatron particle accelerator at Fermilab used to

create pp̄ collisions at
√

s=1.96 TeV. The decay products of the proton-antiproton collisions

are measured using the DØ detector, which is also described in this chapter. Chapter 4

explains how signals in the DØ detector are used to reconstruct the collision to determine

if it is consistent with single top quark production.

Chapter 5 describes the Tevatron Run II dataset used to search for single top quark
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production. Because single top quark production is rare and its signature is common to

many other physics processes a proper modeling of the background is crucial to the analysis.

Chapter 6 describes the main sources of background to single top quark production as well

as how they are modeled.

To better identify the single top signal contribution in the dataset a technique known

as the matrix element method is employed. This technique uses leading order matrix el-

ements to create an event probability for both signal and background hypotheses. These

probabilities are combined to form a variable for each event which is designed to peak near

one for signal-like events or near zero for background-like events. This technique and its

application is described in chapter 7.

Chapter 8 describes the sophisticated Bayesian statistical analysis used to extract the

single top quark cross section in the dataset. A detailed discussion of the systematic errors

in the signal and background modeling is also provided here. Chapter 9 shows the results of

the single top quark analysis including the measured cross section and signal significance.

Finally, chapter 10 concludes the thesis with a few remarks on future improvements to the

analysis technique as well as possible measurements with an increased dataset.
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Chapter 2

THEORY

All particles and their interactions at short distances are described by a quantum field

theory known as the Standard Model. In the Standard Model there are two fundamental di-

visions of particles: matter particles (Section 2.1) and particles which facilitate interactions

between the matter particles (Section 2.2). The heaviest matter particle in the Standard

Model is the top quark and its properties and production via the strong interaction are

discussed in Section 2.3. Finally, Section 2.4 explains how the top quark is singly produced

via an electroweak interaction.

2.1 Standard Model: Matter Particles

All matter particles in the Standard Model can be categorized either as quarks or leptons.

Quarks are spin-1
2 particles that are grouped into three generations. Each generation con-

tains two quarks: one with fractional electric charge +2
3e (commonly called up type) and

one with charge -1
3e (commonly called down type). Leptons are also spin-1

2 particles that

are grouped into three generations. In the lepton generation, one particle has unit charge

(±1e) and the other has no charge and essentially no mass. The lightest particles in both

the quark and lepton generations are found in the first generation while the heaviest are

found in the third generation. Table 2.1 summarizes the spin-1
2 matter particles in the

Standard Model.

2.2 Standard Model: Particle Interactions

There are three fundamental interactions described by the Standard Model. The first is

the electromagnetic interaction between any objects that carry electric charge such as the

electron or proton. The second is the weak interaction which, at low energies, is responsible

for nuclear beta decay (e.g. neutron → proton + electron + neutrino). The third interaction
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Table 2.1: Properties of the fundamental spin-1
2 fermions in the Standard Model [91].

Quarks Leptons

Gen. Flavor Charge Mass [MeV] Flavor Charge Mass [MeV]

I Up (u) +2
3e 1.5 to 3.0 Electron (e) -e 0.511

Down (d) -1
3e 3 to 7 (e) neutrino (νe) 0 < 2.2 × 10−6

II Charm (c) +2
3e 1.25 × 103 Muon (µ) -e 105.7

Strange (s) -1
3e 80-130 (µ) neutrino (νµ) 0 < 1.7 × 10−4

III Top (t) +2
3e 171.4 × 103 Tau (τ) -e 1777

Bottom (b) -1
3e 4.7 × 103 (τ) neutrino (ντ ) 0 < 15.5

described by the Standard Model is the strong interaction, which binds protons and neutrons

together in the atomic nucleus.

The electromagnetic and weak interactions are unified in the Standard Model in an

SU(2)L ⊗U(1)Y gauge theory. This theory predicts four force carriers: two neutral (B and

W 0) and two charged (W±). These particles are required to explain neutral and charged

current interactions, however the theory does not explain why three of these particles are

observed to be massive and one is massless. To allow for massive force carriers, a neutral

scalar particle (φ = [φ1 φ2]
T ) is added to the theory, with a potential shown in Fig. 2.1.

The addition of this particle and its potential breaks the SU(2)L ⊗U(1)Y gauge symmetry.

This new term gives mass to the two charged force carries (W±) and mixes the two neutral

particles such that one acquires mass (Z0) and the other remains massless (γ). While

this theory is very elegant, its prediction of a neutral scalar particle has yet to be verified

experimentally. The search for this particle, known as the Higgs boson, is one of the foremost

challenges in high energy physics.

The strong interaction is an SU(3) gauge theory mediated by eight massless gauge bosons

called gluons. The gluons interact with any particle that carries color charge, which in the

Standard Model are quarks and the gluons themselves. The strong interaction exhibits

an interesting property that the strength of the interaction decreases as the energy of the
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Figure 2.1: The Higgs ”wine-bottle” potential [11].

processes increases. Eq. 2.1 shows the strong coupling parameter (αS) dependence on the

energy of the process.

αS(E) =
12π

33 − 2nf ln

[

(

E
Λ

)2
] (2.1)

nf is the number of active1 quark flavors and Λ is the natural scale of the strong interaction

(Λ ∼200 MeV). The decreased coupling strength at energies greater than Λ allows quarks

to break their confined states and travel as bare color charges. As the quark begins to

propagate however, it polarizes the vacuum between itself and its color partner until it

becomes energetically favorable to create a new quark-antiquark pair. This process can

repeat itself many times with a net effect of creating of a large number of strongly interacting

particles traveling in the same direction as the originating colored particle.

A summary of the guage bosons which mediate interactions in the Standard Model is

given in Table 2.2.

1The number of active quark flavors depends on the energy of the process. At energies of ∼ 100 MeV,
there are three quark flavors (u,d,s). At higher energies of ∼ 10 GeV, there are five quark flavors (u,d,s,c,b).
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Table 2.2: Properties of the fundamental spin-1 gauge bosons in the Standard Model [91].

Interaction Gauge Boson Electric Charge Mass [GeV]

Strong Gluon (g) 0 0

Weak W ±1e 80.4

Weak Z 0 91.2

Electromagnetic Photon (γ) 0 0

2.2.1 Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

It has been observed that the quantum states that describe a quark when produced via the

strong interaction (e.g. g → bb̄) are not the same as the states used to describe the quark

under a flavor changing weak transition (e.g. W → tb̄). The relationship between the strong

and weak basis states is summarized by the Cabbibo-Kobayahski-Maskawa (CKM) unitary

quark mixing matrix, shown in Eq. 2.2.













d
′

s
′

b
′













=













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

























d

s

b













(2.2)

where [d
′

s
′

b
′

]T are the weak eigenstates and [d s b]T are the strong eigenstates.

The CKM matrix contains the probabilities for charged current transitions of one quark

to another within the same generation or between generations. For example, Vud is the

probability for a down quark to transition to an up quark in a flavor changing weak de-

cay. The experimentally determined values for the CKM matrix elements are shown in

Eq. 2.3 [91]. As seen from this matrix transitions within the same generation are preferred

over transitions between generations.













0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 3.96+0.09
−0.09 × 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 42.21+0.10
−0.80 × 10−3

8.14+0.32
−0.64 × 10−3 41.61+0.12

−0.78 × 10−3 0.999100+0.000034
−0.000004













(2.3)
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Of particular interest for this thesis is the Vtb matrix element. This matrix element has

never been directly measured although it is heavily constrained once the unitarity of the

matrix is imposed. A direct measurement of this quantity is possible through an observation

of electroweak top quark production. The measurement of this process in pp̄ collisions at

the Tevatron is the subject of this thesis.

2.3 The Top Quark

In the Standard Model all quarks exist in left-handed isospin doublets. Thus when the

bottom quark was discovered in 1977, a new left-handed isospin partner quark was required

to exist. The long predicted top quark was finally discovered in pp̄ collisions at the Tevatron

in 1995 by the DØ and CDF collaborations [23, 12]. The top quark is unique from previously

measured quarks because its mass is nearly forty times larger than the next heaviest quark

with a mass of 171.4 ± 2.1 GeV/c2 [41].

Due to its very large mass the top quark has an relatively large decay width. The width

of the top quark can be calculated within the framework of the Standard Model and is shown

in Eq. 2.42. The top quark width is estimated to be 1.53 GeV, which can be converted to a

lifetime of 0.4× 10−24 sec. This lifetime is almost one order of magnitude smaller than the

typical time scale for all strong interactions (1/Λ ∼ 10−23 s) and leads to the property that

the top quark does not form strong bound states [36].

Γ(t → Wb) =
GF m3

t |Vtb|2
8π

√
2

[

1 − m2
W

m2
t

] [

1 + 2
m2

W

m2
t

]

[

1 − 2αs(4π − 15)

18π

]

(2.4)

At the Tevatron the top quark is primarily produced through pair production via the

strong interaction. The cross section for this process has been calculated as 6.77 ± 0.42 pb

for a top mass at 175 GeV [71]. The tt̄ system has been extensively studied at the Tevatron

and the measured cross section in all decay channels agrees well with theory [19, 14, 16, 15,

25, 26, 27, 24, 31, 30]. The leading order Feynman diagrams for tt̄ production are shown in

Fig. 2.2.

2In Eq. 2.4, GF is the Fermi constant, mt is the top quark mass, mW is the W boson mass, and αS is
the strong coupling constant.
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Figure 2.2: Main leading order tt̄ pair production Feynman diagrams [67].

2.4 Electroweak Top Quark Production

Top quarks can also be produced via an electroweak interaction commonly called single

top because only one top quark is produced in the event. At the Tevatron there are two

dominant modes of single top production. The first is the s-channel process defined by

a virtual time-like (Q2
W > 0) W boson formed from a qq̄′ annihilation and decaying to a

top and bottom quark. The second is the t-channel process defined by a virtual space-like

(Q2
W < 0) W boson produced by a light and bottom quark exchange and producing a

forward scattered light quark and a top quark. There is a third mode of production where

the top quark is created in association with an on-shell (Q2
W = M2

W ) W boson; however, the

cross section for this production mode is negligible at the Tevatron. Feynman diagrams for

the s-channel and t-channel production modes are shown in Figs. 2.3 and 2.4. The s-channel

and t-channel cross sections have been calculated in [85, 65, 87, 64, 88, 45, 44, 70] with the

cross sections used in the data analysis shown in Table 2.3.

As stated earlier in this chapter, the top quark prefers to decay to a W boson and a

b quark. The common decay mode to detect single top events is when the W boson either

decays to an electron or muon and an associated neutrino3. For the s-channel, the final

state particles for the leading order process are (1) lepton, (1) neutrino, and (2) b quarks.

The t-channel final state is characterized by (1) lepton, (1) neutrino, (1) light quark, and

at least one (1) b quark. The s-channel and t-channel processes are sometimes referred to

3The W → τντ and W → qq̄
′

channels are not considered in this thesis due to the large expected
background rate.
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Figure 2.3: The leading order Feynman diagram for the s-channel single top production
mode [67].

Figure 2.4: The leading order (left) and an important next-to-leading order (right) Feynman
diagrams for the t-channel single top production mode [67].
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as tb and tqb, respectively.

Table 2.3: Total cross sections for single top quark production at
√

s = 1.96 TeV with
mt = 175 GeV.

Process Cross Section [pb]

s-channel (tb) 0.88 ± 0.11

t-channel (tqb) 1.98 ± 0.25

s + t 2.86 ± 0.27

2.4.1 Motivation for Single Top

Measuring the single top quark production cross section (σ) and the angular differential

cross section ( dσ
dΩ) is interesting as a test of the Standard Model as well as a probe for new

physics beyond the Standard Model. Perhaps the most interesting product of a single top

quark cross section measurement is a direct determination of the CKM matrix element |Vtb|
since the cross section is proportional to the square of this quantity (σ ∝ |Vtb|2). If one

assumes a unitary 3x3 CKM matrix then by measuring |Vub| and |Vcb|, |Vtb| is required to

be within the following range:

0.9991 < |Vtb| < 0.9994 (2.5)

By relaxing the assumption on a unitary 3x3 CKM matrix [89], |Vtb| is allowed in the

following range:

0.06 < |Vtb| < 0.9994 (2.6)

A measurement of |Vtb| that differed significantly from the range shown in Eq. 2.5 would

be clear evidence for physics beyond the Standard Model such as a fourth generation of

quarks.

Another interesting test of the Standard Model that can be made as a result of measuring

single top is to probe the structure of the Wtb vertex. In the Standard Model all single
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top quarks are produced via the left-handed electroweak interaction. If one were to boost

into the top quark rest frame and know the four momenta of the decay products, then the

angular decay distribution for the charged lepton from the W boson decay would follow the

distribution shown in Eq. 2.7 where the angle θl is calculated with respect the top quark

spin vector.

1

σ

dσ

d(cos(θl)
=

1

2
[1 + cos(θl)] (2.7)

In practice, boosting into the correct top quark frame does not always result in 100%

left handed polarized (ŝ • p̂ = −1) top quarks [77]. For the s-channel process there an

ambiguity resulting from the possibility of the up-type quark originating from the proton

and the down-type quark origination from anti-proton and the reverse case. By boosting

into the top quark frame and choosing the spin of the top quark along the direction of the

anti-proton, one can expect to measure 98% polarization of top quarks. For the t-channel,

the addition of higher order diagrams reduces the fraction of polarized top quarks. By

boosting into the top frame and choosing the spin of the top quark along the direction of

the forward down-type quark as seen in Fig. 2.4, one expects to measure 96% of top quarks

to be polarized. By measuring the degree to which top quarks are polarized one can test

the left-handed structure of the Wtb vertex.

Finally, the s and t-channel cross sections are sensitive to new particles predicted by

theories beyond the Standard Model [89]. The Standard Model s-channel amplitude will

interfere with any other diagram that includes a charged vector boson as the interaction

mediator. One example of such a boson is the W
′

which results from an additional SU(2)

group structure in the electroweak Lagrangian. The leading order Feynman diagrams for

the W
′

boson production is shown in Fig. 2.5.

The Standard Model t-channel diagram will interfere primarily with new diagrams that

involve flavor changing neutral currents (FCNC) including the top quark, which are pre-

dicted by models such as supersymmetry and technicolor [89]. A leading order Feynman

diagram for this process is shown in Fig. 2.6.

Thus, by measuring each production cross section to high accuracy, one can test the
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Figure 2.5: The leading order Feynman diagrams for the s-channel like process involving a
W

′

boson [67].

Figure 2.6: A leading order Feynman diagram for a t-channel-like process produced through
FCNC [67].
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validity of new physics models.

2.4.2 Signal Event Generation

An important part of a physics analysis is to have a determination of the kinematic distribu-

tions of signal events along with a cross section estimate to provide a normalization for the

number of events to expect from the pp̄ collisions. Both of these tasks can be accomplished

by Monte Carlo generators. Monte Carlo generators use a set of random numbers to sample

the N-dimensional phase space defined by the number of initial and final state particles in

the event. The trial event is given a weight determined by the differential cross section,

shown in Eq. 2.8, and is selected as a signal event if the weight is greater than a new ran-

dom number sampled from the properly normalized differential cross section distribution.

This method allows for more events to be selected from a region in phase space where the

differential cross section is large and few events are selected from regions of low differential

cross section. The final step of the Monte Carlo simulation is to hadronize4 and shower5 the

final state partons and allow for additional energy in the event resulting from the breakup

of the two protons in the collision. This final step is performed using the Pythia [84] Monte

Carlo generator.

∂σ(~y)

∂~y
=
∑

i,j

fi(Q
2, x1)fj(Q

2, x2) ×
∂σhs,ij(~y)

∂~y
(2.8)

In Eq. 2.8,
∂σhs,ij(~y)

∂~y is the differential cross section for the parton-parton6 collision and

fi(x1, Q
2) and fj(x2, Q

2) are the parton distribution functions (PDFs) that describe the

number density of partons i and j inside the proton. The two parameters in these functions

are the proton momentum fraction (x = pparton/pproton) and the energy scale (factorization

scale) at which the two partons collide (Q). A plot of the parton density functions from the

CTEQ [82] collaboration is shown in Fig. 2.7 for two distinct momentum transfers.

4Hadronization is the process of forming bound states (hadrons) between two or three quarks. A bound
state of two quarks is called a meson and a three quark bound state is called a baryon.

5A shower, or parton shower, is the result of multiple gluon emission from final state particles.

6A parton is a constituent particle within the proton.



15

Figure 2.7: CTEQ 6M parton distribution functions for the gluon and all quark flavors for
a small momentum transfer (left) and large momentum transfer (right). The x-axis is the
proton momentum fraction of the parton and the y-axis is the parton density [82].

Single top signal events are generated using the CompHEP based SingleTop [38] Monte

Carlo generator. The following two sections describe the generation of s-channel and t-

channel production. All events were generated using CTEQ6L1 PDFs. The s-channel events

were generated with Q2 = m2
t and t-channel events were generated with Q2 = (mt/2)

2.

s-channel Generation Using CompHEP

It has been shown in [88] that s-channel kinematic distributions between leading order (LO)

and next-to-leading order (NLO) in αs are the same up to an overall normalization. The

ratio of NLO to LO events, called a k-factor, is 1.3 for the s-channel production mode.

Fig. 2.8 shows the transverse momentum (pT ) and pseudorapidity7(η) distributions for s-

channel events generated by SingleTop.

7The pseudorapidity is related to the polar angle θ. More discussion of this variable is given in Chaper 3.
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Figure 2.8: pT (left) and η (right) distributions of final state particles in s-channel
events [67].

t-channel Generation Using CompHEP and Pythia

Generating t-channel Monte Carlo events is slightly more difficult than s-channel events

because the effective cross section of higher order Feynman diagrams (qg → q
′

tb), shown in

Fig. 2.4, is of the same order as the leading order diagram (qb → tq
′

). A proper treatment of

the combination is required to avoid double counting regions of phase space where the two

matrix elements overlap. The SingleTop generator avoids double counting by defining two

distinct regions of phase space where the different processes are the dominant contribution

to the total t-channel cross section. The first region of phase space is defined by pT (b) <

10 GeV. In this region the final state b quark is produced by Pythia through initial state

radiation (ISR). The second phase space region is defined by pT (b) > 10 GeV. In this region

the b quark is produced by the next-to-leading order Feynman diagram shown in Fig 2.4.

To ensure a smooth transition from low to high b quark pT , the weight for the low pT region

is multiplied by a k-factor to make the leading order Pythia generated b quark pT match

the next-to-leading order b quark pT distribution. The k-factor used at the Tevatron is 1.21

and the effective NLO cross section used in the SingleTop generator is shown in Eq. 2.9.

σNLO = KσPythia|PT (b)<10 + σCompHEP−SingleTop|PT (b)>10 (2.9)

The result of the b quark pT splicing is an almost exact reproduction of many NLO dif-
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ferential distributions. Fig. 2.9 shows pT and η distributions for t-channel events generated

by SingleTop.
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Figure 2.9: pT (left) and η (right) distributions of final state particles in s-channel
events [67].
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Chapter 3

EXPERIMENTAL APPARATUS

All data used in the single top quark analysis was produced by high energy pp̄ collisions

at the Tevatron accelerator and recorded by the DØ detector. The Tevatron is currently the

only collider with enough center of mass energy to directly produce top quarks in relative

abundance. Section 3.1 describes how protons are accelerated to an energy of 980 GeV as

well as how antiprotons are created to produce pp̄ collisions at
√

s = 1.96 TeV. Sections 3.2

and 3.3 give an introduction to pp̄ collisions at the Tevatron and explain several useful

quantities which described particles produced in the collisions. Finally, Section 3.4 describes

the DØ detector that is used to collection information about the particles produced in the

pp̄ collisions.

3.1 Fermilab Accelerator Complex

The Fermilab accelerator complex is a chain of accelerators designed to produce and collide

two circulating beams of protons and antiprotons each with an energy of 980 GeV. Fermilab

employs five unique accelerators to create and accelerate protons and antiprotons: the

Cockcroft-Walton, the LINAC, the Booster, the Main Injector, and the Tevatron. Fig. 3.1

shows a schematic of these accelerators.

3.1.1 Cockcroft-Walton

The first accelerator in the chain is the Crockroft-Walton. In this accelerator a hydrogen gas

is heated which allows an additional electron to bond with the hydrogen atom producing a

net negative charge. The Crockroft-Walton is a DC voltage ladder that produces a voltage

difference of 750 kV across which the newly negatively hydrogen ions are accelerated.
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Figure 3.1: Schematic of the Fermilab accelerator complex [63].
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3.1.2 LINAC

After the negatively charged hydrogen ions have been accelerated to an energy of 750keV,

they are further accelerated by the LINAC (LINear ACcelerator). The LINAC is a 130-m

long set of metallic drift tubes separated by vacuum gaps. An alternating electric field pro-

duced by a radio frequency (RF) power source accelerates the negatively charged hydrogen

ions across the gap while the electric field is parallel with the ion direction of motion. When

the field direction reverses the ions are shielded by the metallic drift tubes. As the ions

increase their speed the gap length and drift tube length increases as shown in Fig. 3.2. Be-

cause the LINAC uses an alternating electric field the continuous ion beam produced by the

Crockoft-Walton is altered such that the protons are concentrated or “bunched” together.

By the end of the acceleration the proton bunches are separated by 5 ns and have an energy

of 400 MeV. Finally, the orbital electrons are removed by passing the ions through a carbon

foil leaving behind the positively charged protons.

Figure 3.2: Cartoon example of the linear accelerator’s alternating series of gaps and drift
tubes [2].

3.1.3 Booster

The next accelerator in the chain is the Booster, which is a circular synchrotron accelerator

475-m in circumference. The Booster consists of RF cavities that accelerate the 400 MeV

proton bunches to an energy of 8 GeV. The proton bunches circulate the Booster 16,000

times and the entire acceleration process takes 33 ms.
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3.1.4 Main Injector

The Main Injector is the next accelerator in the chain after the Booster. This accelerator

uses RF cavities to accelerate the proton bunches to an energy of 120 GeV and employs

strong magnets to keep the protons moving along a circular path. After the acceleration

there are two possible paths for the protons: p̄ production or continued acceleration. The

protons that will eventually circulate in the Tevatron ring are further accelerated to an

energy of 150 GeV and then continue to circulate the Main Injector ring until needed [2].

The remaining protons are used to create antiprotons that will also eventually circulate in

the Tevatron ring. Antiprotons are created when 120 GeV protons from the Main Injector

strike a fixed 7 cm thick nickel target producing a spray of short lived particles and anti-

particles. From this spray roughly 20 antiprotons are produced for every million protons

used [1]. All particles produced from the collision are focused and collimated by a lithium

lens. A bending magnetic is employed to separate the negatively charged antiprotons from

all positively charged particles. To remove the remnant bunch structure the antiprotons

are passed through a debuncher, which separates the antiprotons in space-time as well as

reducing their energy spread. A process known as stochastic cooling is applied to further

reduce the energy spread. This process uses ultra-cold electronics (-269◦ C) to detect and

alter the particles trajectories to make their orbits and thereby their energies more uniform.

Because each pp̄ collision requires ∼ 1010 antiprotons the final stage for p̄ production is

to collect and store large quantities of antiprotons. This is done with the accumulator,

which allows for many circulating beams of antiprotons to be kept for many hours. Once

enough antiprotons have been collected they are sent to the Main Injector where they are

accelerated to a final energy of 150 GeV.

3.1.5 Tevatron

The Tevatron is the final acceleration stage for the protons and antiprotons, which reach

an energy of 980 GeV using RF cavities in the same manner as the Booster and the Main

Injector [3]. The Tevatron uses nearly 1,000 superconducting magnets running at 4.3◦ K

with a magnetic field strength of 4.2 T to bend the two circulating beams around the nearly
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6 1
2 km circumference ring. At an energy of 980 GeV the bunches circulate the Tevatron

ring nearly 57,000 times per second crossing one-another every 396 ns. The two circulating

beams are separated in the ring to avoid direct collisions unless they are further focused.

In the Tevatron ring there are two places where the beams are focused, which correspond

to the two large experiments: DØ and CDF.

3.2 pp̄ Collisions

When the two circulating beams at the Tevatron are brought into focus, an enormous range

of kinematically allowed processes and final state decays are possible. While the outcome

of a particular pp̄ collision is random, the rate at which certain processes occur can be

calculated within the Standard Model framework. The most common type of collision is

an inelastic pp̄ collision which produces one or more particles scattered at low angles with

respect to the beam axis. These processes usually do not involve much energy transfer

between the colliding particles and are therefore called low-pT events. More rare processes,

such as top quark or W boson production, require much more energy to be transferred

between colliding particles. These processes occur when one of the constituent quarks or

gluons inside the proton collide with another quark or gluon from the antiproton. This

process is referred to as the hard scatter process. The hard scatter process can produce

on-shell resonances (Q2 = M2) of heavy particles such as a W Boson or sometimes it can

produce very short lived vritual particles (Q2 6= M2) such as the case with s-channel single

top quark production where a W boson is produced with Q2 > M2
W .

The heavy particles produced in the hard scatter collision will decay into more stable

particles as governed by the interactions allowed in the Standard Model. For very heavy

particles with short lifetimes the decay occurs in a space much smaller than the resolution

of any detector. For instance, the top quark lifetime is ∼ 10−24 s which is more than nine

orders of magnitude smaller than the fastest detector electronics. In fact almost all short-

lived particles produced in the hard scatter can not be measured directly, but instead their

presence is inferred from precise measurements of the their decay products.

The remainder of this chapter is dedicated to describing the DØ detector and how it

makes the measurements required to infer the presence of heavy resonances such as the
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top quark. Section 3.3 gives a short introduction to the coordinate system convention used

throughout the rest of the chapter as well as introduces several new units typically used in

high energy physics. Section 3.4 describes the DØ detector and explains how it is used to

measure the particles resulting from the pp̄ collisions at the Tevatron.

3.3 Coordinate System and Units Convention

The DØ detector is typically referenced using a spherical coordinate system (r,θ,φ) with

an origin located at the center of the detector. The polar angle θ is defined with respect

to the beam axis where 0◦ is aligned with the proton direction and 180◦ is aligned with

the antiproton direction. The azimuthal angle φ is defined with respect to the x-axis as

shown in Fig. 3.3. The z-axis is defined to be parallel with the beam axis with the positive

direction corresponding to θ = 0◦ and the negative direction corresponding to θ = 180◦.

Figure 3.3: DØ coordinate system with respect to the Tevatron ring [86].

It often convenient to convert the angle θ to a quantity called pseudorapidity η defined

in Eq. 3.1.

η = − ln

[

tan

(

θ

2

)]

(3.1)

This quantity is identical, in the limit of massless particles, to the true rapidity y, shown

in Eq. 3.2, which is invariant under a Lorentz boost along the z-direction. This is useful
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because pp̄ collisions at the Tevatron usually occur with such a boost. The pseudorapidity

is 0 for a particle with θ = 90◦ and approaches ∞ as θ → 0◦.

y =
1

2
log

[

E + pz

E − pz

]

(3.2)

Another quantity used when describing the relationship between two objects or the size

of an object in the DØ detector is the solid angle ∆R defined in terms of ∆φ = φ1 −φ2 and

∆η = η1 − η2.

∆R =
√

(∆φ)2 + (∆η)2 (3.3)

Finally, the luminosity is important when describing the intensity of an interaction or

of the accumulated amount of data. The rate of a certain process is equal to the luminosity

L times the Lorentz invariant cross section σ, as shown in Eq. 3.4.

Rate =
dN

dt
= σ ∗ L (3.4)

Most cross sections at the Tevatron are given in terms of pico-barns (10−36 cm2) thus

the units of luminosity are pb−1s−1. The time integrated luminosity
∫

Ldt, with units of

pb−1, is used when discussing the total number of collected events.

3.4 DØ Detector

The DØ detector [21] is a collection of smaller sub-detectors working in tandem to detect and

measure all particles produced from the hard scatter collision. The inner-most detectors

near the beam pipe are the tracking detectors, described in Section 3.4.1, which record

the paths of charged particles as they enter and leave the detector. The next layer of

the detector is the calorimeter, described in Section 3.4.2. The calorimeter measures the

energy of the lightest electromagnetically interacting particles, such as the electron and

the photon, and strongly interacting particles, such as pions or neutrons. Another sub-

detector, called the luminosity monitor, described in Section 3.4.3, is designed to record the

presence of an inelastic pp̄ collision in the bunch crossing. This information is used in the

analysis to normalize backgrounds and expected signal yields. The outer-most layer of the
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DØ detector is the muon detector, which is described in Section 3.4.4. Once the collision

has been measured a complex set of trigger decisions, described in Section 3.4.5, must be

satisfied before the event is recorded to tape for later analysis.

Figure 3.4: Schematic side-view of the DØ detector [21].

3.4.1 Tracking Detectors

The innermost layer of the DØ detector is a set of two tracking detectors designed to

measure the flight path of charged particles. The two detectors, shown in Fig. 3.5, are the

silicon microstrip tracker (SMT) and the central fiber tracker (CFT). The SMT and CFT

are located within a 2T magnetic field generated by a superconducting solenoid magnet.

The presence of the magnetic field within the tracking detectors will deflect all charged

particles allowing a measure of the their charge and momentum through the sign and radius
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of the induced curvature.

Figure 3.5: Schematic of the two tracking detectors (SMT and CFT) as well as the super-
conducting solenoid magnet [21].

Silicon Microstrip Tracker

The SMT is located immediately outside the Tevatron beam pipe and is designed to provide

high resolution position measurements of charged particles. The SMT is a collection of doped

silicon detectors depleted of electric charge by the application of a reverse bias voltage. As a

charged particle enters the depleted region it ionizes the silicon creating electron-hole pairs.

The result of the applied electric field is to force the charges to drift towards active sensors.

The typical drift distance for charges in the silicon is 300 µm. A schematic of the SMT is

shown in Fig. 3.6.

The geometry of the SMT is dictated by the length of the interaction region1 and a

1The typical Gaussian width of the hard scatter interactions is 25 cm centered around z=0.
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Figure 3.6: Schematic of the silicon microstrip tracker sub-detector [21].

desire to maximize the number of layers a charge particle traverses. To achieve this goal

the detector is organized into three structures: the barrel detector, the F-discs, and the

H-discs. The barrel detector is a set of six barrels concentric with the beam pipe that each

contain four double-sided layers of silicon wafers. The barrels provide coverage for centrally

produced charged particles with |η| < 1.1. The F-discs are also double-sided silicon wafers.

These silicon detectors are oriented perpendicular to the beam axis in contrast with the

concentric barrels. There are twelve F-disks in the SMT, six in the central region that cap

each barrel and six in the forward region. The SMT also has four silicon detectors at high

|z| called H-disks, which are oriented perpendicular to the beam axis. In total the SMT has

912 individual readout modules and nearly 800,000 individual readout channels.

Central Fiber Tracker

Immediately outside of the SMT is the central fiber tracker (CFT) which occupies the

radial distance of 20 to 52 cm from the beam pipe. The CFT is organized into 8 layers of

scintillating fibers which produce light when a charged particle traverses the fibers. Each

layer of the CFT consists of two sets of fibers: one that is parallel with the beam axis and

one that is rotated 3◦ with respect to the beam axis. The fibers in the tracker are 835 µm

in diameter and composed of organic scintillating compounds surrounded by a thin layer of

cladding designed to provide total internal reflection inside the fiber. The light produced in

the fiber is carried out of the detector by wave guides with typical travel distances between

8 and 11 m. Because the light is only read out at one end of the fiber the other end is
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coated with sputtered aluminum which reflects 90% of the light back to the end which is

read out. An endview schematic of the CFT layers and their associated waveguides is shown

in Fig. 3.7. Light produced in the CFT is recorded on silicon avalanche photon counters

called VLPCs (visible light photon counter). The VLPCs operate at 9◦ K to reduce thermal

noise and achieve a quantum efficiency of 75%.
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Figure 3.7: Schematic endview of the central fiber tracker with corresponding waveg-
uides [21].
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3.4.2 Calorimetry

The next layer of the DØ detector is the calorimeter. The calorimeter is designed to measure

the energy of electromagnetically interacting particles such as electrons and photons as well

as strongly interacting particles such as pions and neutrons. The DØ calorimeter is divided

into three sub-detectors: one central region (CC) and two end-cap regions (EC) as seen

in Fig. 3.8. Each region is encased in its own cryostat held at a constant temperature of

90◦ K. The region between the two cryostats, 0.8 < |η| < 1.4, is called the inner cryostat

region (ICR) and contains active scintillator to provide a minimal energy measurement in

this region.

Figure 3.8: 3D view of the DØ calorimeter [21].

Each detector region, except the ICR, measures energy using a similar approach by

inducing the incoming particles to produce an electromagnetic shower as they collide with

a dense material. As particles from the shower enter the active region they will ionize the

material. The ions in the active material move towards a sensor due to an applied bias

voltage. The amount of charge collected on the sensor is then proportional to the energy

deposited by the ionizing particle. An example of an electromagnetic shower originating
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from a photon is shown in Fig. 3.9. The typical ion drift time in the DØ calorimeter is

∼ 450 ns.

Figure 3.9: Initial stages of an electromagnetic shower caused by a photon interacting with
an absorber material. The radiation length x0 is the typical distance a photon will travel
before producing an e+e− pair or the distance before an electron will radiate a photon [9].

The DØ calorimeter consists of an inner detector called the EM calorimeter and an outer

detector called the hadronic calorimeter. The EM calorimeter is constructed of alternating

layers of depleted Uranium, which acts as the shower inducing material, and liquid Argon,

which acts as the active medium. The depleted Uranium plates are 3 mm thick in the central

region and 4 mm thick in the forward end-cap region while the liquid Argon active region is

2.3 mm thick. An cartoon drawing of this arrangement can been seen in Fig. 3.10. The EM

calorimeter has four layers of cells representing nearly 21 radiation lengths. The hadronic

calorimeter is actually two detectors: one called the fine hadronic calorimeter which employs

6 mm thick Ur-Ni alloy as the shower inducing material and the coarse hadronic calorimeter

which uses 46.5 mm thick plates of copper in the central region and stainless steel in the

forward region. The hadronic calorimeter also uses liquid Argon as the active material. The

combination of the fine and coarse hadronic calorimeters provides an additional 7 radiation
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lengths to the detector. The numerous radiation lengths are important to ensure that a

particle deposits nearly all of its energy in the detector.

Figure 3.10: Example of a typical calorimeter cell of alternating absorber and active mate-
rial. Particles traverse the calorimeter cell from left to right in this diagram [21].

The DØ calorimeter also has fine segmentation (i.e. radial size of the cells), which

allows for excellent energy and position measurement of particles as they shower in the

detector. The segmentation of the EM calorimeter in δη × δφ is 0.1 × 0.1 for all layers

except the third layer, where the segmentation is 0.05 × 0.05. The fine segmentation in the

third layer is because the electromagnetic shower is expected to reach a maximum in this

layer. The fine hadronic layers of the calorimeter also have a segmentation of 0.1 × 0.1,

while the segmentation in the coarse hadronic calorimeter is 0.2 × 0.2. An octant of the

DØ calorimeter including segmentation can be seen in Fig. 3.11.
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Figure 3.11: Octant of the DØ calorimeter. The fine segmentation of the calorimeter is
clearly seen in this diagram [21]. The alternating dark and light blocks represent cells in
different calorimeter towers.
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3.4.3 Luminosity Monitor

Located directly in front of the end-cap calorimeters, covering a η range between 2.7 and

4.4, is the luminosity monitor, which collects information about inelastic pp̄ collisions for

each bunch crossing. The luminosity monitor is a set of 24 plastic scintillators which can

detect low angle (high η) fragments from the break-up of the protons in the pp̄ collision.

The scintillators produce light when the charged fragments traverse the detector and that

light is recorded by photo-multiplier tubes. A schematic of the luminosity monitor is shown

in Fig. 3.12.

Figure 3.12: Schematic of the DØ luminosity monitor shown in relation to the beam pipe,
SMT, and endcap calorimeter [21].

Collecting information about inelastic collisions is vital to properly normalize all data

collected at DØ. The luminosity monitor is designed to measure the inelastic pp̄ cross

section, which is a quantity that is known from measurements by previous experiments.

By measuring the inelastic pp̄ cross section the total integrated luminosity to which the

DØ detector has been exposed to can be measured [60, 61]. A derivation of the luminosity

from the measured pp̄ inelastic cross section can be found in Appendix C.

Along with providing a luminosity measurement, the detector also acts as a fast vertex

finder. By measuring the relative difference of coincidence counts in the North and South

detectors the z position of the vertex can be determined from Eq. 3.5, where t± are the

time measured by the North (+) and South (-) detectors, respectively. The time of flight

resolution for the luminosity detector is 0.3 ns.
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z =
c

2
(t+ − t−) (3.5)

3.4.4 Muon Detector

The outer-most layer of the DØ detector is the muon system. A special detector is required

to measure muons because they do not deposit much energy in the tracker or calorimeter

and thus a confirmation of their presence using these sub-detectors alone is difficult to infer.

The muon detector has two active regions called the central region for |η| < 1 and the

forward region for 1 < |η| < 2. The system also employs a 2 T toroid iron magnet to bend

the muons from their original paths. The addition of the magnetic field helps to provide

a local momentum measurement in the event the momentum can not be determined from

the tracking detector. Additional shielding surrounding the beam pipe near the forward

muon detector is designed to reduce spurious beam effects which dramatically reduces the

amount of radiation to which to detector is exposed. A schematic of the muon system and

the beam shielding can be seen in Fig. 3.13.

The muon system at DØ is a three layer detector, both in the central and forward

regions, consisting of drift chambers for precise position measurement and scintillator coun-

ters for muon identification and fast triggering (Section 3.4.5). The scintillator counters

produce light when the muon passes through the detector which is then collected by a

photo-multiplier tube. The drift chambers have a central wire held at a large voltage sur-

rounded by an inert gas. As the muon enters the chamber it will ionize the gaseous organic

compound mixture and the resulting free charges will drift towards the wire. The position

of the muon is found by analyzing the current profile in the wire. In the central region

the drift chambers are called PDTs (proportional drift tubes) and are rather large with

typical areas of 2.8 × 5.6 m2. The forward region uses smaller drift chambers called MDTs

(mimi drift tubes), which are a collection of eight cells of size 9.4 × 9.4 mm2. The position

resolution of the drift chambers is ∼1 mm.
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Figure 3.13: 3D view of the DØ muon detector [21].
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3.4.5 Trigger and Data Acquisition System

The previous sections in this chapter describe how the DØ detector collects information from

pp̄ collisions at the Tevatron, which occur every 396 ns. While DØ records information about

every collision, it does not save every event to tape for two reasons: most collisions at the

Tevatron are small angle inelastic collisions which have already been well studied and the

total rate of data one can reliably store to tape is limited to ∼30MB/s. Because DØ can

not save every event, a sophisticated trigger system is employed to reduce the total rate to

tape to 50 Hz. This trigger system attempts to select the most “interesting” events, which

will be used for an analysis or future calibration of the detector.

The trigger system is comprised of three independent stages called level 1, level 2, and

Level 3, which are designed to reduce the total event rate from 1.7 MHz to 50 Hz. A

schematic of the combined trigger system is shown in Fig. 3.14. The level 1 system is

composed of hardware trigger elements and has the goal of reducing the initial rate of

1.7 MHz to 1.5 kHz. Because the level 1 trigger must act quickly to either accept or reject

an event, the tools available for selecting interesting events is limited. At level 1 only

calorimeter trigger towers, which are layers of calorimter cell energies within a δη × δφ =

0.2 × 0.2 space, signals in the muon drift chambers or scintillators, and the transverse

momentum of charged particle tracks in the central fiber tracker are available for trigger

decisions.

Figure 3.14: Cartoon drawing of the DØ trigger system [21].

The level 2 trigger acts on all events which pass the level 1 trigger and is designed
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to reduce the rate from 1.5kHz to 700Hz. The level 2 trigger uses detector specific pre-

processing boards and a global detector board to make trigger decisions. The pre-processors

collect data from the level 1 trigger system as well as readout information from the individual

detectors. The pre-processors use this information to form physics objects such as electrons,

jets, and missing ET
2. A global level 2 pre-processor uses all the information from the sub-

detector pre-processors to make trigger decisions based on event-wide kinematics.

The next stage in the trigger selection process is the level 3 trigger, which is a software-

based collection of algorithms executed on a collection of computer farm nodes. The goal

of the level 3 trigger is to reduce the data rate to tape from 700 Hz to 50 Hz. The level 3

trigger requires the full detector readout to select events, thus all sub-detector data must be

transmitted to the farm nodes. A level 3 data acquisition system was designed to perform

transmitting data over ethernet cables to the farm nodes. Upon a level 2 trigger accept a

controller card in the sub-detector VME crate signals to a single board computer3, located

in the VME crate, to begin collecting the crate data and store it in RAM memory located

on the SBC. While the data is being collected by the SBCs, a dedicated SBC called the

Routing Master is collecting information about the event number as well as the level 1 and

level 2 triggers that initially selected the event. The Routing Master communicates with

the level 3 computer farm regarding its availability (i.e. if it is busy processing events or

waiting for a new event) and assigns each event a unique farm node to which all SBCs

must send the event information. This process is repeated for each event which is selected

by the level 2 trigger. When the SBC has the full crate data stored in memory and a

routing command issued by the Routing Master, the crate data is transmitted via one of

two 100 MB/s ethernet cables to the farm nodes.

Each event that is selected by the level 2 trigger ranges from 250 to 300 kB resulting in

200-300 MB/s of data being sent to the farm nodes. To handle this enormous amount of

data transfer a set of CISCO 2948G ethernet switches which concentrate up to 10 100 MB/s

2Physics objects and event-wide kinematic variables such as missing ET are fully described in Chapter 4.

3The single board computers used in this DAQ are VMIC 7750 with a 933 MHz Pentium-III processor,
128 MB of RAM, 128 MB of on-board flash memory, and two 100 MB/s ethernet connectors. A few of
the CFT crates use 2-1GB/s ethernet connector due to the high event sizes for these crates.
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connections into a 1 GB/s optical fiber. The GB fibers are brought to a CISCO 6509 ethernet

switch capable of transmitting data at a rate of 16 GB/s. A schematic of this hardware

setup and the data flow are shown in Fig. 3.15.

Figure 3.15: Experimental setup of the level 3 trigger and data acquisition system (left)
and the flow of data through the system (right).

When the data arrives a farm node is processed by a programmed called the Event

Builder. This software package combines event fragments from each sub-detector data and

organizes them into a readable format for the level 3 trigger software. If the Event Builder

does not receive data from all sub-detector crates within a one second window after receiving

the first fragment the event is dropped. As stated earlier the Event Builder transmits the

number of events it is currently processing to the Routing Master, allowing this software

to choose farm nodes based on availability. Finally, between two and four level 3 trigger

processes examine the event to see if it satisfies at least one of the trigger criteria. Events

which pass the level 3 trigger are sent over 100 MB/s ethernet for temporary storage on

a machine called the Collector. When enough events are accumulated the data is stored
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on a machine called the Datalogger and finally to tape storage at the Feynman Computing

Center located at Fermilab.
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Chapter 4

EVENT RECONSTRUCTION AND SIMULATION

An important step in any high energy physics analysis is to reconstruct the hard scatter

collision from the small deposits of energy measured in the detector. This chapter de-

scribes how each sub-detector is used to reconstruct a physics object, such as an electron or

muon, which can be used to classify the event as signal or background. Section 4.1 of this

chapter describes how electrons, muons, and calorimeter jets are reconstructed in data and

Monte Carlo simulated events. Reconstruction of Monte Carlo events requires simulating

the DØ detector such that each Monte Carlo event reproduces the detector resolution ob-

served in data events. The DØ detector and trigger simulation is described in Sections 4.2

and 4.3, respectively. Finally, to correct for inevitable un-modeled effects in the simulation,

correction factors must be applied to the Monte Carlo. The measurement of these factors

and how they are applied is given in Section 4.4.

4.1 Object Reconstruction

The following section describes how physics objects are reconstructed using quantities mea-

sured in the detector. Section 4.1.1 describes how charged particle tracks are identified

through small energy deposits in the central tracking detectors. Once all tracks have been

identified the primary interaction vertex can be reconstructed as described in Section 4.1.2.

Electrons and muons are identified through a series of quality cuts as described in Sec-

tions 4.1.3 and 4.1.4, respectively. Section 4.1.5 explains how jets are identified from show-

ers of electromagnetic and hadronic particles in the calorimeter. Once jets, electrons, and

muons have been identified the missing transverse energy can be calculated as the pT im-

balance in the event as described in Section 4.1.6. Finally, identification of heavy flavor jets

using a neural network is described in Section 4.1.7.
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4.1.1 Tracks

A track represents the three dimensional path of a charged particle as it traverses the

detector. In the presence of a magnetic field, such as the case with the inner DØ detectors,

all electrically charged particles move in a helical trajectory. Five parameters are needed

to fully parameterize the helix and it is the task of the track finding algorithms to measure

these parameters for all charged particles.

The first step in constructing a track is to form “hits” where ionizing particles have

deposited energy in the tracking detectors. The formation of track hits is described in the

Track Hit Clustering section below. Once the track hits have been created two algorithms

are employed to link them together to create charged particle tracks. The two algorithms

are described in the Histogramming Track F inding Method and Alternative Algorithm

sections below. A final set of reconstructed tracks is formed by a global track reconstruction

algorithm that combines the tracks found by the two previously mentioned algorithms.

Track Hit Clustering

Building a track begins with forming hits in both the SMT and CFT tracking detectors. A

hit in the SMT detector is characterized by the deposition of energy in a silicon strip left

by an ionizing particle. If the resulting collected charge is above threshold (to reduce noise

hits), a hit is registered. If an adjacent silicon strip also registers a hit the two hits are

combined. This process is repeated for any adjacent strip which registers a hit. The center

of the SMT hit is given by the charge weighted average of the central position of each silicon

strip1. A hit in the CFT is formed when two fibers in each super layer register scintillation

light indicating the presence of a charge particle traversing the fibers. Because the fibers

have a relative 3◦ orientation, the x−y coordinates are calculated as the intersection of two

scintillating fibers.

1Because the SMT detector is immersed in a magnetic field the electron-positron pairs created in the
silicon will drift at an angle with respect to electric field lines within the silicon. This angle, known as the
Lorentz angle, is corrected for when calculating the center of the SMT hit.
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Histogramming Track Finding Method (HTF)

The histogramming track finding (HTF) [69] method is based on the principle that a particle

which produces many hits in the transverse plane (x-y) will have a unique curvature and

azimuthal angle. This method transforms (x-y) hits in the SMT and CFT and into a new

plane defined by the curvature, ρ, and azimuthal angle, φ. Hits from the same particle will

produce a peak in the ρ− φ space, whereas random hits will uniformly populate the space.

An example of this procedure, known as a Hough transformation, for a 1.5 GeV muon

track is shown in Fig. 4.1. A histogram is created of the hits in the new ρ − φ space and

is processed through a two-dimensional Kalman filter, which attempts to remove ”noisy”

tracks with large track errors as well as incorporate detector geometry and material density.

The result of the filter is a set of smoothed tracks whose track parameters have been re-fit

with smaller errors. The longitudinal coordinate information is included by creating a new

histogram in a space defined by the radial distance to the beam axis and the z coordinate. A

second Hough transformation is performed into the (z0, C) plane, where z0 is the intersection

of the track along the beam axis and C is the track inclination defined as dr
dz . The newly

formed tracks are extrapolated either inward toward the SMT if the track finding began in

the CFT or outward toward the CFT if the track finding began in the inner SMT detector.

Alternative Algorithm Tracking (AA)

The alternative algorithm (AA) [39] track finding method is based on a seed hit in one layer

of the detector and building a track by incrementally including more layers of the SMT and

CFT detectors. The algorithm takes SMT hits in the innermost layers and adds additional

layers if the resulting extrapolated track radius of curvature is greater than 30 cm, which

indicates the track must have pT > 180 MeV. All possible combinations that meet these

requirements are stored. The algorithm also allows for missing hits in the SMT or CFT if a

hit in one of the outer layers is consistent with a previously found track. Also allowed are

“CFT-only” tracks built from seeds in the CFT detector that have less than 3 hits in the

SMT detector. Allowing tracks to be built in this manner dramatically increases the overall

track finding efficiency of the algorithm.
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Figure 4.1: This histogramming track finding technique shown for an example of a single
1.5 GeV track of 5 hits. (a) The family of trajectories containing a given hit. (b) The
geometric place of all trajectories containing a given hit in parameters space. (c) Curves
from different hits intersect at one point corresponding to the track parameters. (d) The
point of intersection can be seen as a peak in the (ρ, φ) histogram [69].
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4.1.2 Primary Interaction Vertex

The primary interaction vertex is defined as the three-dimensional location of the hard

scatter interaction. The hard scatter interaction vertex is very important to locate to allow

discrimination of physics objects resulting from the pp̄ collision and objects created from

noise in the detector or other low energy inelastic pp̄ collisions.

Primary interaction vertices are found using the adaptive primary vertex algorithm [33].

This algorithm attempts to assign all tracks with pT > 0.5 GeV and at least two SMT hits

to a vertex where the extrapolated track paths intersect. The result of this first pass fit

to the primary vertex is a χ2 for each track hypothesis. The algorithm then attempts a

second pass fit to the primary vertex except this time each track receives a weight, shown

in Eq. 4.1, that includes the χ2 of the previous track fit.

wi =
1

1 + e(χ2
i
−χ2

cutoff
)/2T

(4.1)

Where the values for χ2
cutoff and T are 16 and 4, respectively. The vertex fitting procedure

is repeated until the difference of weights from the previous iteration for each track is less

than 10−4.

The adaptive vertexing algorithm produces a list of possible vertices of which one might

be the hard scatter vertex. To determine which vertex is the hard scatter vertex all tracks

are assigned a probability to not originate from the hard scatter vertex. This probability,

shown in Eq 4.2, is based on the log10(pT ) ( F(pT ) ) distribution for tracks associated with

a minimum bias2 interaction as determined from Monte Carlo simulation.

P (pT ) =

∫∞
log10(pT ) F (p

′

T )dp
′

T
∫∞
log10(0.5) F (p

′

T )dp
′

T

(4.2)

The individual track probabilities are combined for each track associated to each vertex

found by the adaptive vertex algorithm to form a minimum bias vertex probability. The

vertex which has the lowest minimum bias probability is selected as the hard scatter vertex.

The distribution of this probability for minimum bias and hard scatter vertices is shown in

Fig. 4.2.

2A minimum bias vertex is a vertex from an inelastic pp̄ collision.
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Figure 4.2: Minimum bias probability for the hard scatter vertex (left) and inelastic pp̄
vertices (right). The vertex in the event with the lowest minimum bias probability is selected
as the hard scatter vertex [33].

4.1.3 Electrons

Electrons in the DØ detector are characterized by narrow electromagnetic showers produced

in the electromagnetic calorimeter [57]. Initial electron candidates are first identified by a

cluster of calorimeter towers in the electromagnetic calorimeter. Once a tower is found the

electron candidate is defined as the towers surrounding the highest ET tower in a cone of

radius 0.4. Since electrons will deposit most of their energy in the inner electromagnetic

calorimeter the ratio of the electron candidate energy found in the electromagnetic calorime-

ter should be greater than 90% of the energy deposited in the electromagnetic calorimeter.

The shape of the electromagnetic shower should also be consistent with an electron or pho-

ton shower. Electrons are distinct from photons in that they are charged particles thus all

electron candidates are required to have a track with pT > 5 GeV pointing in the direction

of the electromagnetic cluster. To ensure that the electron is well measured it is also re-

quired to be isolated from other electromagnetic clusters. The isolation, shown in Eq. 4.3,

is defined in terms of the electromagnetic calorimeter towers with ∆R < 0.2 and ∆R < 0.4

surrounding the electron candidate and is required to be less than 0.15.
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fiso =
EEM(∆R < 0.4) − EEM(∆R < 0.2)

EEM(∆R < 0.4)
(4.3)

Finally, to ensure high quality electrons a likelihood discriminant is created using seven

variables that will separate electrons from W/Z boson decays (real electrons) from jets with

large electromagnetic fractions (fake electrons). Electrons with a likelihood discriminant

greater than 0.85 are considered true electrons from a W/Z decay.

4.1.4 Muons

Muon are reconstructed in the DØ detector by requiring hits in the three layers of the muon

system from both the scintillators and wire chambers [59]. A muon candidate is required to

register at least two wire hits and at least one scintillator hit in the A layer. At least two

wire hits in the B and C layers as well as at least one scintillator hit in this region are also

required for the muon. From the hits in the three layers it is possible to construct a local

momentum measurement due to the curvature induced by the toroid magnet, however, the

resolution of this measurement is quite poor. To improve the resolution, the local muon track

is required to be matched with a track found by the global track reconstruction algorithm.

To remove muons produced by cosmic rays the muon candidate is required to be tem-

porally coincident with a bunch crossing. After a bunch crossing is registered the muon

candidate is required to hit all three layers within 10 ns. To further reduce the cosmic ray

background the muon track is required to originate from the primary interaction vertex with

a relative longitudinal distance less than 1 cm and a transverse distance of closest approach

(DCA) less than 0.2 cm if there are no SMT hits and less than 0.02 cm if there is at least

one SMT hit.

Finally, an isolation cut is applied to ensure the muon is the product of a W boson decay

and not the result of a heavy flavor decay (e.g. B → µνµD). To remove muons from heavy

flavor decays the candidate is required to be isolated (∆R(µ, jet) > 0.5) from nearby jets

since muons from heavy flavor decays will tend to be found inside or near a jet. To further

reject muons from heavy flavor decays, two isolation variables are defined in terms of the

muon track pT and the sum of either calorimeter energy or track momentum surrounding
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the muon momentum vector. The two isolation variables, shown in Eq. 4.4 and 4.5 are both

required to be less than 0.2.

fTrack Isolation(µ,Tracks) =
1

pT(µ)
×

∑

tracks 6=muon ∆R<0.5

pT(track) (4.4)

fCalorimeter Isolation(µ,CalTowers) =
1

pT(µ)
×

∑

cal tower 0.1<∆R<0.4

ET(cal tower) (4.5)

4.1.5 Jets

A jet is defined as a narrow cone of strongly interacting particles produced by the hadroniza-

tion of strongly interacting particles such as quarks or gluons. A jet will shower in the elec-

tromagnetic and hadronic calorimeters and its energy is measured by sampling this shower

in the many layers of the DØ calorimeter. A proper measurement of the jet energy and

direction is needed to determine the original quark or gluon energy and momentum.

The Run II improved legacy cone algorithm [37] is used to reconstruct jets in the DØ

calorimeter. This algorithm selects calorimeter towers with transverse energies3 greater

than 0.5 GeV as seeds around which the jet is built. The algorithm collects all calorimeter

towers in a cone4 of radius 0.5 around the seed tower and defines this as the jet candidate

if it has ET > 1 GeV. The central axis of the jet is defined by the ET weighted midpoints

of each calorimeter tower. This procedure is repeated throughout the detector until all jets

are stable (i.e. the jet axis from one iteration to the next does not change) with a total

ET > 6 GeV. The final step of the jet finding algorithm is to remove overlapping jets. A

jet is defined as overlapping if it shares energy with another jet. Two overlapping jets are

merged if the overlapping energy is more than half of the individual jet energies. If the

overlapping jets are not merged, then they are split into two distinct jets whose total ET

and axis are recomputed.

3The transverse energy is the energy of the calorimeter tower weighted by the sine of the polar angle θ

of the tower (i.e. ET = E × sin(θ)).

4The jet cone is defined in terms of rapidity (y) and azimuthal angle (φ).
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Once the jets have been reconstructed a set of quality criteria are applied to remove fake

jets created out of calorimeter noise and remove electromagnetic particles such as electrons

and photons. To remove jets created by electromagnetic particles a jet is required to have

between 5 and 95% of its energy deposited in the hadronic calorimeter. Also, a jet is

required to be isolated (∆R > 0.5) from all electromagnetic clusters in the detector. To

remove fake jets created by calorimeter noise the jet is required to have at least 60% of

its energy deposited in the fine hadronic calorimeter since this detector has higher energy

resolution than the coarse hadronic calorimeter. Jets created by a single “noisy” cell are

removed by requiring that more than one calorimeter cell contain at least 90% of the jet

energy. Also, to further suppress the effect of a noisy cell the ratio of the most energetic

tower to the second most energetic tower must be less than 10.

Jet Energy Scale Correction

In reconstructing physics objects in an event, the goal is to measure the four-momenta of

the final state particles from the hard scatter collision. For jets this is quite complicated

due to the nearly 4 radiation lengths of material that separate the collision center from the

calorimeter. It is the goal of the jet energy scale correction to modify the calorimeter jet

energies to the parton energy before any interaction with the DØ detector [4].

The corrected jet energy, which is defined as the energy of a final state parton before

interacting with the detector, is given by Eq. 4.6 in terms of five other quantities, which are

explained below.

Ecorr
jet =

Euncorr
jet − O

Fη × R × S
(4.6)

• Euncorr
jet is the uncorrected jet energy as determined by the reconstruction algorithm.

• O is the offset correction and represents energy that contributes to the jet that is

not associated with the hard scatter collision. Two examples of additional sources

of energy are electronics noise and additional minimum bias interactions in the same

bunch crossing. The offset correction is measured in minimum bias events by summing
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the energy of calorimeter towers within a jet cone radius. A plot of the offset energy

correction as a function of the detector pseudorapidity (ηdet)5 for several primary

vertex multiplicities is shown in Fig. 4.3.
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Figure 4.3: Offset energy correction for jets with a cone radius of 0.5 as a function of ηdet [4].

• Fη is the relative response of the calorimeter in different η regions. This term is

designed to cancel the expected non-uniformity of the DØ calorimeter between the

central and endcap calorimeter cryostats. The relative response is measured using the

missing ET projection fraction method in back-to-back one photon with one jet events.

In this method the photon is considered perfectly well measured, which implies that

that any ET imbalance in the event is an effect of the response. A cartoon of the

method is shown in Fig. 4.4.

By measuring the missing ET and the pT of the photon and jet the response relative

to η = 0 can be measured in many regions of ηdet. The relative response with respect

to η = 0 in data is shown in Fig. 4.5.

5ηdet is the pseudorapidity defined with respect to the detector origin instead of the collision center.
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Figure 4.4: Missing ET (ET imbalance) projection fraction method cartoon [4].
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• R is the absolute energy response of the calorimeter. This term accounts for energy

lost in un-instrumented regions of the detector and the lower energy response of the

calorimeter to hadrons compared to electrons or photons. The absolute response

is also determined using back-to-back photon+jet events and is measured after the

relative response in η has been applied. Fig. 4.6 shows the absolute energy response

for different η regions to emphasize the uniformity of the calorimeter after applying

the relative response term.
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Figure 4.6: Absolute energy response of jets in the calorimeter for several η regions [4].

• S is the showering correction. This term corrects for energy deposited outside the cone

radius of the reconstructed jet or additional energy deposited inside the cone radius as

a result of spurious particles in the calorimeter. The showering correction is measured
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by calculating the total energy deposited inside and outside the jet and taking the

ratio of these numbers with the known deposited energy as determined in Monte Carlo

events. The calculation in Monte Carlo is done without detector simulation such that

the ratio of the two quantities yields the showering correction due to the detector

only. Fig. 4.7 shows the showering correction as a function of jet ET for jets in three

different η regions.
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Figure 4.7: Showering correction for jets as a function of ET for jets in three different η
regions [4].

4.1.6 Missing ET

Missing transverse energy is a useful quantity to calculate because it is highly correlated with

the transverse energy of the undetected neutrino. The missing energy is only calculated in

the transverse plane (x-y) because there is no net momentum in this plane since the proton-

antiproton collision only occurs along the beam axis (z)6. The missing ET (MET ) is defined

as the vector sum of the electromagnetic and fine hadronic calorimeter cell energies as well

6The total missing energy of the event can not be calculated because of the unknown boost along the
longitudinal direction from the hard scatter process.
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as any lepton pT subtracted from zero such that there is no net transverse momentum in

the event. This definition is summarized in Eq. 4.7.

MET = −
[

∑

cells

ET

]

− pT(ℓ) (4.7)

4.1.7 B-Jets

B-jets are a subset of all jets found by the jet cone algorithm with the distinction that

these jets are formed from the hadronization of a b quark. B-jets are important to measure

because many fundamental particles, such as the top quark, will decay into a b quark leaving

it as one of the few signatures of its existence. B-jets are unique from jets produced from

light quarks because the B hadron (a bound state of a b quark and one or two light quarks)

has a much longer lifetime than lighter hadrons. The result of this long lifetime is a displaced

decay vertex from the primary interaction vertex. The typical decay length, which is the

distance from the decay vertex to the primary vertex, is a few millimeters. The goal of a B-

jet finding algorithm is to use this property and other kinematically unique characteristics

to identify heavy flavor jets from light flavor jets.

The B-jet selection algorithm at DØ uses a neural network (NN) to distinguish heavy

flavor jets from light flavor jets [80]. The neural network is trained using seven variables

that show discrimination between heavy and light flavor jets. The seven variables are shown

in Table 4.1. The network was trained with Z → bb̄ and strongly produced bb̄ production

as heavy flavor signal-like events and Z → qq̄ and strongly produced qq̄ production as light

flavor background-like events. The output of the neural network is a new variable which

peaks at 1 for heavy flavor jets and 0 for light flavor jets. A jet is “tagged” as a B-jet if

the NN value is greater than 0.775. Only jets with at least two tracks with pT > 1 GeV are

considered for heavy flavor tagging. Jets which fail this criteria are considered light flavor

jets.
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Table 4.1: Variables used in the neural networks training. The variables are listed in order
of relative importance as determined in the training [80].

Rank Variable Description

1 Decay length significance ( LT

δLT
) of the displaced vertex

2 Weighed combination of the input tracks’ impact parameter significance ( IP
δIP )

3 Probability that the jet originates from the primary interaction vertex

4 χ2/Ndof of the displaced vertex fit

5 Number of tracks used to reconstruct the displaced vertex

6 Mass of the tracks used to reconstruct the displaced vertex

7 Number of displaced vertices found inside the input jets

4.2 Monte Carlo Generation and Detector Simulation

Generating Monte Carlo events is crucial in a physics analysis to understand the signa-

ture a given process will have in the detector. The chain for generating simulated Monte

Carlo events at DØ is the following: (1) generate final state four-vectors using Monte Carlo

software, (2) simulate the DØ detector response to final state particles, (3) add additional

pp̄ interactions, and finally (4) reconstruct the event. The DØ trigger simulation is per-

formed separately and described in Section 4.3. The result of the Monte Carlo generation

with full detector simulation is a set of events that can be treated as equal to reconstructed

data except with a known initial hard scatter physics process.

The first stage of generating Monte Carlo events is to produce and decay particles ac-

cording to a specified physics process. The hard scatter collision is typically generated

by “matrix-element” generators, such as CompHEP or Alpgen, and the decay products

are typically handled by particle-specific algorithms. Specifically, the decay of tau leptons

is handled by TAUOLA [68] and B hadrons are decayed by EVTGEN [73]. To simulate

hardronization and allow for additional strong interaction effects between final state parti-

cles, all Monte Carlo events are processed through the Pythia generator.
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The DØ detector is simulated using the GEANT software package [62]. GEANT7 pro-

vides a graphical representation of particles as they traverse the detector and simulates

the interaction between particles and material in the detector. All information concerning

the detector geometry and material density is modeled with GEANT. Three examples of

GEANT’s capabilities are simulating electromagnetic and hadronic showers in the calorime-

ter, energy loss of electrons in the tracking detector, and bending particle trajectories due

to the solenoidal and toroidal magnetic fields.

To properly account for additional inelastic pp̄ collisions all Monte Carlo events are pro-

vided with a “minimum bias overlay” generated from reconstructed data. A minimum bias

event is an event recorded by the detector that was triggered solely by the presence of at least

one pp̄ interaction. Because the number of minimum bias vertices grows with instantaneous

luminosity the minimum bias events are overlaid to match the expected instantaneous lu-

minosity profile of all recorded events. A plot of the average peak instantaneous luminosity

versus time is shown in Fig. 4.8.

Figure 4.8: Peak instantaneous luminosity as a function of time [10].

7GEANT is an acronym formed from ”GEometry ANd Tracking”.
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Reconstruction of Monte Carlo events occurs in the same manner as data events, as

described in Section 4.1. It is the goal of the previous three steps of the simulation chain to

describe the DØ detector response as accurately as possible such that the reconstruction is

blind to the source of the event.

4.3 Trigger Simulation

The DØ trigger system is modeled in a Monte Carlo event by an event-wide probability

that the event will pass the trigger selection. The event-wide probability is constructed

from the efficiencies with which individual reconstructed objects pass object specific “trigger

terms”. Section 4.3.1 derives the event-wide trigger probability in terms of individual trigger

term efficiencies and Section 4.3.2 describes the methods used to measure these efficiencies.

Triggers used to record single top quark events and their efficiencies are shown in Chapter 5.

4.3.1 Event-Wide Trigger Probability

The probability that a Monte Carlo event ~x is selected by the trigger is defined as a product

of the condition probabilities to pass each trigger level given that it passed the previous

trigger level as shown in Eq. 4.8.

PTrigger(~x) =

[

∏

Terms

PL1(~x)

]

×
[

∏

Terms

PL2|L1(~x)

]

×
[

∏

Terms

PL3|L2(~x)

]

(4.8)

At a given trigger level the probability for the event to be selected is written as the

product of each reconstructed object to be selected by each trigger term as shown in Eq. 4.9.

For example, the probability for a muon+2 jet event to pass a µ+jets trigger is the product

of the probability for the muon to pass the muon trigger term and the two jets to pass the

jet trigger term.

PLevel(~x) =
Nobs
∏

k

PLevel,Object(~xObject) (4.9)

The probability for a reconstructed object to pass a certain trigger level is written as

one minus the probability of all the objects not to be selected by the trigger, as shown in

Eq. 4.10
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PLevel,Object(~xObject) = 1 −
Nobjs
∏

j

(1 − εLevel(~xObject,j)) (4.10)

where εLevel(~xObject,j) is the trigger term efficiency for the reconstructed object.

At DØ there have been several distinct trigger periods where the trigger used to collect

data events has changed. To model this in Monte Carlo an integrated luminosity weighted

average of the trigger probabilities for each period is applied to all events. The weighted

averaged is shown in Eq. 4.11

P (~x) =

∑

version [Lversion × Pversion(~x)]
∑

version Lversion
(4.11)

4.3.2 Trigger Term Efficiency Measurement Methods

Electron and muon trigger term efficiencies are measured in Z → ee and Z → µµ data

events, respectively. The efficiency is measured in a Z boson sample because it provides

a clean (i.e. negligible background) sample of leptons with which to measure efficiencies.

In the Z sample a “tag and probe” method is used to measure the trigger efficiency where

one of the leptons is required to trigger the event such that the other can be used as an

unbiased probe to measure the trigger efficiency. The efficiency is defined as the fraction

of events for which the probe electron or muon was found to pass the trigger term. To

account for detector and reconstruction effects the trigger efficiencies are determined as a

function of pT , η, or φ. An example of the L1 muon trigger efficiency and the L3 electron

trigger efficiency binned in η and pT are shown in Fig. 4.9. Jet trigger term efficiencies are

measured in muon triggered events. The jet trigger efficiency is defined as the number of

jets that pass the jet trigger term divided by the total number of jets. Jet trigger term

efficiencies are measured as a function of pT and η.

4.4 Monte Carlo Corrections

The result of the Monte Carlo generation with a full detector simulation are events that

mimic real data events recorded by the DØ detector. Typically, however, the simulation

is not complete for reasons such as missing material in the GEANT simulation or un-
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Figure 4.9: An example electron turn-on curve measured as a function of the electron pT

(left) and an example muon turn-on curve measured as a function of η (right). The points
are trigger efficiencies derived from data in that bin (with uncertainty bars) [56].

modeled aging effects of the detector. The result of not modeling these effects typically

leads to an overestimation of detector resolution in the Monte Carlo. To account for this

the reconstructed Monte Carlo objects are typically “smeared” in one variable to ensure

similar resolutions as is seen in data events. After the Monte Carlo events are smeared the

relative difference between Monte Carlo and data events is measured and used to further

correct the Monte Carlo. The following sections describe the smearing and correction factors

for all reconstructed objects.

4.4.1 Muons

Muon smearing and correction factors are measured in Z → µµ events because it provides a

clean and unbiased sample of muons in both data and Monte Carlo. While the presence of

a muon is confirmed by hits in the muon system the muon momentum vector is defined by

the matched track. The muon track is defined by the charge and radius of curvature, which

is proportional to q/pT , thus the natural quantity to smear is q/pT . The amount to which

the muon track must be smeared is measured by observing the relative shift and width of

the Z boson resonance in data and Monte Carlo events. The functional form to which the

muon track is smeared is shown in Eq. 4.12.
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(

q

pT

)′

→ q

pT
+ (A +

B

pT
) × G (4.12)

The parameter G is a random number generated from a Gaussian distribution centered at 0

and a width of 1. The parameters A and B are measured for muons with an SMT track hit

in two regions (η < 1.6 and η > 1.6) and for muons without an SMT hit. Table 4.2 shows

the smearing parameters for the three types of muons for two separate run periods.

Table 4.2: Muon smearing parameters for the function (A+ B
pT

) for two different run periods.

< Dec. 2004 > Dec. 2004

Muon Type A B A B

> 1 SMT Hit (η < 1.6) 0.00313 -0.0563 0.00308 -0.0370

> 1 SMT Hit (η > 1.6) 0.00273 -0.0491 0.00458 -0.0550

= 0 SMT Hits 0.00509 -0.0916 0.00424 -0.0509

After the smearing is applied the correction factor for muons is defined as the product

of three independent factors, as shown in Eq. 4.13, for reconstruction, track matching, and

isolation.

fData/MC(µ) =
εData
Reco(µ)

εMC
Reco(µ)

×
εData
Track|Reco(µ)

εMC
Track|Reco(µ)

×
εData
Isolation|Track(µ)

εMC
Isolation|Track(µ)

(4.13)

The muon reconstruction efficiency for data and the Monte Carlo correction factor are

shown in Fig. 4.10. The empty region in the center of the η-φ efficiency histogram cor-

responds to the hole in the bottom of the muon detector. The correction factor is only

considered to be a function of η since the reconstruction efficiencies for data and Monte

Carlo show the same φ dependence. The average reconstruction efficiency in data is 80.2%

and the average Monte Carlo correction factor is 0.97.

The muon track match efficiency is measured with respect to reconstructed muons.

The efficiency is found to depend on two tracking related quantities, the track η and the

longitudinal primary interaction vertex position. The efficiency in data and correction factor
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Figure 4.10: Muon reconstruction efficiency as measured in Z → µµ data events (left) and
the Monte Carlo correction factor as a function of muon η (right) [59].

are shown in Fig. 4.11. The average track match efficiency in data is 91.0% and the average

Monte Carlo correction factor is 0.93.

Figure 4.11: Muon track match efficiency as measured in Z → µµ data events (left) and
the Monte Carlo correction factor as a function of track η (right) [59].

The muon isolation efficiency is measured in Z → µµ events for reconstructed muon with

a confirmed track match. The isolation efficiency depends most strongly on the number of

reconstructed jets in the event since it is more difficult for a muon to be isolated if the jets

occupy more space in the detector. Fig. 4.12 shows the isolation efficiency and Monte Carlo

correction factor as a function of the jet multiplicity. The Monte Carlo correction factor
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for events with two or three jets, such as single top quark events, is 0.98, with an average

efficiency of 0.94%.

Figure 4.12: Muon isolation efficiency as measured in Z → µµ data events for various
regions of primary vertex z position (left) and Monte Carlo correction factor as a function
of the number of reconstructed jets. The isolation used in the single top quark analysis is
labeled TopScaledLoose and corresponds to the blue triangle curve [59].

4.4.2 Electrons

There is no smearing applied to Monte Carlo electrons since the resolution is well-modeled

in the Monte Carlo. Electron correction factors are measured in Z → ee data and Monte

Carlo events. The correction factor for electrons is considered a product of two independent

factors: reconstruction and track match plus likelihood cuts, as shown in Eq. 4.14.

fData/MC(e) =
εData
Reco(e)

εMC
Reco(e)

×
εData
TrackMatchLikelihood|Reco(e)

εMC
TrachMatchLikelihood|Reco(e)

(4.14)

Electron reconstruction efficiencies as measured in Z → ee data and Monte Carlo events

and the Monte Carlo correction factor show a slight pT dependence as seen in Fig. 4.13.

Electron likelihood and track match efficiencies are measured in Z → ee data and Monte

Carlo events with respect to reconstructed electrons. The efficiency in data and the Monte
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Figure 4.13: Electron reconstruction efficiency as measured in Z → ee data (red) and Monte
Carlo (blue) events (left) and Monte Carlo correction factor as a function of electron pT

(right) [57].

Carlo correction factor are shown in Fig. 4.14. The single top quark analysis only use

electrons out to 1.1 in ηdet.

Figure 4.14: Electron reconstruction efficiency as measured in Z → ee data (red) and Monte
Carlo (blue) events (left) and Monte Carlo correction factor as a function of electron pT

(right) [57].

4.4.3 Primary Interaction Vertex

The primary interaction vertex efficiency is measured using Z → µµ data and Monte Carlo

events and the correction factor is defined as the ratio of the two efficiencies. The primary
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vertex reconstruction efficiency in data is shown in Fig. 4.15. No correction to the Monte

Carlo primary vertices is applied.

Figure 4.15: Primary vertex reconstruction as measured on Z → ee data events. The
efficiencies are shown as a function of the longitudinal primary vertex position [33].

4.4.4 Jets

Jets produced in the Monte Carlo simulation exhibit an overestimation of energy resolution,

energy scale, and reconstruction efficiency. A procedure called SSR (Smearing, Shifting, and

Removing) was designed to properly account for each of these relative differences between

data and Monte Carlo [8].

Jet energy resolution, energy scale, and reconstruction efficiency in the data and Monte

Carlo are studied in back-to-back photon+jet events. In these events a variable called the

transverse momentum imbalance, as shown in Eq. 4.15, is used to study these effects.
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∆S =
pJet

T − pγ
T

pJet
T

(4.15)

To determine the difference in the jet energy reconstruction efficiency in data and Monte

Carlo, the ∆S distribution is determined in several regions of photon pT and fit to a Gaussian

convoluted with a jet reconstruction efficiency function as shown in Eq. 4.16.

f(∆S) = N ×
(

1 + erf

[

∆S − α√
2β

])

× exp

{

−(∆S − ∆S0)
2

2σ2

}

(4.16)

Where the constants {α, β} characterize the jet reconstruction efficiency, ∆S0 yields in-

formation about the relative jet energy scale, and σ characterizes the relative jet energy

resolution.

To correct for the difference in jet energy resolution between data and Monte Carlo

the Monte Carlo jet pT is smeared by a Gaussian with a width shown in Eq. 4.17. If the

generated jet pT is less than 15 GeV the jet is removed from the event.

σsmear =
√

σ2
Data − σ2

MC (4.17)

The relative difference between the jet energy scale in data and Monte Carlo was found

to be negligible (∆Sdata
0 ≈ ∆SMC

0 ). The improved ∆S agreement between data and Monte

Carlo after smearing and jet removal for two photon pT ranges can be seen in Fig. 4.16.

4.4.5 B-jets

Due to large differences between data and Monte Carlo in tracking related quantities the B-

tagging algorithms can not be directly applied to Monte Carlo events. Instead a probability

for the algorithm to tag a B-jet, charm-jet, or a light jet is measured and applied to the

Monte Carlo events [80]. These probabilities, called tag-rate functions (TRF), are measured

in data and Monte Carlo events and scaled to reproduce the expected B-jet, charm-jet and

light-jet tagging efficiencies in data. As explained in Section 4.1.7 all jets must have at least

two associated tracks with pT > 1 GeV before B-tagging can be applied. This requirement

is known as jet taggability (εTaggability) and the product this quantity with the TRF yields

the probability that a jet is B-tagged.
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Figure 4.16: pT imbalance (∆S) distribution before (left) and after (right) jet smearing and
removal are applied for two photon pT regions: 23 < pγ

T < 26 (top) and 75 < pγ
T < 80

(bottom). The data is shown in blue and the Monte Carlo is shown in red [8].
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Ptag(~x) = εTaggability(~x) × TRF (~x) (4.18)

Using this per-jet tagging probability the probability that one jet is tagged in an event

with N jets is shown in Eq. 4.19 and probability that two jets are tagged is shown in

Eq. 4.20. These probabilities are applied to the Monte Carlo while the tagging algorithm is

applied directly to the data.

P1−tag =

Njets
∑

i=1

Ptag,i

Njets
∏

i6=j

(1 − Ptag,j) (4.19)

P2−tags =

Njets
∑

i=1

Ptag,i

Njets
∑

i6=j

Ptag,j

Njets
∏

k 6=i6=j

(1 − Ptag,k) (4.20)

The B-jet and light-jet neural network tagging efficiencies in data are measured using

a B-tagging algorithm that is relatively uncorrelated with the NN tagger on two different

data samples. The first data sample is a relatively loose B-jet enriched sample requiring

at least one muon with pT > 4 GeV inside a ∆R = 0.7 cone size jet. The presence of the

muon within the jet represents a possible semi-leptonic B decay. The second data sample

is highly enriched in B-jets requiring at least two jets where one of the jets is required to

have a jet impact parameter probability less than 0.5. The jet impact parameter probability

is a measure of the likelihood that the jet originates from the primary interaction vertex.

Large values of this quantity imply the jet originated from the hard scatter and low values

indicate the jet originated from a displaced vertex. The second B-jet tagging algorithm

used is the soft lepton tagger (SLT), which requires a muon to be reconstructed inside a

jet. This algorithm is relatively uncorrelated with the NN tagger because it tags based on

semi-leptonic B meson decays ( e.g. B → Dℓν ), while the NN tagger uses information

based on the displaced vertex from the B decay. Using the correlation between the taggers,

as measured in Monte Carlo, and the correlation between the data samples, a system of

eight equations with eight unknowns can constructed. This system is then solved yielding

the B-jet and light-jet tagging efficiencies with uncertainties in data events enriched in

semi-leptonic B decays.
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The B-jet tagging efficiency for Monte Carlo events with a semi-leptonic B decay is also

measured and the ratio of the data to the Monte Carlo efficiency is used as the correction

factor to the Monte Carlo. The B-jet tag-rate function for a Monte Carlo event with an

inclusive B meson decay is defined as the product of the inclusive B-jet tagging efficiency

in Monte Carlo with the correction factor as shown in Eq. 4.21.

TRFb(pT, η) = εMC
b→INC ×

εData
b→µ

εMC
b→µ

(4.21)

The charm-jet tagging efficiency is measured using a similar approach with an additional

input from the Monte Carlo for the relative inclusive charm-jet to B-jet tagging efficiency.

The combined charm-jet TRF is shown in Eq. 4.22

TRFc(pT, η) = εMC
b→INC ×

εData
b→µ

εMC
b→µ

× εMC
c→INC

εMC
b→INC

(4.22)

The tag-rate functions for B-jets and charm-jets as a function of pT are shown in

Fig. 4.17.

Figure 4.17: Neural network B-jet tagger efficiency (green line) and 1σ error bands (dashed
lines) jet pT and B-jets (left) and charm-jets (right) [80].

The light-jet tagging efficiency, sometimes called the fake tag-rate (FTR), is calculated

from the product of the negative tag-rate (NTR) and two Monte Carlo correction factions.

The negative tag-rate is the efficiency for which a jet resulting from light flavor partons is

mistaken for a B-jet. This typically occurs due to poor track or primary interaction vertex
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resolution in the event. A negative tag (NT) is found when the scalar product of the vector

defined by the jet axis and the vector defined by the sum of the track vectors is negative.

A positive tag is the case when the scalar product is greater than zero. Fig. 4.18 shows the

scalar products divided by the their error for B-jets and light jets in the Monte Carlo.
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Figure 4.18: The impact parameter significance for B-jets and light jets. The IP significance
is defined as the signed scalar product of the jet-axis and vector defined by the tracks of
the displaced vertex divided by the error on that measurement [7].

The negative tag-rate is measured in data events with little bias towards heavy-flavor

events. The NTR has two corrections which must be applied to remove any effects from

heavy-flavor events that also receive a negative tag and a correction factor for the ratio of

negative to positive tags for light-jets. The first correction factor is measured on g → bb̄

and g → cc̄ Monte Carlo and is defined as the ratio of the number of light-jets with a

negative tag to the total number of negative tags. The second correction factor is measured

on g → (udsg)(udsg) Monte Carlo and is defined as the ratio of the number of light-jets

with a positive tag to the number of light-jets with a negative tag. The combined light-jet

fake tag-rate function is shown in Eq. 4.23

FTR(pT, η) = NTRData × NMC
l→NT

NMC
l→NT + NMC

c→NT + NMC
b→NT

× NMC
l→PT

NMC
l→NT

(4.23)
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Chapter 5

THE SINGLE TOP QUARK DATASET

This chapter describes the dataset and analysis strategy used in the search for single

top quark production. This analysis is a continuation of previous single top quark searches

at DØ as summarized in Section 5.1. The dataset used in the latest analysis is divided into

independent samples or channels in which the single top quark analysis is performed and

later combined when measuring the cross section. The division of analysis channels and

the general measurement strategy is described in Section 5.2. The triggers used to select

single top-like events at runtime are described in Section 5.3. The integrated luminosity

recorded for the dataset is also reported in this section. A set of selection cuts is applied to

the data set to remove mis-measured events or events which are unlikely single top quark

candidates. In general the cuts are designed to select events with one high pT lepton from

the W boson decay, large missing ET indicating a neutrino in the final state, and two to

four jets. All selection cuts are explained in Section 5.4 with a summary table of expected

fraction of s-channel and t-channel remaining after the cuts have been applied.

5.1 Previous Single Top Searches

There have been several searches for single top quark production by the DØ and CDF

collaborations. During Run I DØ published two analyses [22, 13] using 90 pb−1 and set

limits of σs−channel < 17 pb and σt−channel < 22 pb both at 95% confidence level. The CDF

collaboration also published two analyses [29, 28] using 106 pb−1 of Run I data resulting in

limits of σs−channel < 18 pb and σt−channel < 13 pb at 95% confidence level.

During Run II both DØ and CDF have performed several searches for single top. DØ

has published two analyses [17, 20] using 230 pb−1 and CDF has published one analysis [32].

Both DØ and CDF have released preliminary analyses using 370 pb−1 [46] and 700 pb−1 [50],

respectively, with improved limits. Table 5.1 summarizes the limits on both s-channel and



70

t-channel single top quark production.

Table 5.1: Summary of limits on s-channel, t-channel, and combined s + t-channel single
top quark production from the DØ and CDF collaborations.

Analysis s-channel t-channel Combined s + t

Tevatron Run I

DØ with 90 pb−1 17 22 -

CDF with 106 pb−1 18 13 14

Tevatron Run II

DØ with 162 pb−1 19 25 23

CDF with 162 pb−1 13.6 10.1 17.8

DØ with 230 pb−1 6.4 5.0 -

DØ with 370 pb−1 (prelim.) 5.0 4.4 -

CDF with 700 pb−1 (prelim.) 3.2 2.9 3.4

The CDF collaboration recently released three analyses using 955 pb−1 of Run II data.

One analysis [49] measures the combined s-channel and t-channel cross section of 2.7+1.5
−1.3 pb

with a 2.3σ signal significance. The other two analyses [48, 47] do not observe a significant

excess of data above background and set limits on the combined s + t-channel production

of 2.6 and 2.7 pb−1 at 95% confidence level.

5.2 Analysis Measurement Strategy

The single top quark measurement strategy is to divide the data into many orthogonal

samples, perform the analysis in each sample, and combine them during the cross section

extraction procedure. The data are divided by lepton flavor, the number of reconstructed

jets, and by the number of B-tags. The division by lepton flavor is due to the trigger selection

and because events with electrons and muons suffer from different types of backgrounds.

The division by the number of reconstructed jets is to ensure proper background modeling

by the Monte Carlo for each jet multiplicity. Finally, the division by the number of B-tags
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is due to different sensitivities to either s-channel or t-channel events. For instance, events

with one B-tag are sensitive to both s-channel and t-channel single top while events with

two B-tags are only sensitive to s-channel events. In total there are twelve independent

channels corresponding to two lepton channels (electron and muon), three reconstructed jet

channels (two, three, and four), and two B-jet channels (one and two tags).

5.3 Triggers for Single Top Quark Events

The Run II dataset used in the single top quark analysis was collected by the DØ detector

between August 2002 and December 2005. During this time there have been eight distinct

periods in which the triggers used to collect data events have changed. All triggers are

described in the following two sections.

5.3.1 Electron Channel Trigger

Electron channel events are selected by triggering on events with at least one electron and

at least two jets 1. The electron trigger used in the single top quark analysis has changed

five times during the entire run period. A description of the five triggers used is given below.

Table 5.2 summarizes the triggers used to collect electron single top quark events and the

total integrated luminosity recorded with each trigger.

• EM15 2JT15

– Level1: One EM calorimeter tower with ET > 10 GeV and two jet calorimeter

towers with ET > 5 GeV.

– Level2: One EM object with ET > 10 GeV and electromagnetic fraction > 0.85.

Also two jet objects with ET > 10 GeV.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an

EM object. Also, two jet objects with ET > 15 GeV.

• E1 SHT15 2J20

1At the trigger level an electron is still considered a jet because it deposits energy in the calorimeter in
a similar way to jets.
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– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an

EM object. Also, two jet objects with ET > 20 GeV.

• E1 SHT15 2J J25

– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level1: One EM object with ET > 15 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 20 GeV. One of the jets is also required

have ET > 25 GeV.

• E1 SHT15 2J J30

– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level1: One EM object with ET > 15 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 20 GeV. One of the jets is also required

have ET > 30 GeV.

5.3.2 Muon Channel Trigger

Muon channel events are selected by triggering on events with at least one muon and at

least one jet. The muon trigger used in the single top quark analysis has changed seven

times during the entire run period. A description of the seven triggers used is given below.

Table 5.3 summarizes the triggers used to collect muon single top quark events and the total

integrated luminosity recorded with each trigger.
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Table 5.2: Integrated luminosities by trigger version for the triggers used to record electron
single top quark events. The total integrated luminosity is shown in bold.

Trigger Period Trigger Name Integrated Luminosity [pb−1]

I E1 SHT15 2J15 103

II E1 SHT15 2J20 227

III E1 SHT15 2J J25 55

IV E1 SHT15 2J J30 294

V E1 SHT15 2J J25 234

Total Integrated Luminosity 913

• MU JT20 L2M0

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object.

– Level3: One jet object with ET > 20 GeV.

• MU JT25 L2M0

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object.

– Level3: One jet object with ET > 25 GeV.

• MUJ2 JT25

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV.
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• MUJ2 JT25 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV and a muon object with pT > 3 GeV.

• MUJ2 JT30 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 30 GeV and a muon object with pT > 3 GeV.

• MUJ1 JT25 ILM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV and an isolated muon object with

pT > 3 GeV.

• MUJ1 JT35 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 35 GeV and a muon object with pT > 3 GeV.
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Table 5.3: Integrated luminosities by trigger version for the triggers used to record muon
single top quark events. The total integrated luminosity is shown in bold.

Trigger Period Trigger Name Integrated Luminosity [pb−1]

I MU JT20 L2M0 109

II MU JT25 L2M0 231

III MUJ2 JT25 31

IV MUJ2 JT25 LM3 16

V MUJ2 JT30 LM3 252

VI MUJ1 JT25 ILM3 21

VII MUJ1 JT35 LM3 214

Total Integrated Luminosity 871

5.4 Reconstructed Object Selection

The following sections describe the selection cuts applied to the data. The goal of the

selection cuts is to remove events which are unlikely single top candidates as well as remove

events which may mimic the single top quark event signature, but are created by detector

noise or low energy physics processes in the event.

5.4.1 Lepton Selection

Leptons in the event must be consistent with a W decay thus are required to have pT > 15(18) GeV

and |η| < 1.1(2.0) for electrons (muons). To remove Z → ℓℓ+jets and tt̄ → ℓℓ events a veto

on additional leptons with pT > 15 GeV is applied. Events with a high pT muon veto event

with an electron and visa versa to ensure orthogonality between search channels. Fig. 5.1

shows the expected muon pT and η distribution for s-channel and t-channel single top.

5.4.2 Jet Selection

Leading order s-channel and t-channel single top quark events have at most three partons

in the final state which will likely yield either two or three jets. To account for higher order
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Figure 5.1: Muon pT (left) and η (right) distributions for s-channel (red) and t-channel
(blue) single top. Muons are required to have pT > 18 GeV and |η| < 2.

radiation effects events are allowed to have between two and four fully corrected jets. The

leading jet (highest pT ) must have pT > 25 GeV and |ηdet| < 2.5. The second jet (second

highest pT ) must have pT > 20 GeV and |ηdet| < 3.4. All other jets in the event must have

pT > 15 GeV and |ηdet| < 3.4. Fig. 5.2 shows the expected leading pT and η distribution for

s-channel and t-channel single top and Fig. 5.3 shows the same distributions for the second

leading jet.
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Figure 5.2: Leading jet pT (left) and η (right) distributions for s-channel (red) and t-channel
(blue) single top. The leading jet is required to have pT > 25 GeV and |η| < 2.5
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Figure 5.3: Second leading jet pT (left) and η (right) distributions for s-channel (red) and
t-channel (blue) single top. The second leading jet is required to have pT > 20 GeV and
|η| < 3.4

5.4.3 Missing ET

A large amount of missing transverse energy in an event can indicate the presence of a

neutrino in the final state. All events are required to have MET > 15 GeV. Fig. 5.4 shows

the missing ET distribution for s-channel and t-channel single top.
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Figure 5.4: Missing ET distribution for s-channel (red) and t-channel (blue) single top. The
missing ET is required to larger than 15 GeV.
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5.4.4 Vertex Selection

All events are required to have one and only one primary interaction vertex as defined in

Section 4.1.2. No requirement is placed on additional minimum bias vertices in the event.

Fig. 5.5 shows the primary interaction vertex longitudinal location distribution for s-channel

and t-channel single top.
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Figure 5.5: Longitudinal location of the primary interaction vertex for s-channel (red) and
t-channel (blue) single top. The primary interaction vertex is required to be located within
60 cm of the detector origin.

5.4.5 b-Jet Selection

Both s-channel and t-channel single top quark events have at least one b quark in the final

state thus all events are required to have at least one B-tagged jet as identified by the neural

network tagging algorithm.

5.4.6 Mis-measured event rejection

There are several selection cuts applied to reduce mis-measured events. First, all events are

required to have less than 200 GeV of missing ET . This cut is applied to remove events where

the muon track momentum has been badly measured, which can cause a large imbalance

in the missing transverse energy measurement. All events are also allowed at most three

“noise” jets. A noise jet is a jet that fails one of the criteria specified in Section 4.1.5 and is
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not matched to an electromagnetic cluster. It has been observed that allowing more than

three noise jets alters the pT and η distributions of other jets in the event. The final set

of cuts applied to remove unwanted events are “triangle cuts”, which are cuts between the

difference in φ between an object and the missing ET versus the missing ET . An example

of triangle cut is shown in Fig. 5.6. Three sets of triangle cuts are applied to the data and

Monte Carlo events and shown in the bullets below.

• Electron Triangle Cuts: |∆φ(e,MET)| vs. MET

– 0 < |∆φ| < 2 when MET = 0 GeV, and 0 < MET < 40 GeV when |∆φ| = 0

– 0 < |∆φ| < 1.5 when MET = 0 GeV, and 0 < MET < 50 GeV when |∆φ| = 0

– 2 < |∆φ| < π when MET = 0 GeV, and 0 < MET < 24 GeV when |∆φ| = π

• Muon Triangle Cuts: |∆φ(µ,MET )| vs. MET

– 0 < |∆φ| < 1.1 when MET = 0 GeV, and 0 < MET < 80 GeV when |∆φ| = 0

– 0 < |∆φ| < 1.5 when MET = 0 GeV, and 0 < MET < 50 GeV when |∆φ| = 0

– 2.5 < |∆φ| < π when MET = 0 GeV, and 0 < MET < 30 GeV when |∆φ| = π

• Leading Jet Triangle Cut: |∆φ(Jet1,MET)| vs. MET

– 1.5 < |∆φ| < π when MET = 0 GeV, and 0 < MET < 35 GeV when |∆φ| = π

5.4.7 Acceptance for Single Top Quark Events

The signal acceptance is defined as:

A =
1

Ninitial

Nselected
∑

i

[εtrigger × εcorrections × εTRF] (5.1)

where Ninitial is the initial number of events in each MC sample, Nselected is the number of

MC events remaining after selection, εtrigger is the trigger weight, εcorrections are the Monte

Carlo correction factors, and εTRF is the B-tagging weight. Table 5.4 shows the percentage

of each single top quark signal for each jet multiplicity that remain after selection cuts.
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Figure 5.6: Example triangle cut between a muon and the missing ET for mis-measured
events (left) and s-channel single top events (right). The colors indicate the density of events.
The brighter colors indicate more densely populated regions. Events which fall inside the
triangles are removed from the final data sample. The black line at MET = 15 GeV indicates
the standard missing ET selection [58].

Table 5.4: Single acceptances after selection cuts, one, and two B-tags. The branching ratio
for W → ℓν is included in the acceptance.

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Before B tagging

tb 1.77% 0.83% 0.23% 1.36% 0.69% 0.19%

tqb 1.49% 0.79% 0.25% 1.17% 0.64% 0.20%

One B-tagged jet

tb 0.82% 0.39% 0.11% 0.64% 0.32% 0.09%

tqb 0.61% 0.34% 0.11% 0.50% 0.28% 0.09%

Two B-tagged jets

tb 0.29% 0.14% 0.04% 0.24% 0.12% 0.03%

tqb 0.02% 0.05% 0.02% 0.01% 0.04% 0.02%
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Chapter 6

BACKGROUND ESTIMATION

Perhaps the most critical aspect of a physics analysis is estimating the background con-

tribution in the data sample. Most physics backgrounds can be modeled using simulated

Monte Carlo events and the rest are modeled using reconstructed data events. This chapter

describes how all backgrounds are modeled and normalized to their expected contribution

in the dataset. Section 6.1 describes the expected backgrounds in the single top quark

dataset and how the background event kinematics are modeled. Section 6.2 describes how

these backgrounds are normalized to their expected yields in the dataset. Finally, Sec-

tion 6.3 summarizes all background yields and Section 6.4 compares data with the expected

background estimation.

6.1 Background Modeling

As described in Chapter 2 the top quark in single top quark events will decay to a W boson

and b quark, where the W boson is only considered to decay to a lepton and neutrino in

this analysis1. With an additional b quark or light quark this makes the signature of single

top quark events one high pT lepton, large missing ET , and two or more jets. This event

signature can be produced by three general types of backgrounds. The largest background

which produces this event signature is W or Z boson production in association with two or

more jets. Because the kinematics of Z boson production are similar to W boson production,

both backgrounds are typically considered as one background called “W+jets”. An example

Feynman diagram for such a process is shown in Fig. 6.1.

Another large background present in the dataset are events origination from top pair

production. The top pair production background, referred to as tt̄, is defined by the decay

of the two W bosons, from the decay of the two top quarks. The first case when one of

1t → bW → bqq
′

decays are removed from the dataset since there is no lepton nor large missing ET .
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Figure 6.1: Example leading order Feynman diagram for a “W+jets” event. This particular
diagram represents the production of a W boson, and two b quarks and an associated
gluon [5].

the W bosons decays to two quarks and other decays to a lepton and neutrino is referred

to as “lepton+jets” (tt̄ → ℓ + jets) because the final state in the event is one lepton, one

neutrino, and four quarks. The other way in which a tt̄ event can enter the data sample is

when both W bosons decay to leptons and neutrinos. In this case, there are two quarks,

two leptons, and two neutrinos. These events are referred to as “dilepton” (tt̄ → ℓℓ) events.

An example Feynman diagram for the tt̄ → ℓ + jets process is shown in Fig. 6.2.

The third largest background present in the dataset is multijet events produced by the

strong interaction. The background processes responsible for these events in the dataset

are quite different for electron events and muon events. In electron events one of the

reconstructed jets will have a large electromagnetic fraction causing it to be mis-identified

as an electron. In muon events a gluon will decay to a bb̄ pair and one of the B mesons will

undergo a semi-leptonic decay and produce a muon. In both cases, another jet may not be

properly reconstructed leading to a large amount of missing ET in the event, thus mimicking

the single top quark event signature. An example Feynman diagram for a multijet process

producing a lepton, missing ET , and jets is shown in Fig. 6.3.
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Figure 6.3: Example Feynman diagram for a multijet event [5].
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6.1.1 Monte Carlo Modeling of W + Jets and tt̄ Backgrounds

W+jets and tt̄ backgrounds are modeled using the ALPGEN Monte Carlo generator inter-

faced with Pythia for parton showering [79]. ALPGEN is a leading order matrix element

Monte Carlo generator similar to the CompHEP generator used to model single top quark

events. All generated events are reconstructed using the simulated DØ detector as described

in Chapter 4 and selection cuts are applied as described in Chapter 5. Within ALPGEN,

the MLM jet-parton matching scheme [66] is also employed to remove double counted events

in a similar manner to the double counting that is encountered when generating single top

events. An example of double counting in W+jets events is given here: W+light flavor

events (e.g Wgg) are generated separately from W+heavy flavor events (e.g Wbb). When

these events are sent through Pythia it is possible that addition gluons will split to heavy

flavor quarks (e.g g → bb̄) leading to double counting of W+heavy flavor events. The MLM

matching scheme is described in more detail below.

MLM Matching Scheme

As stated earlier, the MLM jet-parton matching scheme is designed to remove double

counted events. The MLM matching scheme works in the following way:

1. Events are generated with a distinct parton multiplicity. For instance, W+2 light

partons (e.g. Wgg) are generated separately from W+3 light partons (e.g. Wggg).

The same applies to W+heavy flavor and tt̄ events.

2. All generated events are sent to Pythia for parton showering. This procedure will

introduce additional quarks and gluons as a product of the shower.

3. Before the final state partons are hadronized, all quarks and gluons are clustered

together with a jet algorithm. The algorithm used for this analysis is the UA1 jet

cone algorithm [35].

4. Match the generated partons from (1) with the cone jets from (3). Each parton must

correspond to one jet and visa versa. A jet is matched if it has pT > 15 GeV and
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there is a parton with ∆R < 0.7 from the jet. If a match is found the event is kept,

otherwise the process is repeated.

5. Combine all samples together with weights based on the relative cross sections and

the relative number of generated events for each process.

The formulas used to combined W+light parton, W+cc̄+light parton, W+bb̄+light par-

ton, tt̄ → ℓℓ+light parton, and tt̄ → ℓ + jets+light parton events are shown below.

W+Light Parton Sample

The W+light parton sample contains W+light flavor (udsg) events as well as W+c+light

flavor events. In W+c+light flavor events the c-quark is considered massless. Eq. 6.1 shows

the formula used to combine the W+light parton sample and Table 6.1 shows the relative

cross sections and weights (k) for each sample. All W+light parton events are generated

using CTEQ6L1 PDFs with Q2 = m2
W + P 2

T (W ).

W + Nlp = kW+0lp [W + 0lp]excl + kW+1lp [W + 1lp]excl +

kW+2lp [W + 2lp]excl + kW+3lp [W + 3lp]excl +

kW+4lp [W + 4lp]excl + kW+5lp [W + 5lp]incl (6.1)

W+cc̄+Light Parton Sample

The W+cc̄+light parton sample contains W+cc̄ (from gluon splitting) + light flavor partons.

In contrast to the W+light parton samples the c-quark in these events are massive. Eq. 6.2

shows the formula used to combine the W+cc̄+light parton sample and Table 6.2 shows the

relative cross sections and weights (k) for each sample. All W+cc̄+light parton events are

generated using CTEQ6L1 PDFs with Q2 = m2
W + P 2

T (W ).

W + cc̄ + Nlp = kW+cc̄+0lp [W + cc̄ + 0lp]excl + kW+cc̄+1lp [W + cc̄ + 1lp]excl +
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Table 6.1: Absolute weights for W+light parton ALPGEN Monte Carlo events.

Sample Type Cross Section [pb] Events Weight (k)

kW+0lp Exclusive 4574 7844750 2.15

kW+1lp Exclusive 1273 1053000 0.68

kW+2lp Exclusive 298.5 1250500 0.34

kW+3lp Exclusive 70.56 621000 16.4

kW+4lp Exclusive 15.83 582250 0.07

kW+5lp Inclusive 11.29 41750 0.13

kW+cc̄+2lp [W + cc̄ + 2lp]excl + kW+cc̄+3lp [W + cc̄ + 3lp]incl (6.2)

Table 6.2: Absolute weights for W+cc̄+light parton ALPGEN Monte Carlo events.

Sample Type Cross Section [pb] Events Weight (k)

kW+cc̄+0lp Exclusive 71.15 481572 0.039

kW+cc̄+1lp Exclusive 29.85 336400 0.036

kW+cc̄+2lp Exclusive 10.25 332347 0.016

kW+cc̄+3lp Inclusive 18.39 372248 0.020

W+bb̄+Light Parton Sample

The W+bb̄+light parton sample contains W+bb̄ (from gluon splitting) + light flavor partons.

Eq. 6.3 shows the formula used to combine the W+bb̄+light parton sample and Table 6.3

shows the relative cross sections and weights (k) for each sample. All W+bb̄+light parton

events are generated using CTEQ6L1 PDFs with Q2 = m2
W + P 2

T (W ).

W + bb̄ + Nlp = kW+bb̄+0lp

[

W + bb̄ + 0lp
]

exbl + kW+bb̄+1lp

[

W + bb̄ + 1lp
]

exbl +

kW+bb̄+2lp

[

W + bb̄ + 2lp
]

exbl + kW+bb̄+3lp

[

W + bb̄ + 3lp
]

incl (6.3)
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Table 6.3: Absolute weights for W+bb̄+light parton ALPGEN Monte Carlo events.

Sample Type Cross Section [pb] Events Weight (k)

kW+bb̄+0lp Exclusive 19.18 738761 0.014

kW+bb̄+1lp Exclusive 7.939 261300 0.011

kW+bb̄+2lp Exclusive 2.636 171411 0.005

kW+bb̄+3lp Inclusive 1.742 163674 0.003

tt̄ → ℓ + jets+Light Parton Sample

The tt̄ → ℓ+ jets+light parton sample contains tt̄ → ℓ+ jets + light flavor partons. Eq. 6.4

shows the formula used to combine the tt̄ → ℓ + jets+light parton sample and Table 6.4

shows the relative cross sections and weights (k) for each sample. All tt̄ → ℓ + jets events

are generated using CTEQ6L1 PDFs with scale Q2 = m2
t +

∑

jets P 2
T .

tt̄ → ℓ + jets + Nlp = ktt̄→ℓ+jets+0lp
[tt̄ → ℓ + jets + 0lp]excl +

ktt̄→ℓ+jets+1lp
[tt̄ → ℓ + jets + 1lp]excl +

ktt̄→ℓ+jets+2lp
[tt̄ → ℓ + jets + 2lp]incl (6.4)

Table 6.4: Absolute weights for tt̄ → ℓ + jets+light parton ALPGEN Monte Carlo events.

Sample Type Cross Section [pb] Events Weight (k)

ktt̄→ℓ+jets+0lp
Exclusive 1.284 283463 0.048

ktt̄→ℓ+jets+1lp
Exclusive 0.625 98425 0.032

ktt̄→ℓ+jets+2lp
Inclusive 0.398 92517 0.020

tt̄ → ℓℓ+Light Parton Sample

The tt̄ → ℓℓ+light parton sample contains tt̄ → ℓℓ + light flavor partons. Eq. 6.5 shows

the formula used to combine the tt̄ → ℓℓ+light parton sample and Table 6.5 shows the
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relative cross sections and weights (k) for each sample. All tt̄ → ℓℓ events are generated

using CTEQ6L1 PDFs with scale Q2 = m2
t +

∑

jets P 2
T .

tt̄ → ℓℓ + Nlp = ktt̄→ℓℓ+0lp
[tt̄ → ℓℓ + 0lp]excl +

ktt̄→ℓℓ+1lp
[tt̄ → ℓℓ + 1lp]excl +

ktt̄→ℓℓ+2lp
[tt̄ → ℓℓ + 2lp]incl (6.5)

Table 6.5: Absolute weights for tt̄ → ℓℓ+light parton ALPGEN Monte Carlo events.

Sample Type Cross Section [pb] Events Weight (k)

ktt̄→ℓℓ+0lp
Exclusive 0.324 223635 0.0004

ktt̄→ℓℓ+1lp
Exclusive 0.151 96386 0.0078

ktt̄→ℓℓ+2lp
Inclusive 0.104 148105 0.0051

6.1.2 Data-based Modeling of Multijet Background

In both electron and muon samples the multijet background is a result of muons from heavy

flavor decays or jets with a large electromagnetic fraction mimicking a lepton from a W

boson decay. The multijet background is modeled using data events that pass all selection

cuts except the isolation cut for muons or likelihood cut for electrons. The normalization of

this background as well as all Monte Carlo modeled backgrounds is described in Section 6.2

6.2 Background Normalization

6.2.1 tt̄ Normalization

All tt̄ Monte Carlo events are normalized to the number of events expected from the NLLO

tt̄ cross section and branching ratio multiplied by the integrated luminosity as shown in

Eq. 6.6.

Ntt̄ = σtt̄ × BR ×
∫

Ldt (6.6)
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The cross sections shown in Tables 6.4 and 6.5 are leading order cross sections from

ALPGEN that must be scaled to match the next-to-next-leading log cross section of 6.67 pb

as calculated in [72, 42]. Each event is then assigned a weight such that the total number

of weighted Monte Carlo events equals Ntt̄. The event weight is shown in Eq. 6.7.

wi =
Ntt̄

∑Nselected
i [εtrigger × εcorrections × εTRF]

(6.7)

6.2.2 Matrix Method: Normalizing W+jets and Multijet Backgrounds

The W+jets and multijet backgrounds are normalized through a procedure known as the

matrix method. This method requires two datasets to determine the mixture of W+jets and

multijet backgrounds. The first sample contains a mixture of W+jets and multijet events

while the second sample is enriched in W+jets. The sample that contains the mixture of

events is called the “loose” sample and is defined in Eq. 6.8 and a subset of that sample

which is enriched in W decays and is called the “tight” sample and is defined in Eq. 6.9.

In both samples the tt̄ background is normalized as described in Section 6.2.1. The tight

sample is a subset of the loose sample with the only difference being that tight events have

passed the muon isolation selection cut or the electron likelihood cut.

Nloose = NMultijet + NW+jets + Ntt̄ (6.8)

Ntight = εMultijet × NMultijet + εW+jets ×
[

NW+jets + Ntt̄

]

(6.9)

The two parameters, εMultijet and εW+jets, represent the efficiency with which multijet

and W+jets events satisfy the tight selection requirement given the loose selection require-

ment. By inverting the system of two equations and by measuring the two ε parameters, the

expected number of W+jets and multijet events can be determined. The formula for the

expected number of W+jets events is shown in Eq. 6.10 and the formula for the expected

number of multijet events is shown in Eq. 6.11. The methods used to measure the efficiency

parameters are shown in the appropriately labeled sections below. The number of loose and

tight events for each jet multiplicity is shown in Table 6.6 along with the expected number

of multijet and W+jets events in the tight sample.
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NW+jets =
Ntight − εMultijet × Nloose

εW+jets − εMultijet
− Ntt̄ (6.10)

NMultijet =
εW+jets × Nloose − Ntight

εW+jets − εMultijet
(6.11)

Table 6.6: Number of loose and tight data events after all selection cuts (top two rows)
along with the expected number W+jets and multijet events in the tight sample (bottom
two rows).

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Nloose 15,213 7,118 2,191 7,092 3,054 878

Ntight 8,220 3,075 874 6,432 2,590 727

εMultijet×NMultijet 1,433 860 256 329 223 56

εW+jets×NW+jets 6,787 2,215 618 6,105 2,369 669

All W+jets events are then given a weight such that the total number of weighted events

equals the expected yields shown in Table 6.6. The W+jets event weight is shown in Eq. 6.12

and the multijet event weight is shown in Eq. 6.13.

wi =
1

∑Nselected
i [εtrigger × εcorrections × εTRF]

× [εW+jets × NW+jets] (6.12)

wi =
1

NData Sample
× [εMultijet × NMultijet] (6.13)

Multijet Efficiency: εMultijet

The efficiency with which multijet events pass the muon isolation or electron likelihood

cut is measured on data events that pass all selection cuts except the missing ET cut. All

events are required have missing ET < 10 GeV to eliminate the presence of a W → ℓν decay.

εMultijet is defined as the fraction of events that pass the muon isolation or electron likelihood
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cut with missing ET < 10 GeV. Table 6.7 shows the average values of εMultijet in the electron

and muon channel.

Table 6.7: Average multijet efficiency: εMultijet

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

εMultijet 0.19 0.19 0.17 0.36 0.34 0.31

W+jets Efficiency: εW+jets

The W+jets efficiency is measured in Z → µµ and Z → ee data events using a tag and

probe method as described in Chapter 4. εW+jets is defined as the fraction of events which

pass the muon isolation cut or the electron likelihood cut. The average value of εW+jets for

all jet multiplicities is shown in Table 6.8

Table 6.8: Average W+jets efficiency: εW+jets

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

εW+jets 0.87 0.87 0.87 0.99 0.99 0.96

6.2.3 Ratio of W+Heavy Flavor to W+Light Flavor

The W+jets cross sections shown in Tables 6.1, 6.2, and 6.3 are all leading order and are

sensitive to next-to-leading order (NLO) corrections. In particular, the NLO corrections for

W + bb̄ and W + cc̄ events are expected to be quite different from W + lp events. The ratio

(Wbb̄ + Wcc̄)/W lp is measured in data where no jets are B-tagged to avoid a bias from

the data sample used in the single top quark analysis. The ratio was also also measured in
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the standard data samples, but only as a cross check. Events with one reconstructed jet

were included in the α determination. This ratio, called α, is determined after the matrix

method normalization of Multijet and W+jets events and is calculated using Eq. 6.14

NData = α × (NWbb̄ + NWcc̄) + NWlp + NMultijet + Ntt̄ (6.14)

Table 6.9 shows the value of α and the uncertainty in each sample and Fig. 6.4 shows a fit

to the eight independent zero B-tag samples. As determined from the fit, α was set to 1.5

and assigned a 30% systematic error. The large systematic uncertainty is designed to cover

the known theoretical uncertainties regarding b quark production in Wbb̄ and Wbj events

between leading order and next-to-leading order [55, 51, 43].

Table 6.9: Scale factor α for the Wbb̄ and Wcc̄ yields to match the data in each jet bin, for
zero B-tags, 1 B-tag, and two B-tags samples. The uncertainties are statistical only.

1 jet 2 jets 3 jets 4 jets

Electron Channel

0 B-tags 1.53 ± 0.10 1.48 ± 0.10 1.50 ± 0.20 1.72 ± 0.40

1 B-tag 1.29 ± 0.10 1.58 ± 0.10 1.40 ± 0.20 0.69 ± 0.60

2 B-tags — 1.71 ± 0.40 2.92 ± 1.20 -2.91 ± 3.50

Muon Channel

0 B-tags 1.54 ± 0.10 1.50 ± 0.10 1.52 ± 0.10 1.38 ± 0.20

1 B-tag 1.11 ± 0.10 1.52 ± 0.10 1.32 ± 0.20 1.86 ± 0.50

2 B-tags — 1.40 ± 0.40 2.46 ± 0.90 3.78 ± 2.80

6.3 Background Yields

This section contains tables showing the observed number of data events, the total expected

background, and the total number of expected signal events. Tables 6.10, 6.11, and 6.12
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Figure 6.4: α values with errors for the eight zero B-tagged jet samples and the linear fit
with error to the values [56].

show the number of events for the following cases: before any B-jet requirement, one B-

tagged jet, and two B-tagged jets.

Table 6.10: Event yields after selection and before B tagging.

Electron Channel Muon Channel

2 Jets 3 Jets 4 Jets 2 Jets 3 Jets 4 Jets

Backgrounds

tt̄ 61 131 138 41 93 107

W+jets 6,726 2,084 478 6,063 2,275 563

Multijets 1,433 860 256 329 223 58

Expected Signal 41 21 7 30 16 4

Background Sum 8,220 3,075 874 6,434 2,592 727

Data 8,220 3,075 874 6,432 2,590 727
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Table 6.11: Event yields after selection and one selected B-jet.

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Backgrounds

tt̄ 27 60 63 19 42 49

W+jets 255 106 28 242 125 35

Multijets 66 48 18 26 24 8

Expected Signal 18 9 3 14 7 2

Background Sum 348 213 110 286 191 93

Data 357 207 97 287 179 100

Table 6.12: Event yields after selection and two selected B-jets.

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Backgrounds

tt̄ 7.2 18.2 23.5 5.6 15.0 19.4

W+jets 17.9 8.0 2.2 17.0 9.8 2.8

Multijets 2.5 3.2 2.7 1.5 1.9 0.4

Expected Signal 2.6 1.9 0.7 2.1 1.6 0.6

Background Sum 27.5 29.4 28.4 24.1 25.7 22.7

Data 30 37 22 23 32 27
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6.4 Comparison of Data with Expection

The following histograms compare data with the sum of the expected background for events

before B-tagging, events with one B-tag, and events with two B-tags. Four kinematic

variables are shown: leading jet pT (jet with largest pT ), second jet pT (jet with second

largest pT ), lepton pT (either electron or muon), and missing ET . The error bands on

the plots represent the combined statistical and systematic error for the data sample. A

description and magnitude of each systematic error can be found in Chapter 8. All plots

show combined electron and muon events.

All histograms use the same color convention for backgrounds. The convention is shown

in Fig. 6.5.

Figure 6.5: Color convention used in all histograms.
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Figure 6.6: Leading jet pT distributions. Upper row: events with 2 jets, Middle row: events
with 3 jets, Lower row: events with 4 jets. Left column: events before B-tagging, Middle
row: events with one selected B-jet, Right column: events with two selected B-jets [56].
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Figure 6.7: Second leading jet pT distributions. Upper row: events with 2 jets, Middle row:
events with 3 jets, Lower row: events with 4 jets. Left column: events before B-tagging,
Middle row: events with one selected B-jet, Right column: events with two selected B-
jets [56].
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Figure 6.8: Lepton pT distributions. Upper row: events with 2 jets, Middle row: events
with 3 jets, Lower row: events with 4 jets. Left column: events before B-tagging, Middle
row: events with one selected B-jet, Right column: events with two selected B-jets [56].
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Figure 6.9: Missing ET distributions. Upper row: events with 2 jets, Middle row: events
with 3 jets, Lower row: events with 4 jets. Left column: events before B-tagging, Middle
row: events with one selected B-jet, Right column: events with two selected B-jets [56].
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Chapter 7

MATRIX ELEMENT ANALYSIS METHOD

This chapter provides the motivation and explanation of a technique known as the matrix

element method, which uses probabilities based on leading order matrix elements to extract

the single top signal in the dataset. The matrix element method is employed after event

selection because the signal to background ratio is ∼ 1 : 20 thus making an observation of

single top impossible. Section 7.1 motivates the matrix element method and explains how

it is applied to the single top search. The result of the matrix element method is a set of

probabilities for each event to originate from either a signal or background process. The

definition and derivation of these probabilities is given in Section 7.2. Section 7.3 shows the

expected separation power between signal and background events using the matrix element

method. A comparison of data with the background expectation is shown in Section 7.4 for

a data sample where the expected signal fraction is negligible. The result of this comparison

shows that the data and background estimation agree after applying the matrix element

discriminant. Finally, Section 7.5 shows a comparison of data with the expectation for all

events.

7.1 Motivation and Introduction to the Matrix Element Method

The measurement of a process with a low rate such as single top quark production requires

advanced methods to reduce background rates while keeping signal acceptance high. DØ

has previously published two analyzes using decision trees and neural networks [17, 20] and

released preliminary results using a likelihood discriminant method [46]. All three of these

methods combine differential distributions, that show discrimination between signal and

background events, to form a variable which attempts to maximally separated the signal

and background. For example, one famous differential distribution that is quite different in

signal and background events is the charge of the lepton from the W boson decay multiplied



101

by the η of the forward un-tagged jet. This distribution is shown for t-channel single top

and Wbb̄ production in Fig. 7.1.

Q x Eta
-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3
DØ Run II Preliminary

t-channel

Wbb

Figure 7.1: Comparison of the lepton charge multiplied by the forward un-tagged jet η
(qℓ × η) for t-channel single top (blue) and Wbb̄ Monte Carlo events.

While these methods are very powerful they require a-priori knowledge of the expected

correlations in signal and background events. Searching for these correlations is time con-

suming and if all correlations are not exploited in the analysis it will lead to sub-optimal

separation power.

The matrix element method attempts reproduce all correlations present in both signal

and background events by weighting events based on the normalized N -dimensional dif-

ferential cross section1 at the detector level for both signal and background processes, as

shown in Eq. 7.1.

PS|B(~x) =
1

σ

dNσS|B

dxN
(7.1)

1N is the number of independent observables in the event.
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The number independent observables (N) in the event depends on the number of ob-

served particles. For example, an event in the single top dataset will have one lepton, large

missing ET and two or three jets2 resulting in 3(px, py, pz)× 3(4) particles = 9(12) d.o.f for

events with two(three) jets. Since the missing ET is indirectly measured from momentum

balance with the lepton and jets it is not an independent quantity and therefore not used

in the method.

The normalized differential cross sections for signal and background processes are com-

bined using the a-posteriori Bayesian probability density for the signal hypothesis to be true

given the measured event ~x as shown in Eq. 7.2

DS(~x) = P (S|~x) =
PS(~x)

PS(~x) + PB(~x)
(7.2)

The remainder of this chapter describes how the differential cross section and normal-

ization are calculated for the signal and background.

7.2 Event Probability Density, PS|B(~x)

7.2.1 Differential Cross Section Definition

The differential cross section at the detector level, dσ
d~x , is given in Eq. 7.3; it is defined as the

integration over the initial and final state particles’ phase space weighted by the differential

cross section at the parton level convoluted with a conditional probability to observe event

~x given a particular parton-level state (~y). All quantities in this equation are explained

below.

dσ

d~x
=
∑

i,j

∫

d~y

[

fi(q1, Q
2)dq1 × fj(q2, Q

2)dq2 ×
dσhs,ij

d~y
× W (~x, ~y) × ΘParton(~y)

]

(7.3)

• ∑i,j is a sum of initial parton flavors in the hard scatter collision. For example, an

s-channel collision can occur via ud̄, cs̄, dū, or sc̄ annihilation.

2Events with four jets are not used in this analysis.
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• fi(q,Q
2) is the parton distribution function for parton i carrying momentum q, eval-

uated at the factorization scale Q2. The scale used for W+jets processes is Q2 =

M2
W +

∑

jets(m
2
i + p2

T,i), where mi are the parton masses and pT,i are the transverse

momenta of the partons. The scale used for s-channel events is Q2 = m2
t and scale for

t-channel events is Q2 =
(mt

2

)2
. This analysis uses CTEQ6 [81] leading-order parton

distribution functions accessed via LHAPDF [40].

• dσhs,ij

d~y is the differential cross section for the hard scatter collision and is solely a

function of the initial and final state four-vectors ~y. This quantity is proportional to

the square of the leading order matrix element, as shown in Eq. 7.4:

dσhs =
(2π)4

4
√

(q1q2)2 − m2
1m

2
2

|M|2dΦn(~y) (7.4)

where the first term is the flux factor, the second term is the matrix element squared,

and the third term is the n-body phase space factor, with n = 4(5) for two-jet (three-

jet) events, as defined in Eq. 7.5.

dΦn(~y) = δ4(P −
n
∑

i=1

pi)
n
∏

i=1

d3pi

(2π)32Ei
(7.5)

Matrix elements in this analysis were obtained from the Madgraph [78] leading-order

matrix-element generator. The signal and background matrix elements depend on the

the number of reconstructed jets in the event. Events with two jets are integrated

using five matrix elements: two signals (s-channel and t-channel) and three back-

grounds (Wbb̄, Wcg, and Wgg). Events with three jets are integrated using three

matrix elements: two signals (s-channel and t-channel and one background (Wbbg).

The Feynman diagrams for the two and three jet processes are shown in Figs. 7.2.1

and 7.2.1, respectively.

• W (~x, ~y) is called the transfer function, which represents the conditional probability to

observe a particular state in the detector (~x) given the original parton-level state (~y).

The transfer functions are determined using Monte Carlo where the true parton-level
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Figure 7.2: Representative Feynman diagrams corresponding to the leading-order matrix
elements used for event probability calculation for events with exactly two jets. Upper
row are signals: ud→tb and ub→td; lower row are backgrounds: ud→Wbb, sg→Wcg, and
ud→Wgg.
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Figure 7.3: Representative Feynman diagrams corresponding to the leading-order matrix
elements used for event probability calculation for events with exactly three jets. Left two
plots: signals, ud→tbg, ug→tbd; right plot: background,ud→Wbbg.
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four-vectors are known. Transfer functions are determined separately for electrons,

muons, and jets, and the full event transfer function is defined as a product of each

individual object transfer function as shown in Eq. 7.6. The description of the transfer

function for each object is given below.

W (~x, ~y) =
n
∏

i=1

WType(~xi, ~yi) (7.6)

– Jets - The jet transfer functions are determined for three types of jets: jets

originating from a light flavor quark or gluon, jets originating from a b quark

that do not contain a muon, and jets originating from a b quark that do contain

a muon. A jet is considered to originate from a b quark if there is a B meson

with ∆R < 0.15 from the jet axis. Any jet that fails this requirement, but

is matched to a light flavor quark or gluon with the same matching criteria is

considered a light flavor jet. For all jet types the polar angle θ and azimuthal

angle φ are assumed to be same for the jet and parton. This assumption has been

verified in the Monte Carlo. This leaves the jet and parton energies, Ej and Ep,

as the sole factors with which the transfer functions depend. To minimize the

effect of statistical fluctuations, the transfer functions are parameterized using

the functional form shown in Eq. 7.7. To account for detector effects the transfer

functions were also determined in four ηdet regions (0 < |η| < 0.5, 0.5 < |η| <

1.0, 1.0 < |η| < 1.5, 1.5 < |η| < 3.5).

WJet(Ep, Ej) = N ×
[

exp

{

−(∆E − α1)
2

2p2
2

}

+ α3exp

{

−(∆E − α4)
2

2p2
5

}]

(7.7)

N =
1√

2π(α2 + α3α5)

Where ∆E = Ej −Ep and αi = ai + bi ×Ep. For each of the three jet types and

each of the four detector regions the transfer function parameters are determined

by minimizing the logarithm of the likelihood function, shown in Eq. 7.8.
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L(~α) =
NEvents
∏

i=1

W (~α,Ei
p, E

i
j) (7.8)

The values of ~α for light jets, B-jets, and B-jets w/ µ can be found in Ta-

bles 7.1, 7.2, and 7.3. A plot of ∆E for all jets used to determine the transfer

function parameters is shown in Fig. 7.4.

Figure 7.4: Energy difference between a reconstructed jet and its matched parton for three
types of jets for all eta regions and all jet energies.

– Electrons - The transfer function for electrons is assumed to be solely a function

of the reconstructed energy of the electron, Ee, the parton-level energy of the

electron, Ep, and θ, the production angle with respect to the beam axis. The

transfer function is parameterized by a Gaussian in the relative energy difference

with a width that depends on the reconstructed energy and the production angle.
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Table 7.1: Light jet transfer function parameters.

α1 α2 α3 α4 α5

a b a b a b a b a b

0.0 < |η| < 0.5 -4.17 0.04 4.12 0.11 0.0 0.0013 24.8 -0.19 15.6 0.23

0.5 < |η| < 1.0 -2.90 0.03 5.26 0.12 0.0 0.0010 57.3 -0.47 -16.1 0.69

1.0 < |η| < 1.5 -0.61 0.02 8.16 0.13 0.0 0.0010 70.7 -0.37 -11.5 0.54

1.5 < |η| < 3.5 3.12 -0.06 12.4 0.11 0.0 0.0011 234 -1.53 -22.3 0.49

Table 7.2: B jet transfer function parameters.

α1 α2 α3 α4 α5

a b a b a b a b a b

0.0 < |η| < 0.5 -5.61 0.01 3.27 0.14 0.0 0.0018 49.9 -0.77 32.7 -0.03

0.5 < |η| < 1.0 -4.07 0.01 3.31 0.15 0.0 0.0018 52.1 -0.76 41.1 -0.09

1.0 < |η| < 1.5 -1.92 -0.06 6.46 0.15 0.0 0.0011 98.8 -0.74 -17.0 0.64

1.5 < |η| < 3.5 -0.87 -0.07 5.84 0.17 0.0 0.0011 -5.84 -0.98 -5.83 0.39

Table 7.3: B w/µ jet transfer function parameters.

α1 α2 α3 α4 α5

a b a b a b a b a b

0.0 < |η| < 0.5 -1.38 -0.06 3.65 0.16 0.0 0.0017 55.7 -0.46 91.5 -0.16

0.5 < |η| < 1.0 -0.37 -0.07 4.30 0.16 0.0 0.0014 110 -0.93 -4.56 0.66

1.0 < |η| < 1.5 2.61 -0.11 5.42 0.17 0.0 0.0015 119 -0.91 -9.31 0.39

1.5 < |η| < 3.5 12.9 -0.20 4.17 0.19 0.0 0.0024 215 -1.39 42.3 0.17
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This functional form is shown in Eq. 7.9.

W (Ee, Ep, θ) =
1

2πσ
exp

{

−(Ee − α1 × Ep − α2)
2

2σ2

}

(7.9)

Where the Gaussian width σ is defined as the product of a parton energy error

term, a sampling error term, and a constant error term as shown in Eq. 7.10.

The values of ~α in the electron transfer function are shown in Table 7.4.

σ = α3Ecen × Sampling(Ecen, θ)Ecen × α4

Ecen = α1Ep + α2

Sampling(Ee, θ) =

[

α5√
Ee

+
α6

Ee

]

exp

{

f(Ee)

sinθ
− f(Ee)

}

f(Ee) = α7 −
α8

Ee
− α9

E2
e

. (7.10)

Table 7.4: Electron transfer function parameters.

Ecen σ Sampling f(E)

α1 α2 α3 α4 α5 α6 α7 α8 α9

0.0002 0.324 0.028 0.4 0.164 0.122 1.35 2.09 6.99

– Muons - The muon transfer functions are determined for muons with and without

SMT hits and are parameterized using the Gaussian functional form shown in

Eq. 7.11.

W

(

(

q

pt

)

µ

,

(

q

pt

)

p

, η

)

=
1

2πσ
exp











−

[

∆
(

q
pt

)]2

2σ2











(7.11)

Where the Gaussian width σ is defined separately for two η regions as shown in

Eq. 7.12. The η region dependence is a result of the limited η coverage of the

central fiber tracker in the forward region.
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σ =











α1 : |η| ≤ 1.4
√

α2
1 + [α2(|η| − 1.4)]2 : |η| > 1.4











(7.12)

The parameters α1 and α2 in the transfer function parameterization contain a

constant term and a term proportional to 1
pT

. The four parameters are extracted

using a maximum likelihood method similar to the method used to determine

the jet transfer function. The muon transfer function parameters are shown in

Table 7.5.

Table 7.5: Muon transfer function parameters (Eq. 7.11) for muons with and without SMT
hits.

α1 α2

Muon Type Constant ∝ 1
pT

Constant ∝ 1
pT

= 0 SMT Hits 2.96×10−3 2.91×10−2 1.95×10−2 -3.04×10−2

≥ 1 SMT Hit 2.07×10−3 2.22×10−2 5.56×10−3 1.19×10−1

• ΘParton(~y) represents the parton level cuts applied to avoid singularities in the matrix

element evaluation. All differential cross sections were calculated with the following

parton level cuts:

– Parton isolation: ∆R(qi,qj) > 0.5

– Minimum parton PT : PT (qi) > 6 GeV

– Maximum parton pseudorapidity: |η(qi)| < 3.5

– No cuts are applied to the lepton or neutrino

•
∫

d~ydq1dq2 is an integration over the phase space defined by the final state particles

(d~y) and the two initial parton’s longitudinal momentum (dq1, dq2). The phase space

for a lepton, neutrino, and two parton final state event is defined by 14 degrees of
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freedom (one momentum (p) and two angles (Ω) for each final state particle plus the

two initial parton momenta), as shown in Eq. 7.13.

d~yℓνq1q2 = dq1dq2d|p|ℓdΩℓd|p|νdΩνd|p|q1dΩq1d|p|q2dΩq2 (7.13)

Events with three partons in the final state have 17 degrees of freedom and has a

phase space defined in Eq. 7.14.

d~yℓνq1q2q3 = dq1dq2d|p|ℓdΩℓd|p|νdΩνd|p|q1dΩq1d|p|q2dΩq2d|p|q3dΩq3 (7.14)

When performing the integration four (six) degrees of freedom are removed for two

(three) parton events by assuming equal azimuthal and polar angles (φ, θ) for partons

and jets as required by the transfer functions. Two more degrees of freedom are

removed by assuming well measured lepton angles. Four more degrees of freedom are

removed from the integration by energy-momentum conservation, leaving four(five)

integration variables for events with two(three) jets. The final integration phase space

is then transformed to suit the matrix element being integrated. W+jets matrix

element integrations use the phase space defined in Eqs. 7.15 and single top matrix

element integrations use the phase space in Eq. 7.16.

d~yW+jets−2jets = duW d|pq1|d|pq2|dpsystem
z

d~yW+jets−3jets = duW d|pq1|d|pq2|d|pq3|dpsystem
z (7.15)

d~ysingletop−2jets = dutduW d|pq2|dpsystem
z

d~ysingletop−3jets = dutduW d|pq2|d|pq3|dpsystem
z (7.16)

In Eqs. 7.15 and 7.16, duW and dut are used to uniformly sample a Breit-Wigner

distribution centered around the W mass and top quark mass, respectively. Because

the differential cross section for a W+jets process is sharply peaked when the mass of
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the lepton and neutrino system is near the W mass, integrating solely in this region

reduces the integration time considerably. The same reasoning applies to the top quark

mass and the mass of the lepton, neutrino, and b-quark. The initial parton momentum

fractions are transformed into the total system energy and longitudinal momentum.

With this choice of integration variables the total energy integral is removed along

with the neutrino momentum from energy and momentum conservation. The total

longitudinal momentum remains as an integration variable.

When changing integration variables a Jacobian is required to modify the differential

cross section. The Jacobians for the W+jets and single top change of variable are

shown in Eqs. 7.17 and 7.18.3

|J(p3,→ uW )| =
2

s
× ∆SW ×

∣

∣

∣

∣

∣

[

(mW ΓW )2 + (m2
34 − m2

W )2
]

2(p3 + p4)(1 − p̂3 · p̂4)

∣

∣

∣

∣

∣

(7.17)

|J(p3, p5 → uW , ut)| =
2

s
× ∆SW × ∆St ×

∣

∣

∣

∣

∣

∣

∣

[(mtΓt)2+(m2
345−m2

t )2]
2(p3+p4+p5)(1−p̂3·p̂4)

[(mW ΓW )2+(m2
34−m2

W
)2]

2(p3+p4)(1−p̂3·p̂4)

[(mtΓt)2+(m2
345−m2

t )2]
2(p3+p4+p5)(1−p̂4·p̂5)

[(mW ΓW )2+(m2
34−m2

0)2]
2p3(p̂3·p̂5−p̂4·p̂5)

∣

∣

∣

∣

∣

∣

∣

(7.18)

where ∆SW and ∆St are defined in Eqs. 7.19 and 7.20.

∆SW =

(

1

mW ΓW

)

(

tan

[

smax − m2
W

mW ΓW

]

− tan

[

smin − m2
W

mW ΓW

])

(7.19)

∆St =

(

1

mtΓt

)

(

tan

[

smax − m2
t

mtΓt

]

− tan

[

smin − m2
t

mtΓt

])

(7.20)

The multidimensional integrals in this analysis were performed using the GNU Scientific

Library version of the VEGAS [74] Monte Carlo integration algorithm.

3In all Jacobian equations the subscript 3 refers to the lepton, 4 refers to the neutrino, and 5,6, and 7,
refer to the final state partons. The global factor of 2

s
is a result of the Jacobian for the q1q2 → EtotP tot

z

change of variables. smax is the maximum available mass-squared for the collision and smin is the minimum
mass-squared required to create the final state particles.
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7.2.2 Probability Normalization Constants

The differential cross section defined in Eq. 7.3 requires a normalization constant to retain a

probability density interpretation. The normalization constant σ is defined as the detector

level phase space integration (
∫

d~x) of the differential cross section, as shown in Eq. 7.21.

σ =
∑

i,j

∫

d~xd~y

[

dσi,j

d~y
× W (~x, ~y) × Θcuts(~x)

]

(7.21)

The term Θcuts(~x) is included in the calculation to account for the acceptance after

selection cuts. This factor is set to one if the event passes the selection cuts and zero if it

fails. All normalization constants were calculated with the following selection cuts:

• Lepton PT > 15 GeV

• Electron (muon) |η| < 1.1(2.0)

• Missing ET > 15 GeV

• Leading jet PT > 25 GeV

• Leading jet |η| < 2.5

• Second jet PT > 20 GeV

• Second jet |η| < 3.5

• Third jet PT > 15 GeV (if three-jet event)

• Third jet |η| < 3.5 (if three-jet event)

The selection cuts shown above are slighty different from the canonical single top cuts.

These cuts are included in the normalization calculation to approximate the relative ac-

ceptance difference between signal and background events. The cross sections computed

for each signal and background process for two- and three-jet events are summarized in
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Table 7.6. In all instances, the statistical uncertainty from the Monte Carlo integration is

below 1%.

Table 7.6: Cross section times branching fraction for each analysis channel. All cross sections
are given in units of femtobarns (fb).

2-jet events 3-jet events

1 tag 2 tags 1 tag 2 tags

Electron Muon Electron Muon Electron Muon Electron Muon

Signals

tb(g) 8.07 10.4 6.90 8.90 6.02 7.64 5.22 6.66

tq(b) 19.6 26.8 0.27 0.38 6.34 8.56 5.40 7.40

Backgrounds

Wbb(g) 29.5 41.9 24.6 34.7 16.5 23.1 14.3 19.9

Wcg 36.4 54.0 0.33 0.61

Wgg 52.3 74.5 0.33 0.47

7.2.3 Treatment of Combinatorial Background

The event probability density shown in Eq. 7.3 assumes a known assignment between a jet

and parton from the matrix element. In practice this assignment is not known so there

must be a sum over all possible assignments. The general treatment of the combinatorial

backgrounds for events with two jets is shown in Eq. 7.22 and Eq. 7.23 for three jet events.

dσ(ℓ, j1, j2) = αj1→p1αj2→p2dσ(ℓ, j1→p1, j2→p2) +

+ αj2→p1αj1→p2dσ(ℓ, j2→p1, j1→p2) (7.22)

dσ(ℓ, j1, j2, j3) = αj1→p1αj2→p2αj3→p3dσ(ℓ, j1→p1, j2→p2, j3→p3)
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+ αj1→p1αj3→p2αj2→p3dσ(ℓ, j1→p1, j3→p2, j2→p3)

+ αj2→p1αj1→p2αj3→p3dσ(ℓ, j2→p1, j1→p2, j3→p3)

+ αj2→p1αj3→p2αj1→p3dσ(ℓ, j2→p1, j3→p2, j1→p3)

+ αj3→p1αj1→p2αj2→p3dσ(ℓ, j3→p1, j1→p2, j2→p3)

+ αj3→p1αj2→p2αj1→p3dσ(ℓ, j3→p1, j2→p2, j1→p3) (7.23)

Where the α parameters represent to the probability to assign a parton (p) to a jet (j),

also known as a jet-parton match. If there is no knowledge of the correct assignment, these

quantities can be made equal and thereby no preference is given to a particular assignment.

This analysis uses information from the neural network B-tagger to weight the different

jet-parton combinations depending on whether a given jet is tagged or not and which parton

flavor is being assigned to it when summing over the combinatorial background. In this

case the α weights are related to the jet tag-rate functions (described in Chapter 4) for the

different jet flavors (b, c and light), as shown in Table 7.7.

Table 7.7: Weights for the event differential cross section depending on the B-jet tagging
status of the jet and jet-parton assignment.

Parton flavor b tagged Not tagged

b εb 1 − εb

c εc 1 − εc

light εl 1 − εl

Example of The Jet-Parton Weight Assignments

Consider a two-jet event where the leading jet, j1, is B-tagged and second jet, j2, is not

tagged. As stated earlier in the text, one of the hypotheses for the background is the Wcg

process. The first permutation is to assign the B-tagged jet as the c-quark and the un-

tagged jet as the gluon. In this case the jet-parton weight is equal to the tagging efficiency

for a charm-jet ( εc(j1) ) times one minus the mis-tag rate for a light jet ( 1 − εl(j2) ).
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The second permutation assigns the B-tagged leading jet as the gluon and the un-tagged

second jet as the charm-quark. In this case the weight is equal to the mis-tag rate for a

light-jet ( εl(j1) ) times one minus the charm-jet tagging efficiency ( 1− εc(j2) ). The total

differential cross for this process is summarized in Eq. 7.24.

dσWcg(ℓ, j1, j2) = [ εc(j1)(1 − εl(j2)) ] × dσWcg(ℓ, j1→c, j2→g) +

[ (1 − εc(j2))εl(j1) ] × dσWcg(ℓ, j2→c, j1→g). (7.24)

7.3 Single Top Discriminant Performance

7.3.1 Discriminant Definition

The discriminant for the matrix element analysis is constructed from the signal and back-

ground probability densities. One discriminant is created using s-channel single top as

the signal process and one discriminant is created using t-channel single top as the signal.

In both cases the probability density for the background is defined as a weighted sum of

probability densities from the background-like processes. For the case of two jet events the

background processes are Wbb̄, Wcg, and Wgg. For the case of three jet events, the back-

ground is defined solely by the Wbbg process. The s-channel and t-channel discriminants

for two and three jet events are shown in Eq. 7.25 and 7.26, respectively.

D2jets
tb|tqb(~x) =

Ptb|tqb(~x)

Ptb|tqb(~x) + CWbbPWbb(~x) + CWcgPWcg(~x) + CWggPWgg(~x)
(7.25)

D3jets
tb|tqb(~x) =

Ptb|tqb(~x)

Ptb|tqb(~x) + PWbbg(~x)
(7.26)

Where CWbb, CWcg, and CWgg are the relative fractions that each probability contributes

to the total background probability. The background fractions for the two-jet discriminant

were found by a grid search to determine the most sensitive set of background fractions4.

This procedure was performed for single and double tagged events for each lepton channel

4The sensitivity was measured using the Bayes ratio for each background fraction set. The Bayes ratio is
defined in Chapter 8
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to optimize the final discriminant variable. The values of the background fractions are

summarized in Table 7.8.

Table 7.8: Background fractions chosen for each analysis channel in two-jet events.

1 tag 2 tags

Electron Muon Electron Muon

CWbb 0.20 0.40 0.67 1

CWcg 0.40 0.40 0 0

CWgg 0.40 0.20 0.33 0

7.3.2 One-Dimensional Discriminants

This section contains overlayed plots of the one-dimensional (1D) s-channel and t-channel

discriminants evaluated on signal and background events. The events in the plots come

from the combination of the eight analysis channels {e,µ ⊕ 1,2 tags ⊕ 2,3 jets }. Fig-

ures 7.5, 7.6, 7.7 and 7.8 show good discrimination between signal and W+jets and mul-

tijet backgrounds. However, the discrimination is poorer between signal and tt̄ → ℓℓ and

tt̄ → ℓ + jets events as shown in Figures 7.9 and 7.10. The lack of discrimination power for

tt̄ events is due to the fact that the analysis does not yet include a tt̄ probability density

function in the definition of the discriminant5.

5The tt̄ matrix element takes much longer to integrate because there are six partons in the final state while
there are four in the single top and W+jets matrix elements. Adding a tt̄ matrix element is envisioned as
a future improvement for this analysis.
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Figure 7.5: Discriminant plots and efficiency curves for: first row, s-channel vs. Wbb
and second row, t-channel vs. Wbb. The numbers in the efficiency curves (right column)
represent the fraction of signal or background the remains after a discriminant cut of 0.8.
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Figure 7.6: Discriminant plots and efficiency curves for: first row, s-channel vs. Wcc
and second row, t-channel vs. Wcc. The numbers in the efficiency curves (right column)
represent the fraction of signal or background the remains after a discriminant cut of 0.8.
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Figure 7.7: Discriminant plots and efficiency curves for: first row, s-channel vs. Wjj
and second row, t-channel vs. Wjj. The numbers in the efficiency curves (right column)
represent the fraction of signal or background the remains after a discriminant cut of 0.8.
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Figure 7.8: Discriminant plots and efficiency curves for: first row, s-channel vs. Multijets
and second row, t-channel vs. Multijets. The numbers in the efficiency curves (right column)
represent the fraction of signal or background the remains after a discriminant cut of 0.8.
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Figure 7.9: Discriminant plots and efficiency curves for: first row, s-channel vs. tt̄ → ℓℓ
and second row, t-channel vs. tt̄ → ℓℓ. The numbers in the efficiency curves (right column)
represent the fraction of signal or background the remains after a discriminant cut of 0.8.
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Figure 7.10: Discriminant plots and efficiency curves for: first row, s-channel vs. tt̄ →
ℓ + jets and second row, t-channel vs. tt̄ → ℓ + jets. The numbers in the efficiency
curves (right column) represent the fraction of signal or background the remains after a
discriminant cut of 0.8.
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7.3.3 Two-Dimensional Discriminants

This analysis uses a two-dimensional (2D) discriminant as the final output where one axis

is the s-channel discriminant and the other axis is the t-channel discriminant value for the

event. The 2D discriminant is more powerful than either 1D projection because it selects

events with both s and t-channel characteristics, which helps to further reduce the W+jets

and tt̄ background which may have either characteristic but not necessarily both. Fig. 7.11

shows the 2D discriminant for s-channel and t-channel Monte Carlo evemts. Figures 7.12

and 7.13 show the 2D discriminants for all the backgrounds. The plots are normalized to

unit volume.
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Figure 7.11: 2D-discriminant templates for: left, s-channel , and right, t-channel Monte
Carlo events.
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Figure 7.12: 2D-discriminant templates for: top-left, Wbb, top-right, Wcc, and bottom-left,
Wjj Monte Carlo events.
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Figure 7.13: 2D-discriminant templates for: top-left, multijets events, top-right, tt̄ → ℓℓ,
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7.4 Cross-Check Samples

Before a measurement of the single top quark cross section is made, the output of the matrix

element analysis is compared between data and background in a region where the signal

content is negligible. If the agreement between data and background is good in this sample,

there is more confidence that the background is well-modeled in the signal region. In this

analysis two background-dominated control samples are defined, and a comparison between

the 1D discriminants in data and the background model is performed.

These two control samples are selected by applying the nominal event selection, and

requiring an additional cut on the total transverse energy HT defined as

HT = plepton
T + MET +

∑

jets

pjet
T (7.27)

The first sample selects events with HT < 175 GeV and the second sample selects events

with HT > 300 GeV, respectively. The control samples defined with HT < 175 GeV is

referred to as the “soft W+jets” sample and the sample with HT > 300 GeV is referred to

as the “hard W+jets” sample. In the case of three-jet events, the “hard W+jets” sample

also contains a significant fraction of tt̄.

The “soft W+jets” sample selects low momentum W+jets and multijets events and

almost no top-quark events. Figures 7.14 and 7.15 compare the s-channel and t-channel

discriminants between data and the background model for events with two and three jets

respectively.

The “hard W+jets” sample selects mainly tt̄ and high momentum W+jets events. Fig-

ures 7.16 and 7.17 compare the s-channel and t-channel discriminants between data and the

background model for events with two and three jets.
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Figure 7.14: “Soft W+jets” cross-check plots in two-jet events for the s-channel discriminant
(upper row) and the t-channel discriminant (lower row). The left column shows the full
discriminant region while the right column shows the high discriminant region above 0.7.
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Figure 7.15: “Soft W+jets” cross-check plots in three-jet events for the s-channel discrim-
inant (upper row) and the t-channel discriminant (lower row). The left column shows the
full discriminant region while the right column shows the high discriminant region above
0.7.
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Figure 7.16: “Hard W+jets” cross-check plots in two-jet events for the s-channel discrim-
inant (upper row) and the t-channel discriminant (lower row). The left column shows the
full discriminant region while the right column shows the high discriminant region above
0.7.
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Figure 7.17: “Hard W+jets” cross-check plots in three-jet events for the s-channel discrim-
inant (upper row) and the t-channel discriminant (lower row). The left column shows the
full discriminant region while the right column shows the high discriminant region above
0.7.



131

7.5 Matrix Element Discriminants

This section presents the matrix element discriminants for all events in each analysis channel.

Figures 7.18 and 7.19 show the s-channel and t-channel discriminants for the combined e,µ

w/ ≥ 1 B-tag events for two-jet and three-jet events where the data distributions may be

compared to the background model. The SM prediction for single top quark production has

been added to the background sum in the plots. The individual channel plots for the 1D

discriminants are shown in Appendix B.
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Figure 7.18: Discriminant plots for the e+µ channel with two jets and ≥ 1 B tag. Upper
row: s-channel discriminant; lower row: tq discriminant. Left column: full output range;
right column: close-up of the high end of the distributions.
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Figure 7.19: Discriminant plots for the e+µ channel with three jets and ≥ 1 b tag. Upper
row: s-channel discriminant; lower row: tq discriminant. Left column: full output range;
right column: close-up of the high end of the distributions.
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After the matrix element discriminant has been calculated it is possible to select events

in data and Monte Carlo to see if they are consistent with single top quark production.

For this section, an event is considered very single top quark like if both the s-channel and

t-channel discriminants are greater than 0.7. Similarly, an event is considered background

like if both discriminants are less than 0.4. Figure 7.20 shows the invariant mass of the

lepton, neutrino, and tagged jet before and after the discriminant cut, and Fig. 7.21 shows

the lepton-charge times pseudorapidity of the untagged jet. In both cases the background

dominated samples show no evidence for top quarks in the event while the signal enhanced

samples are re-shaped to look like the expected single top distributions.

b-Tagged Top Mass [GeV]
100 200 3000

50

100

150

200

250

b-Tagged Top Mass

Obs: 682
Bkg: 664

Data
tb
tqb
Wbb
wcc
Wjj
QCD

 ll→ tt
 l+jets→ tt

b-Tagged Top Mass

b-Tagged Top Mass [GeV]
100 200 3000

20
40
60
80

100
120
140
160
180
200

b-Tagged Top Mass

Obs: 441
Bkg: 441

Data
tb
tqb
Wbb
wcc
Wjj
QCD

 ll→ tt
 l+jets→ tt

b-Tagged Top Mass

b-Tagged Top Mass [GeV]
100 200 3000

10
20
30
40
50
60
70
80
90

b-Tagged Top Mass

Obs: 161
Bkg: 138

Data
tb
tqb
Wbb
wcc
Wjj
QCD

 ll→ tt
 l+jets→ tt

b-Tagged Top Mass

Figure 7.20: Invariant mass of the lepton, neutrino, and tagged jet for all events (upper left
plot), for events with D < 0.4 (upper right plot), and events with D > 0.7 (bottom left
plot).
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Figure 7.21: Lepton charge multiplied by the pseudorapidity of the untagged jet for all
events (upper left plot), for events with D < 0.4 (upper right plot), and events with D > 0.7
(bottom left plot). The number of observed events is different from the b-tagged top mass
plot because this variable is only defined for events with at least one untagged jet.
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Chapter 8

CROSS SECTION DETERMINATION METHOD

This chapter summarizes the technique used to measure the single top quark cross sec-

tion as well as the systematic uncertainties on the expected signal and background yields.

Section 8.1 derives the Bayesian posterior density function and shows how it is used to

determine the single top quark production cross section. The treatment of systematic un-

certainties is also covered in this section. A description of each systematic uncertainty and

its effect on the signal acceptance and background yield is presented in Section 8.2. Sec-

tion 8.3 describes the method designed to measure the stability and linearity of the cross

section measurement technique. Finally, the expected sensitivity and cross section resolu-

tion for a Standard Model single top signal in the full dataset is presented in Section 8.4.

8.1 Bayesian Posterior Density Function

The single top cross section is measured by creating a Bayesian posterior density function,

which yields the probability density for all single top quark production cross sections1. The

posterior is defined as the conditional probability that a process A is true given that another

process B is also true; it is equal to the conditional probability of process B given process

A multiplied by the prior probability for process A (π(A)) divided by the prior probability

for process B (π(B)), as shown in Eq. 8.1.

P (A|B) =
P (B|A)π(A)

π(B)
(8.1)

In the single top quark analysis A is the number of signal and background events and B
is the observed number of events. The conditional probability P (B|A) is then interpreted as

the probability to observe N events given n, where n is the expected number of signal and

background events. Numerically this is given as the value of the Poisson probability density

1The Bayesian posterior density function is sometimes referred to as the posterior in this text.
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function for observed number of events given the expectation as seen in Eq. 8.2. This term

is also referred to as the likelihood and its application in the single top quark analysis is

given latter in this section.

P (B|A) ≡ L(N |n) =
nNe−n

N !
(8.2)

The quantity of interest in this analysis is the signal cross section and not the number

of expected signal and background events. To expose the cross section dependence the

expected yield n is re-written as

n = nS + nB = αSLσS +
∑

i

nB,i, (8.3)

where αS is the signal acceptance, L is the integrated luminosity, σS is the signal cross

section, and
∑

i nB,i is the sum of background yields.2 The likelihood is also re-written as

L(N |n) = L(N |σS , αS , ~nB) and the prior π(n) is re-written as π(σS , αS , ~nB).

The prior can be factored into a term dependent on the cross section and a term depen-

dent on the signal acceptance and the background yield as shown in Eq. 8.4.

π(n) ≡ π(σS , αS , ~nB) = π(σS) × π(αS , ~nB) (8.4)

The likelihood is modified to combined multiple independent channels by replacing the

original likelihood by the product of the likelihoods for each channel, as shown in Eq. 8.5.

L(N |σS , αS , ~nB) →
∏

i

L(Ni|σS , αS,i, ~nB,i) (8.5)

For the matrix element analysis method the values of N , α, and ~nB are given in the form

of two-dimensional histograms, where one axis corresponds to the s-channel discriminant

and the other axis corresponds to the t-channel discriminant. The histograms are filled with

matrix element discriminants for the data (N), the signal Monte Carlo (αS = nS/σS), and

background Monte Carlo (~nB). To incorporate the shape information of these quantities,

2For the rest of this section, the luminosity is absorbed by the acceptance term (αS × L → αS).
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the likelihood is further modified for a given channel as the product of the likelihoods for

each bin in the two-dimensional histogram, as shown in Eq. 8.6.

L(N |σS , αS , ~nB) →
∏

Bins{j}

L(Nj|σS , αS,j , ~nB,j) (8.6)

The acceptance and background yield dependence on the posterior are removed by inte-

grating the likelihood and prior with respect to the signal acceptance and each background

yield, as shown in Eq. 8.7.

P (σ|N) =
1

P (N)

∫ ∫

L(N |σS , α
′

S , ~n
′

B) × π(σS) × π(α
′

S , ~n
′

B) dα
′

Sd~n
′

B (8.7)

The term P (N) is the posterior normalization such that the posterior retains a probability

density function interpretation (i.e
∫

P (σ|N)dσ = 1 ). To ensure that the normalization is

finite the prior for the signal cross section π(σS) is cut off at a maximum value, σmax. The

prior is flat in the region of 0 < σ < σmax and zero beyond this region.3 The value of σmax

is chosen to be large enough such that beyond that limit the likelihood is negligibly small

for all αS and ~nB.

The prior π(α
′

S , ~n
′

B) is defined separately for the case of no systematics uncertainties

and complete systematics. Both cases are described in the following section.

8.1.1 Prior Definition With and Without Systematic Uncertainties

Prior Without Systematics

In the case of no systematic uncertainties the signal acceptance and background yields are

perfectly known. This requires the prior to be a product of two delta functions, as shown

in Eq. 8.8, and leads to a posterior shown in Eq. 8.9.

π(α
′

S , ~n
′

B) = δ(α
′

S − αS) × δ(~n
′

B − ~nB) (8.8)

P (σ|N) =
L(N |σS , αS , ~nB) × π(σS)

∫

L(N |σ′

S , αS , ~nB) × π(σ
′

S) dσ
′

S

(8.9)

3A flat prior represents a minimal bias towards any signal cross section.
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Prior With Systematics

In the case of systematic uncertainties the prior is modified to reflect the uncertainty in

αS and ~nB . For each systematic uncertainty the ±1σ uncertainty is propagated through

the analysis resulting in a ±1σ uncertainties for the signal acceptance (δαS) and the back-

ground yield (δ~nB). From these values a covariance matrix is created, which accounts for all

correlations between systematics (e.g. the uncertainty in the integrated luminosity affects

both the signal acceptance and the tt̄ normalization). The covariance matrix element {i,j}
for background or signal i and j is defined as

covi,j = pipj

m
∑

k=1

fi,kfj,k, (8.10)

where pi is the signal or background yield for the ith source and fi,k is the fractional

uncertainty from the kth systematic component for the ith signal or background. The prior

is then calculated as a multivariate Gaussian, as shown in Eq. 8.11.

π(α
′

S , ~n
′

B) =
1

√

(2π)N |Σ|
exp

{

−1

2
(~x − µ)T Σ−1(~x − µ)

}

(8.11)

where Σ is the covariance matrix, ~x represents {α′

S , ~n
′

B}, and µ represents {αS , ~nB}
The posterior, when systematics are included, is solved using Monte Carlo importance

sampling. In this method a set of points in {αS , ~nB}-space are generated according the

prior density defined in Eq. 8.11. The solution to the posterior is given by

∫ ∫

L(N |σS , αS , ~nB) × π(αS , ~nB) dαSd~nB =
1

K

K
∑

i=1

L(N |σS , αS , ~nB) (8.12)

A discussion of the systematic uncertainties and their magnitudes can be found in Sec-

tion 8.2 of this chapter.

8.1.2 Cross Section Extraction

If there is an excess of data events over the expected background yield then it is possible to

determine the production cross section for a given process. The cross section is defined as the

value which maximizes the posterior, as seen in Fig. 8.1. The solid blue line represents the
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cross section (3.9 pb) and the dashed-blue lines represent the ±1σ uncertainty on the cross

section. The uncertainties are calculated by integrating the posterior curve until 33.15% of

the area is contained on each side of the cross section. In the case of Fig. 8.1 the +1σ error

band covers 2.3 pb above the cross section and the −1σ error band covers 2.2 pb below the

cross section.
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Figure 8.1: Example cross section measurement (solid blue line) with ±1σ error band
(dashed blue lines).

If there is no excess of data above the background, then upper limits on the production

cross section can be set. An upper cross section limit, σCL, at a given confidence level is

found by integrating the posterior until an area equal to the confidence level is obtained, as

shown in Eq. 8.13. Fig. 8.2 shows the cross section limit for the same posterior shown in

Fig. 8.1. The limit is 8.4 pb at 95% CL.

∫ σCL

0
P (σ|N) dσ = CL (8.13)

Finally, a quantity used to optimize the sensitivity of a particular analysis channel is the

Bayes ratio. This quantity is an approximation to the Bayes factor which is the likelihood
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Figure 8.2: Example of the 95% CL upper cross section limit. The value of the upper limit
is shown by the blue curve. For this posterior the cross section limit is 8.4 pb.

for the case of signal+background divided by the background only likelihood. The Bayes

ratio is defined as the ratio of the posterior at its maximum over the posterior at zero cross

section. The larger the Bayes ratio the more sensitive a channel is to measure a cross section

different from zero. This is shown graphically in Fig. 8.3 for the same posterior curve used

in the previous two figures.

8.1.3 s + t-channel Cross Section Definition

All cross sections presented in this thesis are the combined s-channel plus t-channel cross

section. In this case the ratio of s/t-channel cross sections (0.88/1.98 = 0.44) is assumed to

be consistent with the Standard Model. With an increased dataset a measurement of the

individual s-channel and t-channel cross sections will be a future addition to this analysis.
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Figure 8.3: Example of the Bayes ratio defined as the maximum of the posterior (top blue
line) over the posterior at zero cross section (lower blue line). The Bayes ratio for this curve
is 5.0.
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8.2 Systematic Uncertainties

This section describes all systematic uncertainties considered in the matrix element analysis.

In most cases the uncertainty source applies both to the signal acceptance (α) and the back-

ground expectation (nB). The other systematics are only applied to certain backgrounds

as explained in the following text. Two sources of systematic uncertainties (jet energy scale

and tag-rate functions) are referred to as “shape changing” systematics, while the rest solely

affect the signal or background normalization and are referred to as “flat” systematics. Flat

systematics have a uniform uncertainty across all bins of the matrix element discriminant,

while shape changing systematics vary bin-to-bin. Table 8.1 summarizes the relative uncer-

tainties due to each systematic source4. The effect of each systematic uncertainty on the

measured single top cross section can be found in Chapter 9.

Table 8.1: A summary of the relative systematic uncertainties for each of the applied correc-
tions and efficiencies. The uncertainty shown is the error on the correction or the efficiency,
before it has been applied to the MC or data samples.

tt̄ cross section 18% Primary vertex 3%

Luminosity 6% Electron reco * ID 2%

Electron trigger 3% Electron trackmatch & likelihood 5%

Muon trigger 6% Muon reco * ID 7%

Jet energy scale wide range Muon trackmatch & isolation 2%

Jet efficiency 2% Electron εW+jets 2%

Jet fragmentation 5–7% Muon εW+jets 2%

Heavy flavor ratio 30% Electron εMultijet 3–40%

Tag-rate functions 2–16% Muon εMultijet 2–15%

• Integrated luminosity

The error on the integrated luminosity used in the analysis is 6.1%. This uncertainty

4Appendix E shows the uncertainties for each background yield and signal acceptance for each analysis
channel.
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comes from the error on the measured inelastic pp̄ cross section. The error on the

luminosity estimate affects the tt̄ background since this background is normalized

using the integrated luminosity.

• Theoretical cross sections

The tt̄ background yield is normalized to the NLLO theoretical cross section. The

uncertainty of this cross section for a top mass of 175 GeV is 18%. The uncertainty

on the cross section is mainly due to the uncertainty from the top mass, but also from

the choice of scale and parton distribution function uncertainties.

• Trigger efficiency

The uncertainty on the trigger efficiency is determined by varying the trigger term

efficiencies at each trigger level by the ±1σ uncertainties. A total uncertainties of 3%

was assigned to the e+jets trigger and 6% to the µ+jets trigger. Fig. 8.4 shows the

affect of the ±1σ shift in the e+jets trigger efficiency on the electron pT in tt̄ → ℓℓ

Monte Carlo events.

• Primary vertex selection efficiency

The longitudinal position of the primary interaction vertex is not well modeled in the

Monte Carlo. The maximum deviation between the data and Monte Carlo is 3% thus

this number was taken as the systematic uncertainty. This uncertainty accounts for

the beam profile along the longitudinal direction [83].

• Jet reconstruction and identification

This systematic is due to the difference between the data and Monte Carlo for the η

and number of jets distributions. A 2% uncertainty is assigned to this effect.

• Jet energy scale (JES) and jet energy resolution

The JES correction is raised and lowered by one standard deviation and the whole

analysis is repeated. In the data the JES uncertainty contains the jet energy resolution

uncertainty; however, in the Monte Carlo the jet energy resolution uncertainty is not



144

Figure 8.4: Electron pT in weighted tt̄ → ℓℓ Monte Carlo events. The three curves represent
the estimated yield in each pT bin for the case of +1σ trigger weights (red), nominal trigger
weights (black), and −1σ trigger weights (blue).

taken into account in the JES uncertainty. To account for this the Monte Carlo energy

smearing is varied by the size of the jet energy resolution in MC. This uncertainty

affects the acceptance and the shapes of the distributions. The 1σ error on the JES

as a function of jet pT for central jets is shown in Fig. 8.5. The JES uncertainty is

larger for lower pT and more forward jets.

• Jet fragmentation

The uncertainty of the jet fragmentation model is determined by the difference in

fragmentation models between the Pythia and Herwig Monte Carlo generators. This

uncertainty also covers the uncertainties due to initial and final state radiation. The

total uncertainty is 5% for tt̄ → ℓℓ and single top quark events and 7% for tt̄ →
ℓ + jets events.

• Electron reconstruction and identification efficiency

This uncertainty derives from the error on the electron reconstruction Monte Carlo
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Figure 8.5: 1σ uncertainties from each of the jet energy scale components as a function of
jet pT for jets with η = 0.0. The total uncertainty is shown by the black line.

correction factor. The uncertainty is determined by varying the correction factor by

1σ in the parameterized bins of pT and φ. The total uncertainty is determined to be

2%.

• Electron track matching and likelihood efficiency

This uncertainty derives from the error on the electron track match and likelihood

Monte Carlo correction factor. The uncertainty is determined by varying the cor-

rection factor by 1σ in the parameterized bins of η and φ. The total uncertainty is

determined to be 5%.

• Muon reconstruction and identification efficiency

This uncertainty derives from the error on the muon reconstruction Monte Carlo

correction factor. The uncertainty is determined by varying the correction factor by

1σ in the parameterized bins of η and φ. The total uncertainty is determined to be

7%.
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• Muon track matching and isolation

This uncertainty derives from the error on the muon track match and isolation Monte

Carlo correction factor. The uncertainty is determined by varying the correction factor

by 1σ in the parameterized bins of η and φ for the track match factor and pT and the

number of jets for the isolation factor. The total uncertainty is determined to be 2%.

• Matrix method normalization

The normalization of the W+jets and multijet backgrounds is performed using the

matrix method and its error is dominated by the error on the efficiency that a lepton

not originating from a W decay will pass the electron likelihood or muon isolation

cut (δεMultijet). The statistics of the normalized samples also contributes to the total

uncertainty. The average values and errors for εMultijet for both electron and muon

events is shown in Table 8.2.

Table 8.2: εMultijet for electrons as a function of the trigger period and jet multiplicity,
and εMultijet for muons averaged over η. The definition of the trigger periods is found in
Chapter 5.

Electron εMultijet For Five Trigger Periods (%) Muon εMultijet (%)

Jets I II III IV IV I

2 12.8 ± 1.0 19.2 ± 1.0 18.8 ± 2.2 19.4 ± 1.1 22.0 ± 1.2 35.8 ± 3.2

3 13.6 ± 1.5 19.5 ± 1.6 19.8 ± 3.4 19.2 ± 1.6 19.4 ± 1.7 34.2 ± 4.5

• Ratio of Wbb̄ + Wcc̄ to Wjj Events

There is a 30% systematic error due to the uncertainty on this ratio. The error is

much larger than the fit to the events in the zero tag sample to account for theoretical

shape-dependent errors that are not modeled in the Monte Carlo. The largest of these

theoretical errors is the shape change to the b-quark pT between NLO and LO Wbb

events. The error on this ratio is folded into the overall matrix method normalization

uncertainty when determining the acceptance and background yield uncertainties.
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• Monte Carlo tag-rate functions

The uncertainty associated with the tag-rate functions is evaluated by shifting the

TRFs by ±1σ and evalulating the change in the signal acceptance and background

yield. The tag-rate function uncertainties are dominated by the assumed fraction of

heavy flavor in the multijet samples used to determine the fake tagging rate in data

and the decreased statistics in each bin due the parameterization in pT and η. The tag

rate functions for B-jets and charm-jets and the 1σ error bands are shown in Fig. 8.6.

The total uncertainty depends heavily on the number of B-tagged jets in the event.

Figure 8.6: Neural network B-jet tagger efficiency (green line) and 1σ error bands (dashed
lines) jet pT and η for B-jets (upper row) and charm-jets (lower row). The red lines represent
the efficiency of the B-tagging algorithm when applied directly to the Monte Carlo.
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8.3 Ensemble Testing

Ensemble tests are performed to ensure there is no bias in the measured cross section.

An ensemble is a group of pseudo-datasets created with a known fraction of signal and

background events. Since the fractions are known the linearity of the measured cross section

can be tested against the known cross section.

The ensembles are generated from a large set of weighted signal and background events.

For each analysis channel the total background yield, as shown in Chapter 6, is used as the

expected value of a Poisson distribution and a new background yield is generated from this

distribution. The uncertainty in the yield due to systematics is included when generating

a new background and signal yield as explained in Appendix D. This procedure will on

average produce the expected background compositeness (e.g. ratio of Wbb to Wjj events).

The cross section is then determined for all psuedo-datasets in the ensemble.

Five ensembles were generated with the following s+t-channel input signal cross sections:

• σs+t = 2 pb.

• σs+t = 2.9 pb. (Expected Standard Model cross section)

• σs+t = 4 pb.

• σs+t = 6 pb.

• σs+t = 8 pb.

2,000 datasets were generated in each ensemble. A histogram of the measured cross sections

for each of these ensembles is shown in Fig. 8.7. A plot of the mean of these histograms

versus the input cross section is shown in Fig. 8.8. A linear fit to the data points yields a

good χ2/dof of 0.13/3, a slope consistent with 1 of 1.03± 0.03, and an offset of 0.32± 0.09.
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Figure 8.7: Observed cross section for a set of 2,000 pseudo-datasets for the five ensembles:
σs+t = 2.0 pb (upper left), σs+t = 2.9 pb (upper right), σs+t = 4.0 pb (middle left),
σs+t = 6.0 pb (middle right), and σs+t = 8.0 pb (bottom middle)
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response is measured as the mean value of the histogram for each ensemble.
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8.4 Expected Results

This section presents the expected performance of the analysis given a Standard Model

single top signal. To test the expected sensitivity the number of data events is set equal to

the number of signal and background events in each bin of the Likelihood (i.e. the excess of

data over background in each bin is equal, by construction, to the number of events expected

from a signal with σ = 2.9 pb). This test is performed for each analysis channel and various

combinations of the channels. Figs. 8.9 and 8.10 show the resulting tb+tqb5 posterior for

the combined e+µ ≥ 1 B-tag channel in two-jet and three-jet events. Figure 8.11 shows the

tb+tqb posterior for the combination of all channels. The figures on the left correspond to

the case of only statistical uncertainties, whereas the figures on the right include statistical

and systematic uncertainties.
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Figure 8.9: Expected 1D posterior plots for the combined e+µ ≥ 1 B-tag channel in two-jet
events, with statistical uncertainties only (left plot) and including also systematic uncer-
tainties (right plot).

Table 8.3 shows the expected cross sections for various combinations of analysis chan-

nels. The expected result for each combination is consistent with the standard model cross

section. Table 8.4 summarizes the relative uncertainty on the expected tb+tqb cross section

measurement, defined as half the width of the tb+tqb posterior, divided by the cross section

5tb + tqb is used to donate the combined s-channel plus t-channel cross section measurement
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Figure 8.10: Expected 1D posterior plots for the combined e+µ ≥ 1 b-tag channel in three-jet
events, with statistical uncertainties only (left plot) and including also systematic uncer-
tainties (right plot).
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Figure 8.11: Expected 1D posterior plots for the combination of all channels, with statistical
uncertainties only (left plot) and including also systematic uncertainties (right plot).
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value at the posterior peak.

Table 8.3: Expected tb+tqb cross sections, without and with systematic uncertainties, for
many combinations of the analysis channels. The final expected result of this analysis are
shown in the lower right hand corner in bold type.

1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 2.8+1.5
−1.4 2.8+1.8

−1.7 2.9+1.3
−1.2 2.8+2.5

−2.2 2.9+1.4
−1.3 2.8+2.2

−2.1 2.9+1.2
−1.1

With systematics 3.0+2.2
−1.8 3.1+2.5

−2.1 2.9+1.8
−1.6 2.7+3.4

−2.7 2.9+1.9
−1.6 2.5+3.5

−2.5 3.0+1.8
−1.5

Table 8.4: Relative uncertainties on the expected tb+tqb cross section, without and with
systematic uncertainties, for many combinations of the analysis channels. The best value
from all channels combined, with systematics, is shown in bold type.

1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 52% 60% 45% 83% 46% 75% 41%

With systematics 67% 75% 59% 115% 60% 121% 55%
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Chapter 9

RESULTS WITH DATA

The chapter presents the single top quark production cross section measured in nearly

1 fb−1 of Tevatron RunII data. The cross section and the observed resolution is presented

in Section 9.1. To measure the expected and observed significance psuedo-datasets with no

signal contribution are created and the fraction of datasets with a measured cross section

above the observed cross section is calculated. This value is the probability of a background-

only fluctuation and can be converted to a Gaussian equivalent signal significance. This

result is presented in Section 9.2.

9.1 Measured Cross Section

Figure 9.1 shows the observed tb+tqb posterior without and with systematic uncertainties

for all channels combined.
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Figure 9.1: Measured 1D posterior plots for the combined e+µ ≥ 1 B-tag channel with
statistical uncertainties only (left plot) and with systematic uncertainties as well (right
plot).

Table 9.1 shows the measured cross sections from various combinations of analysis chan-

nels. The averaged relative uncertainties on the measured cross sections are shown in
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Table 9.2.

Table 9.1: Measured tb+tqb cross sections, without and with systematic uncertainties, for
many combinations of the analysis channels. The final result of this analysis is shown in
the lower right hand corner in bold type.

1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 3.0+1.5
−1.4 4.5+1.8

−1.7 2.8+1.2
−1.2 7.9+3.3

−3.0 3.5+1.4
−1.3 3.9+2.3

−2.2 3.6+1.2
−1.1

With systematics 3.1+2.2
−1.8 7.4+3.0

−2.5 4.5+2.0
−1.7 6.8+4.7

−3.8 4.7+2.0
−1.7 4.9+3.7

−3.1 4.6+1.8
−1.5

Table 9.2: Relative uncertainties on the measured tb+tqb cross section, without and with
systematic uncertainties, for many combinations of the analysis channels. The best value
from all channels combined, with systematics, is shown in bold type.

1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 50% 39% 44% 40% 37% 57% 32%

With systematics 64% 38% 41% 62% 39% 70% 35%

The combined result with full systematics is

σ (pp̄ → tb + tqb + X) = 4.6+1.8
−1.5 pb.

A breakdown of the uncertainties on the tb+tqb cross section measurement is given in

Table 9.3. The systematic uncertainties were calculated using an ensemble containing 200

datasets generated with an input single top cross section of 4.6 pb. The cross section of

each dataset was measured and the average posterior width (average of upper and lower

1σ uncertainties) was calculated over all datasets for each source of systematic uncertainty

independently. The systematic uncertainty for each source was estimated by subtracting in

quadrature from the average posterior width obtained with a particular source of systematic,

the average posterior width without systematic uncertainties. The total expected systematic
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uncertainty is estimated by adding in quadrature all the individual expected systematic

uncertainties. The statistical uncertainty of the measurement is estimated by subtracting

in quadrature the total expected systematic uncertainty from the actual total uncertainty.

Table 9.3: Contribution of each systematic uncertainty to the total systematic uncertainty
on the tb+tqb cross section.

Systematics components

Luminosity 0.69 pb

tt̄ cross section 0.74 pb

Matrix method 0.84 pb

Trigger 0.48 pb

Primary vertex 0.31 pb

Lepton ID 0.50 pb

Jet ID 0.18 pb

Jet fragmentation 0.63 pb

Jet energy scale 0.57 pb

Tag-rate functions 0.60 pb

Combined systematics +1.34 −1.02 pb

Statistics +1.19 −1.13 pb

Total uncertainty +1.79 −1.50 pb

Figure 9.2 shows the cross sections measured for combined the tb+tqb production in each

independent analysis channel, and the combined result.

9.2 Signal Significance and Standard Model Compatibility

The measured significance is defined as the fraction ensembles generated with zero input

cross section that result in a measured cross section above the observed cross section of 4.6

pb. This quantity, known as the p-value, represents the probability that the background

alone could fluctuate to mimic the single top quark signal. For the case of Standard Model
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Figure 9.2: Summary plot of the measured single top quark cross sections showing the
individual measurements and their combination.
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single top the expected p-value is 3.7%, which is equivalent to a 1.8σ Gaussian significance

of a deviation from a background fluctuation. The measured p-value of 0.21% is equivalent

to a 2.9σ significance indicating evidence for single top quark production in the dataset.
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Figure 9.3: Distribution of expected (left) and measured (right) cross sections from a zero-
signal ensemble with full systematics included. The probability that the background alone
could have a measured cross section above 4.6 pb or above is 0.21% leading to a Gaussian
equivalent signal significance of 2.9σ.

The probability of a Standard Model signal to have a measured cross section above

4.6 pb can be estimated using the Standard Model ensemble dataset (i.e. σs+t = 2.9 pb).

Fig. 9.4 shows the measured cross section for 2,000 Standard Model pseudo-datasets. From

this histogram there is a 20.5% probability that a Standard Model signal could be measured

at or above 4.6 pb.
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Figure 9.4: Distribution of measured cross sections from a Standard Model ensemble with
full systematics included. The probability that a Standard Model signal could have a
measured cross section of 4.6 pb or above is 20.5%.
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Chapter 10

CONCLUSION AND DISCUSSION

This thesis presents evidence for electroweak single top quark production at the Tevatron.

An analysis of nearly 1 fb−1 of Run II data using the matrix element method to select single

top quark-like events measures the combined s + t-channel production cross section to be

σ (pp̄ → tb + tqb + X) = 4.6+1.8
−1.5 pb,

where the probability of a background fluctuation is 0.21%, which corresponds to a Gaussian

equivalent signal significance of 2.9σ. This analysis is one of three single top searches

performed by the DØ collaboration. The first analysis using boosted decision trees measures

a combined s + t cross section of 4.9 ± 1.4 pb with a signal significance of 3.4σ, while the

second analysis uses Bayesian neural networks and measures a cross section of 5.0 ± 1.9 pb

at 2.4σ signal significance. The results of these three analyses were recently accepted for

publication by Physical Review Letters [18]. More recently the three results were combined

using the BLUE (Best Linear Unbiased Estimator) [75] method; this resulted in a measured

cross section of 4.8 ± 1.3 pb with 3.5σ signal significance [54]. The cross sections from

the three analyses as well as the combination are shown in Fig. 10.1, where they are also

compared with two next-to-leading order single top cross section calculations.

Several improvements to the matrix element analysis presented in this thesis are cur-

rently underway. First is the addition of a tt̄ matrix element in the discriminant definition.

This should dramatically enhance the signal significance in events with three jets where the

tt̄ background contribution is substantial. The second improvement is the use of the muon

charge from a semi-leptonic B decay to weight the jet-parton assignment of jets to b and

b̄ quarks, while the third is the addition of the neural network B-tagging algorithm in the

discriminant definition. Events with jets that are very B-jet like will receive a higher weight

from background processes involving b quarks (e.g. Wbb̄) while the remaining events will

receive a higher weight from processes involving light quarks (e.g. Wgg and Wcg).
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Figure 10.1: Results from the three single top quark analyses and the combined analysis
compared with two NLO cross section calculations [54].

DØ has already recorded more than 2 fb−1 of Run II data. With this increased dataset

several important measurements are possible. The first is an individual measurement of the

s-channel and t-channel cross sections. Each production process is sensitive to different new

physics models making a determination of the cross section for each channel an important

test for physics beyond the Standard Model. Another important measurement using this

dataset is a precise determination of |Vtb|. The current uncertainty on the combined single

top cross section is ∼ 30%, which leads to an uncertainty on |Vtb| of ∼ 20%. With this

increased dataset the expected error on |Vtb| will decrease to 15%.

A precise measurement of the single top quark production cross section is also important

because single top events are one of the largest backgrounds for Higgs production. At the

Tevatron one of the most sensitive channels for a low mass Higgs is W -associated Higgs

production (WH). The WH production cross section for mH = 115 GeV is nearly one-

tenth of the single top cross section. Using the full Run II dataset and employing advanced
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multivariate analysis techniques such as the method described in this thesis, DØ hopes to

find evidence for the Higgs boson before the start of the Large Hadron Collider era.

The analysis presented in this thesis has shown that with a detailed understanding of

the detector apparatus, an advanced multivariate technique to reduce backgrounds, and a

sophisticated statistical analysis of the dataset, the measurement of a process which occurs

in 1 out of every 10 billion collisions at the Tevatron is possible. With an increased dataset

of 3− 4 fb−1 a 5σ observation of single top production will be possible, thereby providing a

stringent test of the Standard Model and possibly establishing the presence of new physics.
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Appendix A

DIFFERENTIAL CROSS SECTION DERIVATION

A.1 Probability Calculation

A.1.1 Differential Cross Section at the Parton Level

The matrix element analysis technique reconstructs each event to the final state four-vectors

to evaluate the signal and background leading order matrix element. The following sections

derive the signal and background probabilities starting from the final state at the parton

level and then relating these objects to the physical quantities measured in the detector.

The following also assumes a lepton, neutrino, and two quarks in the final state.

The probability density for a process to occur at a hadron-hadron collider is given as

an integral of the hard-scatter differential cross section over all possible ways of producing

the process from the quarks and gluons inside the hadron. This probability density, shown

below, is a convolution of the hard scatter differential cross section with a parton distribution

function for each of the two partons from the hadrons with an integral over all possible

momentum fractions xi, xj from each initial parton.

P(~y) =
1

σ

∑

i,j

∫

fi(q1, Q
2)dq1 × fj(q2, Q

2)dq2 × dσhs,ij(~y) (A.1)

where the normalization constant σ is defined as integral of the differential cross section

over the initial- and final-state phase spac:

σ =

∫

∑

i,j

∫

fi(q1, Q
2)dq1 × fj(q2, Q

2)dq2 ×
∂σhs,ij(~y)

∂~y
d~y (A.2)

and finally, the hard-scatter differential cross section is defined as the product of the final

state phase space factor, the square of the matrix element amplitude and an overall flux

factor:

dσhs =
(2π)4

4

|M|2
√

(q1q2)2 − m2
1m

2
2

d3p1

(2π)32E1

d3p2

(2π)32E2

d3pℓ

(2π)32Eℓ

d3pν

(2π)32Eν
δ4(q1q2; p1, p2, pℓ, pν)

(A.3)
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A.1.2 Evaluating the Hard Scatter Differential Cross Section

The following section evaluates the differential cross section shown in Eq. A.2 given a set of

inital and final state four-vectors.

The first assumption made is that all collisions occur along the beam axis with no net

transverse momentum. This means the initial state four vectors can be written as

q1 = (Ebeamx1, 0, 0, Ebeamx1) (A.4)

q2 = (Ebeamx2, 0, 0,−Ebeamx2) (A.5)

The next assumption is that all particle masses are known and are negligible compared to

their energies and thus can be ignored for this calculation. The flux factor (shown below) in

the hard scatter cross section can now be written in terms in the two momentum fractions

of the incoming partons:

1
√

(q1q2)2 − m2
1m

2
2

→ 1
√

(q1q2)2
→ 1

2Ebeamx1x2
(A.6)

For the remainder of the note, the following notation will be used to distinquish quarks,

leptons, and neutrinos: pℓ is the momemtum of the lepton, p1,2 is the momentum of the first

and second final state partons, and pν is the neutrino momentum. Because the phase space is

written in terms of rectangular coordinates, the next step towards the final differential cross

section equation is to redefine the phase space factors in terms of spherical coordiniates.

This is done for all final state particles except the neutrino for reasons that will be clear

later in the document.

dΦ4 =
d3p1

(2π)32E1

d3p2

(2π)32E2

d3pℓ

(2π)32Eℓ

d3pν

(2π)32Eν
δ4 → (A.7)

1

16(2π)12
|p1|2d|p1|dΩ1

E1

|p2|2d|p2|dΩ2

E2

|pℓ|2d|pℓ|dΩℓ

Eℓ

dx
νdy

νdz
ν

Eν
δ4 (A.8)

To summarize, the full hard scatter differential cross section is now

dσhs =
1

128(2π)8Ebeam

|M|2
2x1x2

|p1|2d|p1|dΩ1

E1

|p2|2d|p2|dΩ2

E2

|pℓ|2d|pℓ|dΩℓ

Eℓ

dx
νdy

νd
z
ν

Eν
δ4 (A.9)
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A.1.3 Evaluating the Hadron-Hadron Differential Cross Section

The next step to writing the full hadron-hadron differential cross section is to rewrite Eq. A.9

such that any integration over the phase space will remove the four-dimensional delta func-

tion required for energy and momentum conservation. The delta function is currently writ-

ten such that it will vanish only over integrations of total px, py, pz, and E. Because there

was an original assumption of no net transverse momentum in the collision, the total px

and py can be solved for the neutrino transverse momentum.

∑

i

P x
i = px

1 + px
2 + px

ℓ + px
ν = 0 → px

ν = −px
1 − px

2 − px
ℓ (A.10)

∑

i

P y
i = py

1 + py
2 + py

ℓ + py
ν = 0 → py

ν = −py
1 − py

2 − py
ℓ (A.11)

The total pz and requirement can be rewritten in terms of the intial parton’s momemtum

fraction and the other final state partons’ z momenta and thus solve for the neutrino pz:

∑

i

P z
i = pz

1 + pz
2 + pz

ℓ + pz
ν − Ebeamx1 + Ebeamx2 = 0 →

pz
ν = −Ebeam(x1 − x2) − pz

1 − pz
2 − pz

ℓ (A.12)

Finally, the total energy delta function implies the following:

Ebeamx1 + Ebeamx2 = E1 + E2 + Eℓ + Eν (A.13)

At this point, is it useful to rewrite the full differential cross section at the parton level:

dσ(~y) =
∑

i,j

∫

fi(x1, Q
2)dx1 × fj(x2, Q

2)dx2 ×
1

128(2π)8Ebeam

|M|2
2x1x2

×

|p1|2d|p1|dΩ1

E1

|p2|2d|p2|dΩ2

E2

|pℓ|2d|pℓ|dΩℓ

Eℓ

dx
νdy

νd
z
ν

Eν
×

δ(px
ν + px

1 + px
2 + px

ℓ ) ×

δ(py
ν + py

1 + py
2 + py

ℓ ) ×

δ(pz
ν + Ebeam(x1 − x2) + pz

1 + pz
2 + pz

ℓ) ×

δ(Ebeamx1 + Ebeamx2 − E1 − E2 − Eℓ − Eν) (A.14)

The next step is to rewrite the integrational variables, x1 and x2, in terms of the total

energy and total pz:

x1 =
Etot + pz

tot

2Ebeam
(A.15)
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x2 =
Etot − pz

tot

2Ebeam
(A.16)

Now, the integration over x1 and x2 can be rewritten in terms of Etot and pz:

dx1dx2 =
1

J(x1, x2;Etot, p
z
tot)

dEtotdpz
tot (A.17)

J(x1, x2;Etot, p
z
tot) = 2E2

beam (A.18)

At this point the integration over the total energy and pz will constrain the two incoming

partons’ momentum fractions through Eq. A.15 and A.16.

The full differential cross section at the parton level can now be written as

dσ(~y) =
∑

i,j

∫

fi(x1, Q
2) × fj(x2, Q

2) × 1

128(2π)8Ebeam

|M|2
2x1x2

×

|p1|2d|p1|dΩ1

E1

|p2|2d|p2|dΩ2

E2

|pℓ|2d|pℓ|dΩℓ

Eℓ

dx
νdy

νdz
ν

Eν
×

∫

1

2E2
beam

dpz
tot (A.19)

where the implicit integration over the four dimensional delta function yields the following

formulas for the neutrino four vector and the incoming partons’ momentum fraction in terms

of the remaining differential variables.

px
ν = −px

1 − px
2 − px

ℓ (A.20)

py
ν = −py

1 − py
2 − py

ℓ (A.21)

pz
ν = −pz

tot − pz
1 − pz

2 − pz
ℓ (A.22)

x1 =
E1 + E2 + Eℓ + Eν + pz

tot

2Ebeam
(A.23)

x2 =
E1 + E2 + Eℓ + Eν − pz

tot

2Ebeam
(A.24)

A.1.4 Relating Reconstructed Objects to Partons

The previous sections have calculated the differential cross section for a hadron-hadron

collision producing a lepton, neutrino, and two partons in the final state. These particles

are not exactly what is measured in the detector and thus it is necessary to relate quantities.

To do this, the differential cross section is convoluted with a function, W (~x, ~y), which is
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the probability of producing a final state, ~y, and observed state, ~x, in the detector. The

resulting differential cross section is then integrated over the final state phase space, d~y:

∂σ
′

(~x)

∂~x
=

∫

∂σ(~y)

∂~y
W (~x, ~y)d~y (A.25)

where the function W (~x, ~y) is assumed to be factorizable for each measured object:

W (~x, ~y) =
∏

i

Wi(~xi, ~yi) (A.26)

Jets

The transfer function for jets measured in the calorimter is assumed to only be a function

of the relative energy difference between the two objects and all angles are assumed to be

well measured:

Wjet(~xjet, ~yparton) = W (Ejet − Eparton) × δ(Ωjet − Ωparton) (A.27)

where W (Ejet − Eparton) is parametrized using the following functional form:

W (Ejet − Eparton) =
e
−

(Ejet−Eparton−p1)2

2p2
2 + p3e

−
(Ejet−Eparton−p4)2

2p5
2

2π(p2 + p3p5)
(A.28)

where pi = αi+βi×Eparton. The five α and five β parameters are determined by minimizing

a likelihood formed by measuring the parton energy in Monte Carlo and the matched jet

energy also in Monte Carlo. The parameters used for this analysis were determined in

several regions of the calorimeter to account for the resolution differences in the detector.

Electrons

The transfer function for electrons is assumed to be solely a function of the reconstructed en-

ergy of the electron, Ereco, the parton energy of the electron, Eparton, and θ, the production

angle with respect to the beam axis:

Welectron(~xreco, ~yparton) = W (Ereco, Eparton, θ) × δ(Ωreco − Ωparton) (A.29)
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where W (Ereco, Eparton, θ) is parametrized using the following functional form:

W (Ereco, Eparton, θ) =
1

2πσ
exp[−(Ereco − Ecenter)

2

2σ2
] (A.30)

Ecenter = 1.0002Eparton + 0.324GeV /c2 (A.31)

σ = 0.028Ecenter ⊕ Sampling(Ecenter, η)Ecenter ⊕ 0.4 (A.32)

Sampling(E, θ) =

[

0.164√
E

+
0.122

E

]

exp

[

p1(E)

sinθ
− p1(E)

]

(A.33)

p1(E) = 1.35193 − 2.09564

E
− 6.98578

E2
. (A.34)

Muons

The transfer function for muons is assumed to be a function of

∆

(

q

pt

)

=

(

q

pt

)

reco

−
(

q

pt

)

parton

(A.35)

and of ηCFT,

Wmuon(~xreco, ~yparton) = W

(

∆

(

q

pt

)

, ηCFT

)

× δ(Ωreco − Ωparton) (A.36)

where W
(

∆
(

q
pt

)

, ηCFT

)

is parametrized using a single Gaussian:

W

(

∆

(

q

pt

)

, ηCFT

)

=
1

2πσ
exp











−

[

∆
(

q
pt

)]2

2σ2











(A.37)

σ =











σo : |ηCFT| ≤ ηo
√

σ2
o + [c(|ηCFT| − ηo)]2 : |ηCFT| > ηo

(A.38)

There are three fitted parameters in the above equations: σo, c, and ηo, each of which is

actually fitted by two sub-parameters:

par = par(0) + par(1) · 1/pt. (A.39)

Furthermore, these parameters are derived for four classes of events: those that were from

before or after the 2004 shutdown, when the magnetic field strength changed, and in each

run range, those that have an SMT hit and those that do not.

As a simplification, we assume qreco = qparton, that is, we do not consider charge misiden-

tification
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A.1.5 Full Differential Cross Section and Normalization

The full differential cross section at the detector object level can now be written as

∂σ
′

(~x)

∂~x
=

∫

dpz
totdq1dq2dpℓ

∑

i,j

fi(q1, Q
2) × fj(q2, Q

2)

× 1

256(2π)8E3
beam

|M|2
2x1x2

× p2
1

E1

p2
2

E2

p2
ℓ

Eℓ

1

Eν
× WLeptonWJet1WJet2 (A.40)

The final step to evaluating the probability density is to properly normalize the differential

cross section in Eq. A.40. This is done by integration of the differential cross section over

all possible states in the detector. Since the event selection cuts will change the number

events due to acceptance losses, this must be accounted for in the overall normalization

(cross section) calculation. The total cross section is then written as

σ =

∫

∂σ
′

(~x)

∂~x
d~x =

∫

d~xdpz
totdq1dq2dpℓ

∑

i,j

fi(q1, Q
2) × fj(q2, Q

2)

× 1

256(2π)8E3
beam

|M|2
2x1x2

× p2
1

E1

p2
2

E2

p2
ℓ

Eℓ

1

Eν
× WLeptonWJet1WJet2 × ΘCuts(~x) (A.41)

A.2 Integration Variable Remapping

A.2.1 Introduction

This section will layout the jacobian needed for the 10 → 10 remapping of variables for the

parton level cross section. The base variables used are shown below.

• p3: Absolute momentum of the lepton

• p5: Absolute momentum of the first quark

• p6: Absolute momentum of the second quark

• pz
tot: Total pz of the system

• cos(θ3): Cosine(θ) of the lepton

• φ3: φ of the lepton
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• cos(θ5): Cosine(θ) of the first quark

• φ5: φ of the first quark

• cos(θ6): Cosine(θ) of the second quark

• φ6: φ of the second quark

Other variables that are useful for the integration are

• m34: Mass of the lepton and neutrino (W mass)

• m345: Mass of the lepton, neutrino, and first quark (top mass)

• m56: Mass of the first and second quark (bb̄ mass)

Since some of these variables are sharp peaks (W and top masses), it is much better

to sample from the expected distribution rather than make requirements of the invariant

masses. The W and top masses are expected to follow a Breit-Wigner distribution shown

below.

σ(M34) =
1

π

[

γ

(M34 − MW )2 + γ2

]

(A.42)

where M34 is the mass of the lepton and neutrino. Similarly, the top mass has the

following expected distribution.

σ(M345) =
1

π

[

γ

(M345 − Mtop)2 + Γ2

]

(A.43)

where M345 is the mass of the lepton, neutrino, and first quark.

A.2.2 Sampling from a Breit-Wigner mass distribution

Sampling from a Breit-Wigner distribution is done by selecting a random point between

0 and 1 from the cumulative distribution function of the BW function. The cumulative

distribution function, of cdf, for the Breit-Wigner distribution is shown below.
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∫

σ(m;m0; Γ) = F (m;m0,Γ) =
1

π
tan−1

[

m − m0

Γ

]

+
1

2
(A.44)

The value of F is taken as a random number between 0 and 1. After selecting a value

of F, the next step is to solve for m. As a function of F, defined as u for the following, the

mass is

m = m0 + Γ tan

[

π(u − 1

2
)

]

(A.45)

A.2.3 Sampling from a Breit-Wigner Scm distribution

In the previous example, a distribution was sampled using a random number uniformly

distributed from 0 to 1. In, this example, a new random number is used that is uniformaly

samples from 0 to 1, but the maximum and minimum values of the variable are taken into

account in the Jacobian.

The distribution of the variable Scm is the following

s = m2
0 + m0Γ tan [m0Γr] (A.46)

where r is defined in terms of the random variable, u, that is uniformaly distributed

between 0 and 1.

r = (rmax − rmin) × u + rmin (A.47)

where rmax and rmin are defined in terms of the variable scm.

r =
1

m0Γ
tan

[

s − m2
0

m0Γ

]

(A.48)

rmin =
1

m0Γ
tan

[

smin − m2
0

m0Γ

]

(A.49)

rmax =
1

m0Γ
tan

[

smax − m2
0

m0Γ

]

(A.50)
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A.2.4 Jacobian for random sampling of a Breit-Wigner distribution around the W mass

squared, s34

The first case to consider is the Breit-Wigner sampling around the W mass S34 distribution

and replace the integration variable, p3 or the lepton momentum.

|J(p3, u)| =

∣

∣

∣

∣

∂p3

∂u

∣

∣

∣

∣

(A.51)

Because u is redined in terms of the variable r, we can rewrite A.51 in terms of r instead

of u.

|J(p3, u)| =

∣

∣

∣

∣

∂p3

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p3

∂r
× ∂r

∂u

∣

∣

∣

∣

(A.52)

And since the variable r is sampling the S34 distribution it makes sense to define the

Jacobian in terms of this variable instead of p3.

|J(p3, u)| =

∣

∣

∣

∣

∂p3

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p3

∂s34
× ∂s34

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂s34
∂r × ∂r

∂u
∂s34
∂p3

∣

∣

∣

∣

∣

∣

(A.53)

Equation A.53 has three components: ∂s34
∂r , ∂r

∂u , and ∂s34
∂p3

. From equation A.47, the

partial derivative of r with respect to u is

∂r

∂u
= rmax − rmin = ∆r (A.54)

Next, the partial of s34 with respect to r can be determined from equation A.46.

∂s34

∂r
= (mW ΓW )2 sec2 [mW ΓW r] (A.55)

Inserting the value of r(s) as defined in equation A.48, equation A.55 can be re-written

as

∂s34

∂r
= (mW ΓW )2 sec2 [mW ΓW r] = (mW ΓW )2 sec2

[

arctan

[

s34 − m2
W

mW ΓW

]]

(A.56)

Equation A.56 is solved by defining a right triangle where
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tan(θ) =
s34 − m2

W

mW ΓW

cos(θ) =
1

√

1 +

[

s34−m2
W

mW ΓW

]2
(A.57)

Using these definitions, equation A.56 is finally defined as

∂s34

∂r
= (mW ΓW )2 sec2

[

arctan

[

s34 − m2
W

mW ΓW

]]

= (mW ΓW )2 + (s34 − m2
W )2 (A.58)

Finally, we need the partial derivative of s34 with repect to p3. First, we define s34

s34 = m2
3 + m2

4 + 2E3E4 − 2px
3px

4 − 2py
3p

y
4 − 2pz

3p
z
4 (A.59)

Since the neutino four-vector is defined in terms of all the other particles in the event,

we need to rewrite equation A.59 to expose all the dependences on p3. For the following,

it is assumed that the lepton and neutrino are massless meaning E3 = p3.

s34 = 2p3

√

(−px
3 − px

5 − px
6)2 + (−py

3 − py
5 − py

6)
2 + (pz

tot − pz
3 − pz

5 − pz
6)

2

−2px
3(−px

3 − px
5 − px

6) − 2py
3(−py

3 − py
5 − py

6) − 2pz
3(p

z
tot − pz

3 − pz
5 − pz

6) (A.60)

After combining like terms, we can evaluate the partial derivative of s34 with respect to

p3 that yields the relatively simple formula

∂s34

∂p3
= 2(p3 + p4)(1 − p̂3 · p̂4) (A.61)

Finally, we can rewrite the Jacobian defined in A.53 as

|J(p3, u)| =

∣

∣

∣

∣

∣

∣

∂s34
∂r × ∂r

∂u
∂s34
∂p3

∣

∣

∣

∣

∣

∣

=
∆R ×

[

(mW ΓW )2 + (s34 − m2
W )2

]

2(p3 + p4)(1 − p̂3 · p̂4)
(A.62)

In some cases, it is also common to replace the first quark momentum integration with

the Breit-Wigner sampling variable. In that case, we need to evaluate
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|J(p5, u)| =

∣

∣

∣

∣

∣

∣

∂s34
∂r × ∂r

∂u
∂s34
∂p5

∣

∣

∣

∣

∣

∣

(A.63)

For this substitution, we only need to evaluate the partial derivative of s34 with respect

to p5. Assuming a massless quark, the result is

∂s34

∂p5
= 2p3(p̂3 · p̂5 − p̂4 · p̂5) (A.64)

Combining equation A.64 with A.63 yields

|J(p5, u)| =

∣

∣

∣

∣

∣

∣

∂s34
∂r × ∂r

∂u
∂s34
∂p5

∣

∣

∣

∣

∣

∣

=
∆R ×

[

(mW ΓW )2 + (s34 − m2
W )2

]

2p3(p̂3 · p̂5 − p̂4 · p̂5)
(A.65)

A.2.5 Jacobian for random sampling of a Breit-Wigner distribution around the top mass

squared, s345

The next case to consider is the Breit-Wigner sampling around the top mass squared S345

distribution and replace the integration variable, p3 or the lepton momentum. As before,

we need need to calculate the following

|J(p3, u)| =

∣

∣

∣

∣

∂p3

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p3

∂s345
× ∂s345

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂s345
∂r × ∂r

∂u
∂s345
∂p3

∣

∣

∣

∣

∣

∣

(A.66)

Equation A.66 has three components: ∂s345
∂r , ∂r

∂u , and ∂s345
∂p3

. We know ∂r
∂u from equation

A.54 where rmin and rmax are defined by the s345 system instead of the s34 system. We also

know ∂s345
∂r from A.58 where we replace s34 with s345.

∂s345

∂r
= (mtΓt)

2 + (s345 − m2
t )

2 (A.67)

We do need the partial derivative of s345 with repect to p3. First, we define s345

s345 = m2
3 + m2

4 + m2
5 + 2E3E4 + 2E3E5 + 2E4E5 −

2px
3px

4 − 2px
3px

5 − 2px
4px

5 − 2py
3p

y
4 − 2py

3p
y
5 − 2py

4p
y
5 − 2pz

3p
z
4 − 2pz

3p
z
5 − 2pz

4p
z
5 (A.68)
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As before, the neutino four-vector is defined in terms of all the other particles in the

event so we need to rewrite equation A.68 to expose all the dependences on p3. For the

following, it is assumed that the lepton, neutrino, and quark are massless meaning E3 = p3.

s345 = 2p3

√

(−px
3 − px

5 − px
6)

2 + (−py
3 − py

5 − py
6)

2 + (pz
tot − pz

3 − pz
5 − pz

6)
2 +

2p3p5 + 2
√

(−px
3 − px

5 − px
6)

2 + (−py
3 − py

5 − py
6)

2 + (pz
tot − pz

3 − pz
5 − pz

6)
2p5 −

2px
3(−px

3 − px
5 − px

6) − 2px
3px

5 − 2(−px
3 − px

5 − px
6)px

5 −

2py
3(−py

3 − py
5 − py

6) − 2py
3p

y
5 − 2(−py

3 − py
5 − py

6)p
y
5 −

2pz
3(−pz

3 − pz
5 − pz

6) − 2pz
3p

z
5 − 2(−pz

3 − pz
5 − pz

6)p
z
5 (A.69)

After combining like terms, we can evaluate the partial derivative of s345 with respect

to p3 as

∂s345

∂p3
= 2(p3 + p4 + p5)(1 − p̂3 · p̂4) (A.70)

Finally, we can rewrite the Jacobian defined in A.66 as

|J(p3, u)| =

∣

∣

∣

∣

∣

∣

∂s345
∂r × ∂r

∂u
∂s345
∂p3

∣

∣

∣

∣

∣

∣

=
∆R ×

[

(mtΓt)
2 + (s345 − m2

t )
2
]

2(p3 + p4 + p5)(1 − p̂3 · p̂4)
(A.71)

Instead of replacing the lepton momentum integration variable, it is also common to

replace the first quark momentum integration variable, p5. In that case, we need to evaluate

the following Jacobian.

|J(p5, u)| =

∣

∣

∣

∣

∂p5

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p5

∂s345
× ∂s345

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂s345
∂r × ∂r

∂u
∂s345
∂p5

∣

∣

∣

∣

∣

∣

(A.72)

The only difference is that partial derivative of s345 with respect to p5 instead of p3.

However, since s345 is invariant under a change of p3 and p5 the partial derivatives must be

equal. Thus,

|J(p5, u)| =

∣

∣

∣

∣

∣

∣

∂s345
∂r × ∂r

∂u
∂s345
∂p5

∣

∣

∣

∣

∣

∣

=
∆R ×

[

(mtΓt)
2 + (s345 − m2

t )
2
]

2(p3 + p4 + p5)(1 − p̂4 · p̂5)
(A.73)
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A.2.6 Jacobian for random sampling of two Breit-Wigner distributions around the top

mass squared, s345 and W mass squared, s34

The next situation is to sample from a Breit-Wigner around the top mass squared and the

W mass squared, or s345 and s34. It is common to replace the lepton momentum and first

quark momentum integration variables with the two new variables. Since we are replacing

two variables, we need to evaluate the following Jacobian

|J(p3, p5;u1, u2)| =

∣

∣

∣

∣

∣

∣

∣

∂p3

∂u1

∂p3

∂u2

∂p5

∂u1

∂p5

∂u2

∣

∣

∣

∣

∣

∣

∣

(A.74)

where u1 and u2 are the sampling variables around the top mass squared and W mass

squared, respectively.

We have already computed the partial derivatives for each of these cases in the previous

two sections, thus the result is

|J(p3, p5;u1, u2)| =

∣

∣

∣

∣

∣

∣

∣

∂p3

∂u1

∂p3

∂u2

∂p5

∂u1

∂p5

∂u2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∂s345
∂r

× ∂r
∂u

∂s345
∂p3

∂s345
∂r

× ∂r
∂u

∂s345
∂p5

∂s34
∂r

× ∂r
∂u

∂s34
∂p3

∂s34
∂r

× ∂r
∂u

∂s34
∂p5

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∆R345×[(mtΓt)2+(s345−m2
t )2]

2(p3+p4+p5)(1−p̂3·p̂4)

∆R34×[(mW ΓW )2+(s34−m2
W

)2]
2(p3+p4)(1−p̂3·p̂4)

∆R345×[(mtΓt)2+(s345−m2
t )2]

2(p3+p4+p5)(1−p̂4·p̂5)

∆R34×[(mW ΓW )2+(s34−m2
0)2]

2p3(p̂3·p̂5−p̂4·p̂5)

∣

∣

∣

∣

∣

∣

∣

(A.75)

A.2.7 Sampling from a Polynomial Scm distribution

*** This is where I am taking a function from Aurelio and I can’t seem to derive it on my

own ***

The distribution of the variable Scm according to a polynomial power distribution is

s = m2
0 + [(1 − α)r]

−1
α−1 (A.76)

where r is defined in terms of the random variable, u, that is uniformaly distributed

between 0 and 1.

r = (rmax − rmin) × u + rmin (A.77)
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where rmax and rmin are defined in terms of the variable scm.

r =
1

1 − α
×
[

s − m2
0

]1−α
(A.78)

rmin =
1

1 − α
×
[

smin − m2
0

]1−α
(A.79)

rmax =
1

1 − α
×
[

smax − m2
0

]1−α
(A.80)

where alpha can not equal 1.

A.2.8 Jacobian for random sampling of a polynomial distribution starting at mpole

The first case to consider is sampling around a falling polynomial distribution for the mass

squared of two quarks in the event, s56. We need to define the Jacobian with respect p5 or

p6. Since s56 is invariant under an interchange of particle 5 and 6, the Jacobian will be the

same for each momentum integration. The following assume p5 will be replaced with the

variable, u, which is sampled from a polynomial distribution.

|J(p5, u)| =

∣

∣

∣

∣

∂p5

∂u

∣

∣

∣

∣

(A.81)

Because u is redined in terms of the variable r, we can rewrite A.81 in terms of r instead

of u.

|J(p5, u)| =

∣

∣

∣

∣

∂p5

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p5

∂r
× ∂r

∂u

∣

∣

∣

∣

(A.82)

And since the variable r is sampling the S56 distribution it makes sense to define the

Jacobian in terms of this variable instead of p5.

|J(p5, u)| =

∣

∣

∣

∣

∂p5

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂p5

∂s56
× ∂s56

∂r
× ∂r

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂s56
∂r × ∂r

∂u
∂s56
∂p5

∣

∣

∣

∣

∣

∣

(A.83)

Equation A.83 has three components: ∂s56
∂r , ∂r

∂u , and ∂s56
∂p5

. From equation A.77, the

partial derivative of r with respect to u is

∂r

∂u
= rmax − rmin = ∆R56 (A.84)
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Next, the partial of s56 with respect to r can be determined from equation A.76.

∂s56

∂r
= [r(1 − α)]

α
1−α (A.85)

Inserting the value of r(s) as defined in equation A.78, equation A.85 can be re-written

as

∂s56

∂r
=
[

s56 − m2
0

]α
(A.86)

Finally, we need the partial derivative of s56 with repect to p5. First, we define s56

s56 = m2
5 + m2

6 + 2E5E6 − 2px
5px

6 − 2py
5p

y
6 − 2pz

5p
z
6 (A.87)

we can evaluate the partial derivative of s56 with respect to p5.

∂s56

∂p5
= 2p6(1 − p̂5 · p̂6) (A.88)

Finally, we can rewrite the Jacobian defined in A.83 as

|J(p5, u)| =

∣

∣

∣

∣

∣

∣

∂s56
∂r × ∂r

∂u
∂s56
∂p5

∣

∣

∣

∣

∣

∣

=
∆R56 ×

[

s56 − m2
0

]α

2p6(1 − p̂5 · p̂6)
(A.89)

and

|J(p6, u)| =

∣

∣

∣

∣

∣

∣

∂s56
∂r × ∂r

∂u
∂s56
∂p6

∣

∣

∣

∣

∣

∣

=
∆R56 ×

[

s56 − m2
0

]α

2p5(1 − p̂5 · p̂6)
(A.90)
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Appendix B

DISCRIMINANT OUTPUT PLOTS

MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL WITH TWO

JETS AND ONE B-TAG
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Figure B.1: Discriminant plots for the electron channel with one b tag and two jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL WITH TWO

JETS AND TWO B-TAGS

tb Discriminant
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Figure B.2: Discriminant plots for the electron channel with two b tags and two jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH TWO JETS

AND ONE B-TAG

tb Discriminant
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Figure B.3: Discriminant plots for the muon channel with one b tag and two jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH TWO JETS

AND TWO B-TAGS
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Figure B.4: Discriminant plots for the muon channel with two b tags and two jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL WITH THREE

JETS AND ONE B-TAG
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Figure B.5: Discriminant plots for the electron channel with one b tag and three jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL WITH THREE

JETS AND TWO B-TAGS
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Figure B.6: Discriminant plots for the electron channel with two b tags and three jets.
Upper row: tb discriminant, lower row: tq discriminant. Left column, full discriminant
range, right column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH THREE JETS

AND ONE B-TAG
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Figure B.7: Discriminant plots for the muon channel with one b tag and three jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH THREE JETS

AND TWO B-TAGS
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Figure B.8: Discriminant plots for the muon channel with two b tags and three jets. Upper
row: tb discriminant, lower row: tq discriminant. Left column, full discriminant range, right
column, close-up of the high end of the distribution.
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Appendix C

LUMINOSITY CALCULATION

The probability of n interactions per bunch crossing is ( because a collision is a random

process, the distribution will follow Poisson statistics.

P =
µN

N !
× e−µ (C.1)

The probability of at least one bunch crossing is

P = 1 − e−µ (C.2)

The average number of bunch crossings, µ, is defined as

µ =
L× σeff

fbeam
(C.3)

Thus, the luminosity can be written as

L = −fbeam

σeff
ln(1 − P(n > 0)) (C.4)

By recording the number of bunch crossings without an inelastic collision, the luminosity

can be calculated.
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Appendix D

ENSEMBLE GENERATION TECHNIQUE

We can generate multiple pseudo-datasets containing only background events and run

them through the analysis exactly as if they were the real data events, and obtain a cross

section from each one of them. The p-value can then be calculated as the number of these

ensembles that yield a result equal to the observed or higher, divided by the total number

of ensembles.

To generate these ensembles, we use background events from our model and treat the

fluctuations of each background source separately. We draw random events from each

background source separately, as indicated by the allowed variation due to systematic and

statistical uncertainties. The event weights are taken into account such that events with

a higher weight will be more likely to be picked. The variance of the background events

is large: we start from 1.34M electron events and 1.28M muon events, then only consider

the two thirds of these that have not been used in the discriminant training. The nominal

background yields are 755 electron events and 643 muon events. Thus, each ensemble is

generated picking around 700 events from around 850,000. The source of background most

affected by oversampling is multijets, since some channels contain very few events that will

be picked repeatedly. Given that the multijet background is very small and the statistical

errors dominate, this does not introduce a large bias.

The ensemble generation includes a flat (i.e., normalization only, not shape changing)

20% error for the tt̄ yield (Ntt̄), which represents approximately the overall yield uncertainty

from all systematic effects combined (see Appendix 6). The shift in the tt̄ yield:

N ′
tt̄ = Ntt̄ × Gaussian(mean = 1,width = 0.2)

is the same for electrons and muons. The treatment of the W+jets and multijet backgrounds

accounts for the normalization to data from the matrix method and for the effect of b-

tagging. The error from the matrix method normalization of W+jets and multijet events is



196

incorporated in the ensemble generation by letting each sample (multijets, Wcc̄, Wbb̄ and

Wjj) fluctuate with a different random number r sampled from a Gaussian distribution:

rQCD = Gaussian(1, 0.2)

rWjj = Gaussian(1, 0.2)

rWbb = Gaussian(1, 0.2)

rWcc = Gaussian(1, 0.2)

The background sum of W+jets and multijets yields NWQCD is fluctuated to become

N ′
WQCD:

NWQCD = NQCD + NWjj + NWbb + NWcc

N ′
WQCD = rQCD × NQCD + rWjj × NWjj + rWbb × NWbb + rWcc × NWcc

These two expressions fix the normalization to data. What is changed here is the composi-

tion of each of the subcomponents. Once the correlation between multijets and W+jets is

taken care of, we also need to take into account the effect of b-tagging. We split the summed

samples of W+jets and multijets into 1-tag and 2-tags sets. The average uncertainty on

these samples is 5% and 12% respectively (see Appendix 6), so we form a scale factor Stag
WQCD

that incorporates the different rates for tagging single- and double-tagged events in these

samples:

r1tag = Gaussian(1, 0.05)

r2tag = Gaussian(1, 0.12)

Stag
WQCD =

r1tag × N1tag
WQCD + r2tag × N2tag

WQCD

N1tag
WQCD + N2tag

WQCD

Finally, the multijets and W+jets event yields are fluctuated to:

N ′
i = ri ×

NWQCD

N ′
WQCD

× SWQCD
tag × Ni ; i = QCD,Wjj,Wbb,Wcc

Once each background source has been fluctuated, we randomly pick events based on a

Poisson distribution of the new systematics-shifted total background sum:

N ′
Data = N ′

QCD + N ′
Wjj + N ′

Wbb + N ′
Wcc + N ′

tt̄
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Appendix E

ANALYSIS CHANNEL SYSTEMATICS UNCERTAINTIES

Tables E.1–E.8 show the systematic uncertainties on the signal and background samples

for the single-tagged and two double-tagged analyses.
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UNCERTAINTIES FOR ELECTRON TWO-JET SINGLE-TAGGED ANALYSIS

Single-Tagged Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 18.2 18.2 18.2 18.2

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 1.4 0.3 9.9 1.7 — — — —

Flavor-dependent TRFs 2.1 5.9 4.6 2.4 4.4 6.3 7.4 —

Statistics 0.7 0.7 1.3 0.8 0.9 0.9 0.4 5.6

Combined

Acceptance uncertainty 10.8 12.1 — — — — — —

Yield uncertainty 19.3 19.3 24.1 21.1 18.8 19.3 19.7 19.1

Table E.1: Electron channel uncertainties, requiring exactly one tag and exactly two jets.
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UNCERTAINTIES FOR ELECTRON THREE-JET SINGLE-TAGGED ANALYSIS

Single-Tagged Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 16.8 16.8 16.8 16.8

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.3 5.8 4.1 3.2 — — — —

Flavor-dependent TRFs 2.1 4.5 2.9 2.1 4.4 6.2 7.6 —

Statistics 1.0 1.0 0.5 0.5 1.0 1.0 0.5 6.7

Combined

Acceptance uncertainty 12.0 12.9 — — — — — —

Yield uncertainty 20.0 19.8 22.0 21.2 17.4 18.0 18.5 18.1

Table E.2: Electron channel uncertainties, requiring exactly one tag and exactly three jets.
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UNCERTAINTIES FOR MUON TWO-JET SINGLE-TAGGED ANALYSES

Single-Tagged Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 20.7 20.7 20.7 20.7

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.3 6.1 20.1 6.8 — — — —

Flavor-dependent TRFs 1.8 5.9 4.5 2.0 4.4 6.3 7.5 —

Statistics 9.0 0.7 1.0 1.0 0.8 0.8 0.4 14.0

Combined

Acceptance uncertainty 16.7 15.4 — — — — — —

Yield uncertainty 23.1 21.5 30.7 23.2 21.2 21.7 22.0 25.0

Table E.3: Muon channel uncertainties, requiring exactly one tag and exactly two jets.
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UNCERTAINTIES FOR MUON THREE-JET SINGLE-TAGGED ANALYSES

Single-Tagged Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 20.8 20.8 20.8 20.8

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 9.3 9.0 10.8 7.6 — — — —

Flavor-dependent TRFs 1.8 4.4 2.6 1.9 4.3 6.2 7.6 —

Statistics 2.0 2.0 0.8 0.7 1.0 1.0 0.7 14.3

Combined

Acceptance uncertainty 16.1 16.5 — — — — — —

Yield uncertainty 22.7 22.3 25.2 23.5 21.2 21.7 22.1 25.2

Table E.4: Muon channel uncertainties, requiring exactly one tag and exactly three jets.
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UNCERTAINTIES FOR ELECTRON TWO-JET DOUBLE-TAGGED ANALYSES

Double-Tagged Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 26.5 26.5 26.5 26.5

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 0.8 4.1 8.0 1.8 — — — —

Flavor-dependent TRFs 12.9 12.9 13.5 13.0 12.2 13.6 16.1 —

Statistics 0.7 0.7 1.3 0.8 0.9 0.9 0.4 28.9

Combined

Acceptance uncertainty 16.7 17.2 — — — — — —

Yield uncertainty 23.1 22.8 26.6 24.6 29.1 29.8 31.0 39.2

Table E.5: Electron channel uncertainties, requiring exactly two tags and exactly two jets.
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UNCERTAINTIES FOR ELECTRON THREE-JET DOUBLE-TAGGED ANALYSES

Double-Tagged Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 22.1 22.1 22.1 22.1

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 4.8 4.0 3.5 2.9 — — — —

Flavor-dependent TRFs 12.7 12.4 12.6 12.8 12.0 13.3 16.4 —

Statistics 1.0 1.0 0.7 0.7 1.0 1.0 0.5 25.8

Combined

Acceptance uncertainty 17.2 16.8 — — — — — —

Yield uncertainty 23.5 22.5 25.1 24.6 25.2 25.8 27.5 34.0

Table E.6: Electron channel uncertainties, requiring exactly two tags and exactly three jets.
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UNCERTAINTIES FOR MUON TWO-JET DOUBLE-TAGGED ANALYSES

Double-Tagged Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 27.6 27.6 27.6 27.6

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.2 9.1 19.7 6.9 — — — —

Flavor-dependent TRFs 12.9 12.8 13.4 12.9 12.2 13.5 16.1 —

Statistics 1.3 0.9 0.7 0.7 1.0 1.0 0.5 57.7

Combined

Acceptance uncertainty 19.0 20.3 — — — — — —

Yield uncertainty 24.8 25.2 32.9 26.5 30.2 30.7 31.9 64.0

Table E.7: Muon channel uncertainties, requiring exactly two tags and exactly two jets.
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UNCERTAINTIES FOR MUON THREE-JET DOUBLE-TAGGED ANALYSES

Double-Tagged Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 25.0 25.0 25.0 25.0

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 10.2 7.6 10.1 7.8 — — — —

Flavor-dependent TRFs 12.6 12.3 12.4 12.7 12.0 13.1 16.4 —

Statistics 2.0 2.0 0.8 0.6 1.0 1.0 0.6 50.0

Combined

Acceptance uncertainty 20.8 19.4 — — — — — —

Yield uncertainty 26.3 24.5 27.7 26.7 27.7 28.2 29.9 55.9

Table E.8: Muon channel uncertainties, requiring exactly two tags and exactly three jets.
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