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Abstract

The top quark is by far the heaviest known fundamental particle with a mass nearing that

of a gold atom. Because of this strikingly high mass, the top quark has several unique

properties and might play an important role in electroweak symmetry breaking—the mech-

anism that gives all elementary particles mass. Creating topquarks requires access to very

high energy collisions, and at present only the Tevatron collider at Fermilab is capable of

reaching these energies.

Until now, top quarks have only been observed produced in pairs via the strong interac-

tion. At hadron colliders, it should also be possible to produce single top quarks via the

electroweak interaction. Studies of single top quark production provide opportunities to

measure the top quark spin, how top quarks mix with other quarks, and to look for new

physics beyond the standard model. Because of these interesting properties, scientists have

been looking for single top quarks for more than 15 years.

This thesis presents the first discovery of single top quark production. An analysis is per-

formed using 2.3 fb−1 of data recorded by the DØ detector at the Fermilab Tevatron Col-

lider at centre-of-mass energy
√

s = 1.96 TeV. Boosted decision trees are used to isolate

the single top signal from background, and the single top cross section is measured to be

σ (pp̄→tb + X, tqb + X) = 3.74+0.95
−0.74 pb.

Using the same analysis, a measurement of the amplitude of the CKM matrix element

Vtb, governing how top andb quarks mix, is also performed. The measurement yields:

|Vtbf
L
1 | = 1.05+0.13

−0.12, wherefL
1 is the left-handedWtb coupling. The separation of signal

from background is improved by combining the boosted decision trees with two other mul-

tivariate techniques. A new cross section measurement is performed, and the significance

for the excess over the predicted background exceeds 5 standard deviations.
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Chapter 1

Introduction

To the best of our understanding, all observed physical phenomena can be explained by

four fundamental interactions (forces). Our current theory of elementary particle physics,

the standard model, incorporates three of the four forces and can accurately describe all

experimental observations to date. Even though this model has been remarkably successful,

it is widely believed that it is a low energy approximation ofa more profound theory. Hints

of this theory are expected to be observed at the very highestenergies.

The Tevatron proton-antiproton collider, located at Fermilab outside Chicago, is currently

the world’s highest energy collider. It is the only particlecollider powerful enough to pro-

ducetop quarks. The top quark is by far the heaviest fundamental particle inthe standard

model. Because of its large mass, the top quark has several unique properties and could

provide hints for the origin of mass and physics beyond the standard model. At the Teva-

tron, top quarks are predicted to be produced in pairs via thestrong force, and singly via

the electroweak force. Top pair production was discovered by the DØ and CDF collabo-

rations in 1995. This thesis presents the first observation of electroweak single top quark

production.

The outline of this thesis is as follows. Chapter 2 provides a theoretical introduction and

motivation for the study of single top quark production. Thefollowing chapter describes

the experimental apparatus, namely the Fermilab accelerator chain and the DØ detector.

Chapter 4 explains how signals in the DØ detector are interpreted to reconstruct the physics

1
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objects created in the collision. The three subsequent chapters discuss the analysis. Chap-

ter 5 describes the various background processes, the modeling of single top quark pro-

duction and the background components, and the event selection applied. The systematic

uncertainties of the background estimation are also discussed here.

Single top quark production is a rare process relative to itsbackgrounds. This analysis uses

boosted decision trees as a multivariate method to separatesingle top quark events from the

background events. Chapter 6 explains how decision trees canbe constructed and used for

this purpose. Chapter 7 describes how the boosted decision trees are created and applied to

the dataset, and how the cross section and the signal significance are determined using the

boosted decision tree output. The analysis results are summarized in Chapter 8.



Chapter 2

Theoretical Background

2.1 The Standard Model

2.1.1 Matter Particles

All known fundamental particles are classified as either quarks, leptons or gauge bosons.

The quarks and leptons are spin-1/2 fermions and constitutethe building blocks of matter.

They are grouped into three generations, where the lightestparticles are found in the first

generation, and the heaviest in the third generation. Each generation contains a charged

lepton, a charge-neutral neutrino, and an up-type and a down-type quark with charges+2/3

and−1/3 respectively. Quarks carry colour charge and never appear as free particles but

in bound states called hadrons. The properties of the quarksand leptons are summarized

in Table 2.1. For each particle in this table, there is an anti-particle with exactly the same

mass, but opposite quantum numbers, such as electric chargeand colour charge.

2.1.2 Particle Interactions

The quarks and leptons interact with each other via the exchange of spin-1 gauge bosons.

There are three kinds of gauge bosons corresponding to the three interactions (forces) de-

3
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Quarks Leptons

Generation Flavour Charge Mass Flavour Charge Mass

I
upu +2/3 1.5-3.3 MeV electrone -1 0.511 MeV

downd -1/3 3.5-6.0 MeV e neutrinoνe 0 < 2.2 eV

II
charmc +2/3 1.27 GeV muonµ -1 105.7 MeV

stranges -1/3 70-120 MeV µ neutrinoνµ 0 < 0.17 MeV

III
top t +2/3 171.2 GeV tauτ -1 1.777 GeV

bottomb -1/3 4.2 GeV τ neutrinoντ 0 < 16 MeV

Table 2.1: Properties of the matter particles [1]. The masses for theu, d ands quarks are

estimates of the “current quark mass” at a 2 GeV scale in theMS scheme, and the masses

for the c andb quarks are the “running quark masses” using the same scheme.The top

quark mass is from direct observations in data.

scribed in the standard model. The photon is the gauge boson for the electromagnetic inter-

action, which occurs between particles carrying electric charge. The massiveW+, W− and

Z0 bosons mediate the weak force, and massless gluons are the carriers of the strong force

acting on particles with colour charge. The standard model also predicts the existence of

the Higgs mechanism, which generates the mass for the elementary particles. An overview

of all particles and their interactions is illustrated in Figure 2.1.

2.1.3 Gauge Theories

The standard model incorporates the gauge theories of the electroweak and strong interac-

tions. A gauge theory is a quantum field theory (QFT) which is invariant under certain sym-

metry transformations. Massless gauge fields are introduced by demanding the Lagrangian

for a gauge theory to be invariant undergauge transformations—symmetry transformations

which depend on the space-time coordinate. Excitations (quanta) of a gauge field represent

spin-1 gauge bosons that carry the force associated with thefield.

The electroweak interaction belongs to theSU(2)L ×U(1)Y gauge group.L here indicates

that the weak force only couples to left-handed particles, and Y refers to the weak hyper-
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Figure 2.1: Illustration showing all fundamental particles and interactions described in the

standard model. The electromagnetic force is mediated by the photon that couples to all

charged particles. TheW andZ bosons carry the weak force between left-handed particles,

and the gluon is the force carrier of the strong interaction,and couples to particles with

colour charge. The Higgs boson, which is part of the standardmodel but not yet observed,

couples to all massive particles.

charge. In an unbroken form, the electroweak gauge group requires all of its bosons to be

massless. This is not the case in nature sinceW andZ bosons are known to have large

mass. In the standard model, particles acquire mass throughtheHiggs mechanism, which

introduces a doublet of complex scalars whose self-interaction breaks the electroweak sym-

metry. This results in one physical scalar Higgs boson, which is the only elementary particle

predicted by the standard model that is not yet observed.

The standard model is the combination of the electroweak andthe strong interactions, which

forms theSU(3)C × SU(2)L ×U(1)Y gauge group. The first term in this expression is the

gauge group for the strong force, and the subscriptC here refers to the colour charge.
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2.2 The Top Quark

2.2.1 Discovery

The top quark was predicted in 1977 when theb quark was discovered at Fermilab [2]. The

b quark was observed to be a down-type quark, and since the theory requires each quark

to have an isospin partner, the top quark was postulated as anup-type quark. It can be

produced both via the strong interaction and via the electroweak interaction.

The top quark was discovered in 1995, 18 years after theb quark, by the DØ and CDF

Collaborations at Fermilab [3]. It was observed produced in pairs via the strong interaction.

The Feynman diagrams for top pair production are shown in Figure 2.2.

It took another 14 years before electroweak top quark production was discovered. This

thesis presents this observation.

t

t̄

g

g

t

t̄

q

q̄

gg

Figure 2.2: Representative Feynman diagrams fortt̄ production. The left diagram shows

quark-antiquark annihilation, the right one shows gluon-gluon fusion. Quark-antiquark an-

nihilation is the dominant production channel at the Tevatron (85%, 15% for gluon fusion).

2.2.2 Properties

Just like the other up-type quarks, the top quark participates in both strong and electroweak

interactions and has spin1/2 and charge +2/3e. However, it also exhibits several unique

properties. It has the largest mass of any elementary particle; its mass is approximately

that of a tungsten atom, nearly 40 times larger than the mass of the b quark and104 times
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heavier than the up and down quarks. The large mass comes witha very short lifetime of

about0.4 × 10−24 s. This is shorter than the hadronization time scale of∼ 3.0 × 10−24 s,

which means that the top quark decays as a free particle before undergoing fragmentation,

transmitting its properties cleanly to the decay products.

2.2.3 Decay

The top quark decays nearly exclusively to aW and ab quark. In the standard model,

the branching ratioB(t → Wb) is greater than 0.998. Theb quark from the top decay

will form a jet, but theW boson has many different decay modes. A top quark decay is

therefore categorized by the decay of theW , which either decays to a lepton and a neutrino,

or to a quark-antiquark pair. All lepton flavours are kinematically allowed, but the hadronic

decay is limited to the first two generations of quarks sincemW < mt. At leading order,

a hadronic decay is three times as likely as a leptonic decay since quarks comes in three

colours, and we getB(W → qq̄′) = 1/3 andB(W → ℓν) = 1/9 for a given quark/lepton

flavour (exceptW → tb as mentioned above). Higher order corrections slightly alter this

symmetry. A summary of theW decay modes is shown in Table 2.2.

Decay mode Branching ratio

W+ → ℓν (10.80 ± 0.09)%

W+ → eν (10.75 ± 0.13)%

W+ → µν (10.57 ± 0.15)%

W+ → τν (11.25 ± 0.20)%

W+ → hadrons (67.60 ± 0.27)%

Table 2.2: Experimentally measured branching ratios for the decay of a realW [1]. In the

analysis presented in this thesis, the combinedB(W → ℓν) is used for each lepton flavour

(see Table 5.4).
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2.3 Electroweak Top Quark Production

2.3.1 Introduction and Motivation

Electroweak top quark production is usually referred to assingle topquark production since

only one top quark is produced per event. Top quarks are here produced in charged current

interactions via theWtb vertex, which contributes by the factor

−igw

2
√

2
Vtbγ

µ(1 − γ5) (2.1)

to the matrix element for single top quark production. As a result, the single top quark

production cross section is directly proportional to|Vtb|2. From a measurement of the cross

section, one can hence extract|Vtb|, without any assumptions on the number of generations

in the standard model.

Single top quark production also offers opportunities to probe physics beyond the standard

model, such as new exchange particles and flavour changing neutral currents. Further,

after isolating single top quark events, it is possible to measure several of the top quark

properties, such as the spin polarization. Finally, singletop quark processes produce the

same final state as the standard model Higgs boson processWH → Wbb̄ as well as the

charged Higgs processH+ → tb̄ → Wbb̄. The background model, and essentially all

analysis techniques developed for single top quark analyses, can hence also be used for

Higgs searches.

Because of these interesting properties, single top quark production has been extensively

studied, see for example References [4, 5, 6, 7, 8, 9, 10, 11, 12].

2.3.2 Production Modes

At hadron colliders, there are three single top quark production modes, thes- andt-channel

exchanges of a virtualW , and tW production. The next to leading order (NLO) cross

sections for these processes at the Tevatron are given in Table 2.3.

t-channel single top quark production is the dominant singletop quark production mode at
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Process Cross Section (pb)

t-channel 2.34 ± 0.14

s-channel 1.12 ± 0.06

tW 0.28 ± 0.06

Table 2.3: NLO single top quark production cross sections atthe Tevatron (1.96 TeVpp̄

collider) for mt = 170 GeV [13]. The corresponding NLOtt̄ production cross section is

7.91+0.61
−1.01 pb [14].

the Tevatron. In this process, a virtual, space-likeW boson (Q2
W < 0, whereQW is theW

four-momentum) interacts with ab quark from the proton sea. This process also has the alias

Wg fusion, since theb quark originates from a gluon in the sea splitting into abb̄ pair. The

most important Feynman diagrams fort-channel single top quark production are presented

in Figure 2.3. There is a 2→3 and a 2→2 diagram where the latter is a sub-process of the

former where the gluon splitting in the sea has been ignored.

b

ℓ

ν
g

b̄

t

q̄ ′
q̄

WW

W
b

W ν

ℓ

b

b

q̄ q̄ ′

t

Figure 2.3: The leading order 2→2 (left) and 2→3 process (right) Feynman diagrams for

t-channel single top quark production. The left diagram is a subset of the right.

Thes-channel single top quark production is, at leading order, the processqq̄′ → tb̄ which

is illustrated in Figure 2.4. In this process, the exchange particle is a time-likeW boson

with Q2
W > (mt + mb)

2.

The tW process produces top quark with an on-shellW (Q2
W = m2

W ). The cross section
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ū

d

t

b̄

ν

ℓ

b

W

W

Figure 2.4: Leading orders-channel single top quark production.

for this process is very small at the Tevatron, and this production mode is therefore ignored

in this analysis.

2.3.3 Measurement of|Vtb|

The Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrix describes the relationship

between the quark mass eigenstates(d, s, b) and the weak eigenstates(d′, s′, b′) during

charge current interactions. Within the standard model with three generations, unitarity

of the CKM matrix gives

|Vub|2 + |Vcb|2 + |Vtb|2 = 1. (2.2)

Since|Vub| and|Vcb| have been precisely measured, this implies a tight restriction on|Vtb| [1]:

0.999090 < |Vtb| < 0.999177. (2.3)

However, if we do not assume three generations, then Equation 2.2 becomes

|Vub|2 + |Vcb|2 + |Vtb|2 + ... = 1, (2.4)

and the constraints on|Vtb| change to [12]:

0.06 < |Vtb| < 0.9994. (2.5)

As previously mentioned, the single top quark production cross section is proportional to

|Vtb|2. From a measurement of the single top quark production crosssection, we can there-

fore extract a measurement of|Vtb|. A measurement that differs significantly from the range
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specified in Equation 2.3 would be clear evidence for physicsbeyond the standard model,

and could possibly indicate the existence of a fourth generation of quarks.

The first direct measurement of|Vtb| was presented in 2006 by the DØ Collaboration to-

gether with evidence for single top quark production [4, 5].This analysis conducts a refined

measurement using a larger dataset, see Section 7.5.

2.3.4 Single Top Kinematics

Figure 2.5 shows various kinematic distributions for the final state particles produced ins-

andt-channel single top quark production (see Figures 2.3 and 2.4). These distributions are

from the Monte Carlo samples used to simulate single top in this analysis. The modeling

of these samples is described in Section 5.4.2.

There are several characteristic kinematic features of single top quark production that can

be seen in Figure 2.5. Theb quark emitted from the top quark decay tends to be central and

has large transverse momentum. For the decay products of theW boson, we see that the

lepton has a softerpT spectrum than that of the neutrino. This occurs because the preferred

direction of the lepton is anti-aligned with the top quark direction due to the V−A nature of

the weak force, as further discussed in Section 2.3.5. Theb quark produced in association

with the top quark int-channel single top production tends to have high rapidity and low

momentum and is often not reconstructed in the analysis. Thelight quark produced in the

t-channel has reasonably largepT , but its most distinguishing feature is the asymmetric

Q(ℓ) × η distribution, whereQ(ℓ) is the charge of the lepton in the event. This asymmetry

arises since the final state light quark produced during single t (t̄) production most often is a

d (d̄) quark that moves in the same direction as the proton (antiproton) [12]. The light quark

η will hence tend to have the same sign as the charge of the lepton from the top decay.

2.3.5 Polarization

As earlier discussed (Section 2.2.2), top quarks decay before they hadronize, transmitting

their properties cleanly to theW boson and theb quark produced in the decay. In the
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Figure 2.5: Parton-level kinematic distributions for single tops-channel (left) andt-channel

(right) from the single top Monte Carlo samples generated as described in Section 5.4.2.

The pT spectrum for each final state particle is shown in the top row,the corresponding

η and Q(ℓ) × η spectra are shown in the middle and bottom rows respectively. These

distributions were generated after parton showering was applied.

standard model, theWtb interaction is entirely left-handed, which means that single top
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quark production is a source of highly polarized top quarks [8].

The polarization of the top quarks becomes evident in the angular correlations between the

decay products (see Figure 2.6). The lepton is preferably emitted in the same direction as

the top quark spin. The distribution of the angleθℓ between the lepton momentum in the

top rest frame, and the top polarization vector is given by [8, 12]:

F (θℓ) =
1

2
(1 + cos θℓ). (2.6)

In this analysis, several of the features introduced by top polarization are used to help

identify single top quark events, see Section 7.1.2.

2.3.6 New Physics

Measuring the single top quark production cross section, and the different angular distri-

butions is interesting as a test of the standard model, but also as a probe for several new

physics scenarios beyond the standard model [12].

New physics can affect the single top quark production crosssections for the production

modes (tb, tqb and tW ) differently. Thes-channel (tb) is most sensitive to new, heavy

charged bosons. For instance the presence of a heavyW ′ boson, or a charged Higgs boson

H±, would increase the measureds-channel single top quark production cross section. The

t-channel single top quark production would similarly be enhanced by flavour-changing

neutral currents (FCNC). In the standard model, FCNC interactions are forbidden. Repre-

sentative Feynman diagrams for single top production via ans-channel exchange of a heavy

boson and at-channel FCNC process are shown in Figure 2.7.

Finally, physics beyond the standard model can alter the V−A structure of theWtb cou-

pling. This would affect the top polarization, and hence also angular distributions such as

F (θℓ) given in Equation 2.6.
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Figure 2.6: Illustrations of spin and angular correlationsin a top decay. Double arrows show

the preferred direction of the spin and single lines represent the direction of the momentum

in the rest frame of the parent particle. The top and anti-topquarks move to the left in

all cases, and the preferred spin direction is against (towards) the direction of motion for

the top (anti-top) since it is a left-handed (right-handed)particle. The two upper diagrams

show a top (a) and an anti-top (b) decaying to a transversely polarizedW , and the two

lower diagrams show the corresponding decays to longitudinally polarizedW bosons. In

all cases, the charged leptonℓ+ (ℓ−) tends to have its spin aligned with the spin of the

top t (t̄), and travel against the direction of the topt (t̄). This results in a softened lepton

momentum distribution as can be seen in Figure 2.5. (Figure courtesy of [8])
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Figure 2.7: Left: Representative Feynman diagram for anomalous single top quark produc-

tion via thes-channel exchange of a heavyW ′ or charged Higgs boson. Right: Diagram

for flavour changing neutral current single top quark production via thet-channel.



Chapter 3

Experimental Setup

In order to study the world’s smallest particles, it is necessary to build the world’s largest

machines. This chapter presents an overview of the Tevatron, at present the world’s highest

energy collider, and the formidable DØ detector, in which the particle collisions are studied.

3.1 The Accelerator Chain

The Tevatron, situated at the Fermi National Accelerator Laboratory near Chicago, is cur-

rently the world’s highest energy collider, with a centre ofmass energy of 1.96 TeV. It is a

circular, superconducting synchrotron in which protons (p) and anti-protons (̄p) circulate in

opposite directions and are brought together into collision in the B0 and D0 experimental

areas. In these areas, two general purpose detectors, CDF andDØ respectively, measure

the collision products.

An aerial view of Fermilab showing the accelerator facilities can be seen in Figure 3.1. A

400 MeV hydrogen ion (H−) beam is produced from hydrogen, accelerated by a Cockroft-

Walton accelerator followed by a 165 m linear accelerator. The electrons are stripped off

as the ions pass through a carbon fibre foil into the Booster synchrotron ring. Here the

produced protons are accelerated to 8 GeV before being transferred to the Main Injector

where the particles are accelerated to 150 GeV. The protons are arranged into a bunch

16
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Figure 3.1: Aerial view of Fermilab National Accelerator Laboratory showing some of

the facilities described in Section 3.1, and the location ofthe DØ detector described in

Section 3.2.

structure and are delivered from the Main Injector to the Tevatron where the proton bunches

are finally accelerated to 980 GeV.

Proton bunches from the Main Injector are also used to produce anti-protons. A proton

beam of 120 GeV is directed at a nickel/copper target. The anti-protons produced are ac-

celerated to 8 GeV and accumulated. Once the number of anti-protons is sufficiently large,

the anti-protons are passed to the Main Injector where they are accelerated to 150 GeV for

transfer into the Tevatron.

36 bunches of protons and equally many bunches of anti-protons are delivered to the Teva-

tron with a 396 ns bunch spacing. The 36 bunches in each beam are organized into three

super-bunches, separated by a 2µs gap. The beams are focused at the collision points, and

pp collisions occur during the bunch-crossings.
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3.1.1 Luminosity and Cross Sections

In particle and nuclear physics, collision rates are measured in terms of the instantaneous

luminosity,L. The rate of an arbitrary physics processX is given by

dNX

dt
= LσX (3.1)

whereσX is the cross section of the process. The cross section is an area, commonly

expressed in picobarn (pb), whereb ≡ 1028 m−2. It is usually desirable for a collider to

provide a high instantaneous luminosity in order to achievehigher rates of rare processes

(like single top quark production). The instantaneous luminosity often depends strongly on

time. A more useful quantity in many cases is therefore the time independentintegrated

luminosity:

L ≡
∫

Ldt. (3.2)

Figure 3.2: Integrated luminosityL per week (green bins), and in total (blue dots), at

Fermilab from May 2001 to Dec 2008. This analysis uses data from August 2002 to August

2007, approximately weeks 65-330 in the plot. The exact numbers are given in Table 5.1.
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The number of collisions which result in processX can now be expressed as

NX = LσX . (3.3)

The integrated luminosity hence has the unit of inverse area, usually pb−1 or fb−1. The

instantaneous and integrated luminosities collected at Fermilab Run II are shown in Fig-

ure 3.2. This analysis uses 2.3 fb−1 of data (L = 2.3 fb−1).

3.2 The DØ Detector

A sketch of the DØ detector [15] is shown in Figure 3.3. The detector consists of four major

subsystems. Starting from the interaction point and movingoutward, these are: the central

tracking system, the preshower detector, the calorimetersand the muon system.

Calorimeter

Shielding

Toroid

Muon Chambers

Muon Scintillators

η = 0 η = 1

η = 2

[m]

η = 3

–10 –5 0 5 10

–5

0

5

Figure 3.3: A simplified cross section view of the DØ detectorshowing the different sub-

detectors [15].
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3.2.1 The DØ Coordinate System

The DØ coordinate system is a right-handed Cartesian system with origin in the geometric

centre of the detector. Thex-axis lies in the horizontal plane pointing outwards from the

centre of the Tevatron ring, they-axis points straight up, and thez-axis is pointing along

the beam pipe in the direction of the outgoing proton beam.

Since the protons and anti-protons are coming in along thez-axis, the(x, y)-plane is usually

referred to as the transverse plane. The azimuthal angleφ for a particle is the angle between

the positivex-axis and the transverse momentum vector~pT = (px, py) of the particle. The

polar angleθ is the angle between~p and the positivez-axis. However, since the collisions

we want to study are boosted relative to each other along thez-axis, it is much preferred to

use the rapidityy instead of the polar angleθ.

The rapidity for a particle is (in natural units) defined by

y =
1

2
ln

E + pz

E − pz

. (3.4)

This quantity is additive. A Lorentz boostβ′ along thez-axis is equivalent to a boost with

rapidity y′ = arctanh(β′), and results iny → y + y′. This means that differences in rapid-

ity are invariant, and as a consequence, the shape of the highenergy particle multiplicity

spectrumdN/dy is also invariant under a boost along thez-axis. The energy, longitudinal

momentum and velocity of a particle can be expressed in termsof rapidity as

E =
√

p2
T + m2 cosh y, pz =

√

p2
T + m2 sinh y, βz = tanh y. (3.5)

If the mass is small compared to the energy of the particle,m ≪ E, then we can approxi-

mate the rapidityy with the pseudorapidity

η =
1

2
ln

|~p| + pz

|~p| − pz

= − ln

(

tan
θ

2

)

, (3.6)

and Equation 3.5 becomes

E ≈ |~p| = pT cosh η, pz = pT sinh η, vz ≈
pz

|~p| = tanh η. (3.7)

As can be seen from the relations above, the pseudo-rapidityη is a purely angular variable.



CHAPTER 3. EXPERIMENTAL SETUP 21

A useful Lorentz invariant measure of the separation between two (massless) particles is

∆R =
√

(∆η)2 + (∆φ)2 (3.8)

where∆η and∆φ are the separations between the particles in terms ofη andφ respectively.

3.2.2 The Central Tracking
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Figure 3.4: Overview of the central tracking system at DØ during the Run IIa data taking

period. During the summer of 2006, an additional silicon layer was added closer to the

beam axis. The beam pipe was also replaced and the outermost silicon H-disks removed in

the same upgrade.

The DØ central tracking system [15], illustrated in Figure 3.4, consists of two tracking

detectors: a silicon microstrip tracker (SMT) surrounded by the central scintillating fibre

tracker (CFT). It is built inside a 2 Tesla superconducting solenoid magnet with a mean

radius of 60 cm. This will bend the path of a charged particle in ther-φ plane, and from the

radius of curvature the transverse momentum of the particlecan be calculated according to

pT = Brk, (3.9)

whereB is the magnetic field strength (2 T in this case),r is the radius of curvature, andk

is the constant0.3 GeV/(cTm).
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In this analysis, the tracking system is used to identify andmeasure the momentum of

electrons and muons, to determine the position of the primary interaction vertex, and to

identify jets originating fromb quarks. In order to perform these tasks accurately, it is

important to have high spatial resolution. The following sections describe how the tracking

systems have been designed in order allow for such precisionmeasurements.

3.2.3 Silicon Microstrip Tracker

The basic unit of the SMT is called a wafer [15]. Silicon is theactive material, and there is

a voltage applied across the wafer. A charged particle passing through the wafer will create

many electron-hole pairs that will drift across the unit andgenerate an electronic signal.

The signal is amplified and read out in parallel microstrips arranged on one of the wafer

surfaces. Two wafers can be arranged back-to-back with the microstrips on each side at a

relative angle. This allows for stereo measurements of the particle hit.

An overview of the SMT with its barrel and disk structure is shown in Figure 3.5. There

are six barrels that measure the(r, φ, z)-coordinates of central (lowη) tracks. There are

also twelve so-called F-disks between, and at the end of the barrel segments, and four large

“H-disks” in the forward region which can detect tracks with2 < |η| < 3.

During the Run IIa run period (March 2001–March 2006), the barrel consisted of four

double sided layers. During the Run IIb upgrade in spring of 2006, an additional layer was

added inside the existing barrel [16]. To allow for this, thebeam-pipe was replaced with a

thinner one. The two most forward H-disks were removed due toradiation damage. The

Run IIb data taking period started in August 2006.

3.2.4 Central Fibre Tracker

The CFT [15] consists of eight concentric cylinders that enclose the SMT (see Figure 3.4).

The cylinder walls are made of two layers of closely spaced scintillating fibres. The fibres

in one of the two layers are aligned with the beam axis, while the fibres in the other layer

are arranged at a three degree relative angle allowing for stereo measurements to be made.
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1.2 m

Figure 3.5: The DØ Run IIa silicon microstrip tracker with itssix barrel segments, twelve F-

disks and four large H-disks. The two outermost H-disks wereremoved during the Run IIb

upgrade.

When a charged particle passes through a scintillating fibre,a small fraction of its energy

may excite molecules in the material that will emit visible light during the subsequent deex-

citation. The photons will travel through the fibre and be collected in “visible light photon

counters” (VLPCs) outside the detector.

3.2.5 Preshower Detectors

The central and forward preshower detectors consist of leadradiators combined with scin-

tillating material, and are placed in front of the calorimeters. They are designed to identify

and measure the energy of particles that interact with matter before reaching the calorime-

ters. This aids the identification of electrons and photons,since they often start to shower

in the solenoid magnet, which alone accounts for about one interaction length of material

in the central region.

3.2.6 The DØ Calorimeters

The DØ calorimeters [15, 17] are used to identify and measurethe energy and direction of

electrons, photons, jets, muons and missing transverse energy /ET , and are hence crucial for

this analysis. There are three cryostats with nearly equal size, the central calorimeter and

the two endcap calorimeters (Figure 3.2.6). Each calorimeter is divided in layers: innermost

there are four electromagnetic (EM) layers, followed by thefine and coarse hadronic layers.
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Figure 3.6: The DØ calorimeters.

The design of the EM layers is optimized for measurement of EMshowers produced by

electrons and photons. The third EM layer has increased granularity since this is where

maximum shower development is expected. Most EM showers will not penetrate into the

hadronic calorimeter, which is designed for good measurement of hadronic showers. Muons

only deposit a small amount of energy in the calorimeter, andneutrinos no energy at all.

Some energy will also be deposited in poorly instrumented regions and hence give no or

little signal. This absence of measured energy results in a momentum imbalance in the

transverse plane. This imbalance is called the missing transverse energy,/ET .

The basic unit of the DØ calorimeters is a calorimeter cell. Such a cell consists of an

absorber plate (U, Cu or Fe) followed by a gap filled with liquidargon. In the middle of

this gap is a G-10 board, with a 2.0 – 2.5 kV potential with respect to the grounded absorber

plate. This potential difference induces a drift field across the liquid argon. As an incoming

particle interacts with the dense matter in the absorber plate, a shower of secondary particles

is produced. As they pass through the liquid argon, they ionize argon atoms, and negative

charge will drift towards the signal boards. This results ina signal proportional to the

energy loss of the incoming particle. A schematic view of twotypical calorimeter unit cells

is given in Figure 3.2.6. Several unit cells stacked on top ofeach other are read out together.
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Figure 3.7: Sketch of two calorimeter cells. Particles penetrate these cells from the left.

Figure 3.8 shows a side view of the calorimeters. We can see the layer structure, but also

that cells with the sameη (andφ) are arranged in “pointing towers”, i.e., the towers point

towards the centre of the detector (the interaction point).Cells have a size of about∆η ×
∆φ = 0.1 × 0.1 except in the third EM layer where the granularity is doubled.

3.2.7 Muon system

The DØ detector has a large muon system [15] outside the calorimeter as can be seen in

Figure 3.3. The muon detection strategy relies on the penetration power of muons since they

do not undergo hadronic interactions but lose energy only through ionization. A typical

high pT muon deposits about 1.8 GeV of energy in the calorimeter. Almost all hadrons

will be absorbed by the dense materials in the calorimeter, while muons generally will pass

through both the calorimeter and the muon system. A charged particle that penetrates the

muon system is therefore recognized as a muon.

The muon system consists of the wide angle muon spectrometer(WAMUS) covering the

central detector (|η| < 1), the forward angle muon spectrometer (FAMUS) covering1 <

|η| < 2 and a solid-iron magnet with at field of 1.8 Tesla. WAMUS and FAMUS each

consists of several layers of drift chambers and scintillators where muons are detected. Due
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Figure 3.8: Side view of a quarter of the DØ calorimeters. Thelines with numbers are lines

of constantη. Cells are arranged into pointing towers along these lines. There are four

electromagnetic layers in all cryostats, three fine hadronic layers in the central cryostat and

four in the end caps, and one coarse hadronic layer in the central cryostat and three in the

end caps.

to the magnetic field, the path of the muons will be curved, andthe muon momentum and

charge are determined from the curvature of the tracks. These measurements are improved

by using additional information from the central tracking system and the calorimeters.

3.2.8 Triggers

The collision rate at the Tevatron is 2.5 MHz, i.e., 2.5 million events per second. To read

out all detector signals produced by one event requires 250 kB of data. There is no practical

technology available to collect and store data at this rate since most events produced are

uninteresting events. Production of heavy mass resonances, such asW andZ bosons or top

quarks, occur at a much lower rate.
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The DØ trigger system is designed to operate in this very highcollision rate environment.

It is organized into three major levels:

Level 1

This trigger level is required to reduce the event rate from 2.5 MHz to 1.4 kHz. The

trigger is hardware based, and receives input from the calorimeter, the muon system

and the luminosity system.

Level 2

The hardware Level 2 trigger has two stages and reduces the rate to 1 kHz. The

first stage consists of several “preprocessors” that each receive information from one

of the individual subdetectors to produce objects such as tracks, electrons, jets and

muons. The second stage makes a trigger decision based on theproperties of these

objects.

Level 3

The final trigger level relies entirely on software that is run on a dedicated computer

farm. The trigger has about 100 ms to make its decision, and reduces the rate to 50

events per second. There are algorithms performing close-to-offline reconstruction of

electrons, muons, jets and missingET . Events satisfying this trigger are stored and

transferred to full offline reconstruction.



Chapter 4

Event Reconstruction

This chapter describes how the detector subsystems are usedin order to identify the physics

objects, such as jets and electrons, which are created from ahard scatterpp̄ collision. Two

aspects of the event reconstruction are discussed: object reconstruction and object identifi-

cation.

Object reconstruction starts with converting the raw detector signals to “hits” with a cor-

responding position and measured energy. The hits are next clustered depending on their

position to form a basic physics object, meaning either a track or a calorimeter energy clus-

ter. From these basic physics objects, the final physics objects are created, which in this

analysis are: electrons, muons, vertices, jets and/ET . For illustrations of hits and recon-

structed physics objects, see Appendix A.

During object identification, quality requirements are applied to each object. The following

sections describe how the physics objects used in this analysis are reconstructed, and what

object identification requirements are applied.

4.1 Tracks

Tracks are used to reconstruct many of the physics objects used in this analysis, namely

electrons, muons, the primary vertex andb jets. As a charged particle traverses the tracking

28
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system, its path is bent by the magnetic field of the solenoid,and small amounts of energy

are deposited along the particle trajectory in many of the tracking layers. The DØ tracking

algorithm reconstructs particle tracks from such hits. This is not an easy task since any given

event contains thousands of hits, and not all of them are fromthe hard scatter collision, but

also from secondary collisions and electronic noise.

The DØ track reconstruction first constructs a list of track candidates using two different

methods. The histogram track finding method (HTF) [18] is based on a Hough transforma-

tion which originally was used to find patterns in pictures taken in bubble chambers [19].

All possible combinations of two hits are created, and for each such combination, the angu-

lar direction and the curvatureρ for the trajectory from the beam axis through both hits are

calculated. These quantities are filled in two dimensional histograms, and a peak is formed

for a track, since the track, and also all the pairs of hits of the track, have the same direction

and curvature. Fake track segments, created from electronic noise, are spread uniformly in

these histograms.

The alternative algorithm (AA) [20] creates track seeds from hits in the silicon tracker and

forms roads. Hits along those roads in additional tracking detector layers are added to the

track if they improve the overallχ2 of the track fit. Compared to the histogramming method,

this method has a better efficiency for lowpT tracks, and tracks from secondary vertices. It

is also less susceptible to fake tracks.

Finally, the tracks provided by these two methods are used asinput to the global track

reconstruction (GTR). The tracks are here created, combined, refitted and smoothed using

a Kalman filter algorithm [21], resulting in the final set of tracks in the event.

4.2 Primary Vertices

A precise determination of the primary interaction point along the beam axis is important

for determining the direction of jets, muons and electrons,and also for identifying sec-

ondary vertices, which is crucial forb tagging. The location of the primary vertex is close

to the geometrical centre of the detector in the(x, y)-plane, but thez position can vary over

roughly one metre along the beam axis from event to event.
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The primary vertices of an event are reconstructed by means of an adaptive primary vertex

algorithm [22]. This algorithm first determines the beam position in the (x, y)-plane and

its width from aχ2 fit of all tracks. The beam axis is next divided into segments of length

2 cm. The tracks withpT > 0.5 GeV, and at least two SMT hits that are pointing back to a

given segment are clustered. The tracks in each cluster are fitted to a common vertex using

the Kalman filter technique [21]. After the initial vertex fitting, the tracks with the highest

contribution to the vertexχ2 (the “worst” tracks) are removed, and the vertex is refitted,

until the totalχ2 < 10.

The final vertex is calculated from the remaining tracks. In the case where more than one

vertex is found, thepT distributions of the tracks associated with each vertex areused to

define a probability that each track originated at the particular vertex [22]. The vertex with

the lowest probability of being a minimum bias vertex is selected as the hard scatter vertex.

4.3 Calorimeter Clusters

Before using the measured energies in the calorimeter for object reconstruction, it is neces-

sary to suppress noise. The procedure to deal with hot cells (cells that give a high measured

energy due to hardware problems), and energy mis-measurements due to electronic noise,

are briefly discussed below.

Each calorimeter cell is considered a massless object, and is assigned the four vector

(Ecell, ~pcell), whereEcell is the measured energy and~pcell is a vector of magnitude|Ecell|
directed from the primary vertex to the centre of the cell.

Starting from the list of all calorimeter cells, the following selection criteria are applied:

a. Cell are required to fulfil|Ecell| > 2.5σcell, whereσcell is the measured energy width

due to electronic noise.

b. Cells identified as hot cells by the NADA algorithm [23] are removed.

c. According to the T42 algorithm [24], all cells withEcell > 4σcell are first selected.

Next, cells withEcell > 2σcell are selected if they have a neighbouring cell with

Ecell > 4σcell. All other cells are removed.
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Only the cells surviving this selection are used to reconstruct the calorimeter showers. For

computing time reasons, cells belonging to a given calorimeter tower are first combined into

a tower object. Each tower points to the geometrical centre of the detector, and contains

both electromagnetic and hadronic layers as can be seen in Figure 3.8. The four momentum

of a tower object (or any other cluster of cells or towers, such as a jet), is defined by the

four vector sum of the cells.

4.4 Electrons

The characteristic signature of an electron is a track in theinner tracking system, and a

narrow and short shower in the electromagnetic section of the calorimeter. Electrons are

hence reconstructed using information from both the calorimeter and the central tracker.

Electromagnetic clusters (EM clusters) are reconstructedby merging calorimeter tower

objects (Section 4.3) using a simple cone algorithm [25]. Only the energy deposited in

the electromagnetic part of the calorimeter is considered by the algorithm. Towers with

ET > 1.5 GeV are used as seeds, and an EM cluster is created by including the towers in a

radius of∆R = 0.2 (see Equation 3.8).

The following variables are used in this analysis to identify and assess the quality of an EM

cluster:

Electromagnetic fraction, fEM = EEM/Etotal

This is the ratio of the energyEEM deposited in the electromagnetic layers over the

total cluster energyEtotal, which includes the hadronic layers. For an electron, this

fraction is expected to be close to one.

Isolation, fiso

The isolation of an EM cluster is defined by

fiso =
Etotal(∆R < 0.4) − EEM(∆R < 0.2)

EEM(∆R < 0.2)
. (4.1)

Etotal(∆R < 0.4) is the energy in a cone of radius∆R = 0.4 around the EM cluster.

For a real, isolated electron, this energy should not be muchlarger than the central

electromagnetic energyEEM(∆R < 0.2).
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H-Matrix χ2

This quantity is constructed from seven variables that describe the longitudinal and

transverse shower shape of the EM cluster, namely: the energy deposited in each of

the four EM layers,log10(EEM), the primary vertexz position, and transverse shower

width in the third EM layer. A7 × 7 covariance matrix is constructed using these

shower shape variables for simulated electrons that have been accurately modelled to

agree with observed shower shapes of test beam electrons [26]. Using this matrix,

χ2
HM can be calculated for any given EM cluster.

Track match χ2

This is theχ2 of the fit of the closest track with the centre of the EM cluster. It can be

converted to a probability for the track to be associated with the EM cluster,P (χ2),

which is what is used in this analysis.

Likelihood LEM

The electron likelihood [27] is defined such that real electrons tend to have values

close to 1, while fakes tend to have values close to 0. It only applies to track-matched

electrons and is based on seven variables including both calorimeter and tracking

information.

The electron definitions used in this analysis are the following:

Ultraloose electron

An ultraloose electron is required to havefEM > 0.9, χ2
HM < 50, fiso < 0.15 and

pT > 15 GeV. There are no requirements for a matching track. This electron defini-

tion is used for modeling the multijet background, see Section 5.4.6.

Loose isolated electron

In addition to the ultraloose requirements, a loose isolated electron must have a track

match with a non-zeroχ2 probability: P (χ2) > 0. The matching track is required to

havepT > 5 GeV and be pointing back close to the primary vertex:∆z(track, PV) <

1 cm.

Tight isolated electron

A tight isolated electron must pass all the loose isolated electron requirements and in

addition haveLEM > 0.85.
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4.5 Jets

A quark or gluon emitted from the hard scatter collision willundergo a complicated process

that results in ajet—a spray of hadrons with a total momentum close to the momentum of

the emitted parton (Figure 4.1). Jets vary widely in shape and particle content, and deposit

energy both in the electromagnetic and hadronic layers of the calorimeter. All single top

events produce two or more jets. Accurate knowledge of the jet energies and their directions

is therefore very important.

The jets used in this analysis are reconstructed using the RunII Improved Legacy Cone

Algorithm [28, 29] with cone sizeR = 0.5. The calorimeter tower objects, created as

described in Section 4.3, are first combined into preclusters of radius 0.3 using the sim-

ple cone algorithm (same algorithm as for EM clusters). It isensured that no preclusters

share any towers. The centre of each precluster, but also themidpoint between any pair of

preclusters, are used as seeds for the final jet reconstruction algorithm.

For each such seed, a jet is created by including all towers within a cone of sizeR around

the seed. The centre axis of the jet is calculated, and the jetis redefined as the combination

of towers within∆R < R of the new midpoint. This is repeated recursively until a stable

cone is found. In the final step of the algorithm, overlaps between jets are removed. Two

jets are merged if the shared energy is more than 50% of the energy of the sub-leading jet.

Figure 4.1: Illustration of the evolution of a jet. A parton jet, consisting of a quark and a ra-

diated gluon (left), hadronizes and forms a particle jet (middle) that creates electromagnetic

and hadronic showers in the calorimeter. The energy of theseshowers is measured in the

calorimeter cells, which are organized into pointing towers, and a jet object is reconstructed

from these towers (right).



CHAPTER 4. EVENT RECONSTRUCTION 34

If not, each shared tower is assigned to the jet closest in(y, φ)-space.

When measuring a jet in the calorimeter, there might be large fluctuations due to finite

energy resolution and calorimeter cell granularity. The measured energy will on average

be lower than the true energy since hadronic showers have a lower calorimeter response

compared to electromagnetic showers, and since some particles of the jet may pass through

uninstrumented regions. To account for these effects, jetsare corrected by the jet energy

scale (JES) [32] according to:

Ecorr
jet =

Eraw
jet − O

RjetFηS
. (4.2)

The components of Equation 4.2 are described below.

Uncorrected jet energyEraw
jet

The measured energy of all cells in the jet.

Offset energyO

The energy not associated with the hard scatter. The main sources for this energy

are energy deposited from jets produced in additional “min-bias” interactions, and

energy due to electronic noise. This correction is shown in Figure 4.2.

Inter-calibration Fη

This is a calibration factor applied to make the response uniform as a function of jet

η across the central and end-cap calorimeters and the inter cryostat regions. The size

of this correction for a typical jet in this analysis is around 5%.

Jet ResponseRjet

This is the main JES correction. The jet response in the DØ calorimeters is signifi-

cantly lower than unity for several reasons: hadronic showers have a lower calorime-

ter response than electromagnetic showers; energy is lost in material in front of the

calorimeter, such as tracking material and the solenoid magnet; some particles in the

jet might escape undetected, for instance due to uninstrumented regions or since they

are neutrinos. The magnitude of this correction is shown in Figure 4.3.

Showering CorrectionS

The DØ Run II jet algorithm reconstructs the jet from the deposited energy within

the jet cone. Due to effects like shower development in the calorimeter and magnetic
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field bending, there will be energy leaving and entering the jet cone. The showering

correctionS corrects for the net energy difference due to such showeringeffects.
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Figure 4.2: The jet offset correction as a function of jetη. There are different curves

depending on the number of primary vertices in the event, which are created from additional

interactions. The correction is quite large for forward jets when there are additionalpp̄

interactions in the event.

The jets used in this analysis are JES corrected as describedabove. They are also required

to fulfil a set of selection criteria recommended by the DØ Jet-ID Algorithm Group [30, 31].

These criteria include requirements on the fraction of the jet energy in the outermost, coarse

hadronic layer,fCH, the fraction of the energy in the electromagnetic layersfEM, and a

trigger level 1 ratio requirement. In addition to these identification criteria, this analysis

requires all jets to havepT > 15 GeV, |η| < 3.4, and not to overlap with any loose isolated

electron.

4.6 Muons

The starting point for muon reconstruction is the formationof a track from hits in each layer

of the muon system. The track is combined with an existing track in the central tracking

system reconstructed as described in Section 4.1. This greatly improves thepT resolution

compared with only using the muon system.

The following muon definitions are used in this analysis:
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Figure 4.3: Top: jet response, measured inγ+jet events, as a function of the jet energy

estimatorE ′ = pT (γ) cosh ηjet, which approximates the particle level jet energy. Bottom:

the difference between the measurements and the parametrized jet response function, and

the uncertainty band from the fit.

Loose isolated muon

A loose muon is required to have tracks with hits both in the drift tubes and the

scintillators, and in two of the three detector layers of themuon system outside the

toroid. A loose cosmic ray rejection timing requirement is applied, and the track

reconstructed in the muon system must match a track reconstructed in the central

tracker that has at least two hits in the silicon tracker. Theχ2 for the match between

the two tracks must be less than 4. The muon track is required to be close to the

primary vertex:z(track, PV) < 1 cm and it must not be overlapping with any jet in

the event:∆R(µ, jet) > 0.5.

Tight isolated muon

Tight isolated muons fulfil the loose muon requirements, andin addition the follow-
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ing isolation criteria:

a. the momenta of all tracks in a cone of radiusR < 0.5 around the muon direction,

except the track matched to the muon, add up to less than 20% ofthe muonpT

b. the energy deposited in the calorimeter around the muon trajectory in the range

0.1 < ∆R < 0.4 must be less that 20% of the muonpT .

4.7 b Jets

b jets are jets originating from the hadronization ofb quarks. These objects are particularly

important in this analysis since single top quark events produce twob quarks in the final

state. As theb quark hadronizes, aB hadron will be formed, which is a bound state of

a b quark and one or two light quarks.B hadrons have significantly longer lifetimes than

lighter hadrons, and typically travel a few millimetres before decaying. As a consequence,

b jets will usually have a decay vertex displaced from the primary interaction point that

can be reconstructed as a secondary vertex. Another distinguishing property is that about

20% of all b jets contain a muon inside the jet cone. These features, and other kinematic

properties, can be used to distinguish heavy flavour jets from (ordinary) light flavour jets.

This analysis uses a neural network (NN)b jet tagger designed by DØ’s B-ID Group to

identify b jets [33]. Jets are first required to be “taggable”, meaning that there are at least

two good tracks associated with the jet such that a secondaryvertex can be constructed for

every jet. Taggable jets are then “tagged” by the tagging algorithm.

The NN tagger uses seven variables to discriminateb jets from other jets. The most impor-

tant variable is the decay length significance of the secondary vertex, defined as the distance

from the primary to the secondary vertex divided by the uncertainty of this quantity. The

other variables are: the invariant mass of all tracks associated with the secondary vertex

(SV); theχ2 per degree of freedom for the reconstruction of the SV from the tracks; the

number of tracks pointing to the SV; the number of SVs associated with the jet; and the

probability that the jet tracks originate from the PV calculated from the minimal distance

between each of the jet tracks and the PV. The NN tagger assigns an output value between

0 and 1 proportional to the probability that the jet is ab jet. Only jets with|η| < 2.5 are

considered by the algorithm.
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There are several operating points defined for the NN tagger.This analysis uses the TIGHT

and the OLDLOOSE operating points, where the TIGHT means an NN output greater than

0.775, and OLDLOOSE means NN output greater than 0.5. Each event is required to

have either one jet fulfilling the TIGHT NNb-tagging quality, or to have two jets tagged

by the OLDLOOSE operating point. The average fake rates for the TIGHT/OLDLOOSE

operating points are 0.82%/2.5% for data jets in the centralcalorimeter, and their average

b-tagging efficiencies on data are 49%/61% for jets with|η| < 2.5.

4.8 Missing Transverse Energy,/ET

All single top events considered in this analysis have a highpT neutrino in the final state.

Neutrinos interact very weakly with matter, and their energy and momentum cannot be

directly measured. However, since momentum is conserved, one can indirectly measure the

pT of the neutrino from the momentum imbalance in the transverse plane. This imbalance

is called the missing transverse energy,/ET , and is defined by the negative sum of the

transverse momenta of all particles observed in the detector.

In practice, the (uncorrected) missing transverse energy is calculated by

~/ET = −
Ncells
∑

i

~pT i. (4.3)

wherepT i is the transverse momentum for celli (see Section 4.3 for thepT definition

for a calorimeter cell). Only cells in the electromagnetic and fine hadronic layers of the

calorimeter are included since the energy resolution is poor in the coarse hadronic layers.

The missing energy defined in Equation 4.3 needs to be corrected if there are reconstructed

muons in the event, and due to energy corrections of jets, electrons and photons. A muon

only deposits a small amount of energy in the calorimeter. Ifa loose isolated muon is

present in the event,~/ET is corrected by subtracting the component of the muon momentum

that was not detected in the calorimeter. The same principleapplies for jets. The momentum

component added due to jet energy scale for each jets needs tobe subtracted from the raw

/ET . There are also small corrections needed if there are electrons or photons in the event

due to the electron and photon energy scales.
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Analysis: Event Selection

Single top quark production is a very rare process relative to its major backgrounds. The

background arises from several distinct sources, each mimicking the single top signal in its

own way. In essence, single top is kinematically “wedged” betweenW+jets andtt̄ back-

grounds, and there is no easy way to reduce these backgroundssimultaneously. Instead,

each background needs to be probed for its individual distinguishing features. In order

to identify these, and to correctly evaluate the amounts of signal and background in the

dataset, it is necessary to create an accurate signal and background model.

This chapter explains the analysis strategy and describes the dataset used, the selection cri-

teria applied, and the momentous task of modeling the signaland all background processes

in the data.

5.1 Strategy

As explained in Section 2.2.3, single top quarks decay to aW boson and ab quark almost

100% of the time.W bosons further decay leptonically or into jets. This analysis focuses

on single top decays in the electron and muon channels.

The composition of the background components is quite different for events with different

39
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jet multiplicities and lepton flavours. The data are therefore divided into manychannels

(orthogonal samples) depending on the lepton flavour, the number of reconstructed jets, and

the number ofb-tagged jets. The analysis is optimized individually in each such channel.

The general event selection strategy is to maximize signal acceptance by using a loose event

selection and thereafter use a multivariate technique (in this case boosted decision trees) to

separate signal from background.

5.2 Data Set

The data sample was collected between August 2002 and August2007 during the Run IIa

and Run IIb run periods. The Run IIb data were recorded at higherinstantaneous luminosi-

ties, and with the upgraded detector as described in Section3.2. The integrated luminosity

for the dataset can be seen in Table 5.1.

Integrated Luminosity [pb−1]

Channel Trigger Version Delivered Recorded Good Quality

Run IIa electron v8.00 – v14.93 1,312 1,206 1,043

Run IIa muon v8.00 – v14.93 1,349 1,240 1,055

Run IIb e and mu v15.00 – v15.80 1,497 1,343 1,216

Total Run II Integrated Luminosity 2.3 fb−1

Table 5.1: Integrated luminosities of the datasets used in this analysis (also, see Figure 3.2).

Each electron data event is required to satisfy at least one trigger in a list of several hundred

photon, electron, jet ande+jets triggers. For muons events, a similar list is used containing

jet, muon andµ+jets triggers. Studies show that essentially all events that pass the event

selection are accepted by these trigger requirements. The trigger efficiency used for the

background modeling is 100%, with an uncertainty of 5-10% asdiscussed in Section 5.8.
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5.3 Background Processes

The three major backgrounds for single top areW+jets,tt̄ and multijet production.W+jets

is the largest background for events with two jets, andtt̄ is the largest background for events

with four jets. There are also backgrounds fromZ+jets and diboson processes.

Figure 5.1 shows example Feynman diagrams with the event signature particles highlighted

for single top and the major background processes.

W+jets

W+jets events produce an on-shellW boson and one or several jets. TheWbb̄ sub-

process (pp̄→Wbb̄ + X) has the same final state as single top: two realb quarks and

a W . TheWjj, Wcc̄ andWcj subprocesses, wherej refers to a light jet, enter the

data when jets are misidentified asb jets.

Top pair production

tt̄ events produce two on-shell top quarks.tt̄→ℓ+jets events have twob jets and

W→ℓν, just as single top, but have in addition two highpT jets. Thistt̄ decay channel

constitutes a large background for the high jet multiplicity channels. Dilepton events

have an extraW → ℓν in the final state and make their way into the dataset when one

of the leptons is not reconstructed.

multijet

There is an instrumental background from multijet events inwhich one jet fakes an

isolated lepton and imprecise jet calibration induces false /ET .

Z+jets

Z+jets events can mimic the single top signal when theZ decays leptonically to

e+e− or µ+µ− at the same time as one of these leptons is not reconstructed.This

background is significantly smaller thanW+jets.

dibosons

WW andWZ each has a similar signature as single top when oneW decays toℓν

while the other boson decays to quarks.ZZ events might mimic our signal when one
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ū

g

d

t
ν

ℓ

b

b̄

b̄

Single Top Production

WW

W

b

W

d

e

ν̄e

g

µ

ν̄µ

u

g

ū
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ū

µ+

νµ

b

b̄

e

νe

u g
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Figure 5.1: Representative diagrams for single top and the major background processes.

The “e” in the multijet diagram illustrates a quark that is mis-identified as an electron.
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Z decays to jets, and the other to leptons of which one is not reconstructed. However,

the cross sections for these processes are small, and diboson events are hence not a

major background for single top.

5.4 Signal and Background Modeling

5.4.1 Monte Carlo Simulation

The signal samples and theW+jets, tt̄, Z+jets and diboson samples are generated using

Monte Carlo simulations. In all cases,PYTHIA version 6.409 [35] with the Tune A settings

is used to simulate the underlying event, initial and final state radiation, and the hadroniza-

tion. For all background samples, the flavour and momentum ofeach participating parton

inside the proton or antiproton are modelled by the CTEQ6L1 set of parton density func-

tions [36], signal used CTEQ6M.

All stable particles produced are passed through a full detector simulation that models the

interactions between the particles and the material in the detector usingGEANT [37]. The

magnetic field is also simulated such that charged particle trajectories are bent as they travel

through the detector.

The electronic response due to the deposited energy is modeled by a program calledDØSIM [38],

which also simulates electronic noise and adds detector signals from zero-bias events to ac-

count for additional hard-interactions. Zero-bias eventsare data events recorded with no

trigger requirements.

The final step in the Monte Carlo generation process is to reconstruct the event in the same

way as a real data event is reconstructed (see Chapter 4). Due to the detector upgrade, but

also due to changes in the software framework, it is necessary to create separate samples

corresponding to the Run IIa and Run IIb run periods.
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5.4.2 Monte Carlo Signal Samples

The single top quark events used in this analysis are generated by the Monte Carlo event

generatorSINGLETOP[39] which is based on theCompHEP generator. The top mass is set

to 170 GeV for the simulations.

The s-channel MC is produced using the leading order matrix element, and is scaled by

an NLO/LOk-factor. The resulting kinematic distributions for all partons agree with the

expectations from NLO calculations [40].

The situation is more complicated for thet-channel, where the higher order diagramgq →
tq′b has an effective cross section on the same order as the LO diagrambq → tq′ (Feynman

diagram for these processes are shown in Figure 2.3). These modes need to be combined

to properly model the NLO kinematics. In order to avoid overlap, it is necessary to add

requirements to thepT of the b quark produced in association with the top. In case of

the gq → tq′b, this quark is added byPYTHIA as an ISRb quark produced from gluon

splitting. SINGLETOPgeneratesbq → tq′ events with the restrictionpT (b̄) < 12 GeV for

the quark added byPYTHIA, andgq → tq′b̄ events requiringpT (b̄) > 12 GeV. The modes

are generated in proportions such that thepT (b̄) spectrum becomes smooth as is shown in

Figure 5.2.
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Figure 5.2: The single topt-channel Monte Carlo simulation is generated as a mixture of

the 2→2 and 2→3 modes. The left plot shows thepT distributions for theb quark produced

in association with the top. The matching of the modes can be seen at 12 GeV. The right

plot shows corresponding pseudo-rapidity distributions and their sum.
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5.4.3 Monte Carlo Background Samples

TheW+jets,tt̄ andZ+jets backgrounds are modelled byALPGEN [41] version 2.11, which

is a leading order matrix element event generator. Separatesamples are generated with

different number of final state partons in order to properly simulate events with high jet

multiplicities. The MLM matching scheme [42], which is provided within ALPGEN, is

applied after the parton showering process in order to avoidoverlap between the subsamples

with different parton multiplicities.

The MLM scheme works as follows: Parton jets are reconstructed using the UA1 jet al-

gorithm [43] with cone size 0.4. This is done afterPYTHIA has applied parton showering

and initial and final state radiation. Each tree-level parton generated byALPGEN is required

to match a jet with transverse momentum greater than 8 GeV within ∆R < 0.7. If all

tree-level partons fulfil these matching criteria, then theinclusive MLM matching criterion

is met. If all partons are matched, and there are no additional unmatched parton jets in the

event, then the exclusive MLM matching criterion is satisfied. Inclusive matching hence

allows extra jets to be created byPYTHIA during parton showering. This matching is only

used for the subsample with the highest parton multiplicity(see Tables 5.2 and 5.3).

The W+jets events have a leptonically decayingW boson and 0 to 5 partons in the final

state. The factorization scale used ism2
W +

∑

m2
T , wheremT is the transverse mass defined

asm2
T = m2 +p2

T and the sum
∑

m2
T extends over all final state partons. Separate subsam-

ples are generated as described below in order to ensure goodstatistics for the important

W+heavy flavour events and to properly model events with many jets.

Wlp These samples are created from diagrams with the final statesW+N lp → ℓν+N lp,

whereN ∈ {0, 1, 2, 3, 4, 5}, andlp is short for “light parton”, meaning a gluon or

a masslessu, d, s or c quark. The sample is further divided into the subsetsWcj,

meaningWc+N′ lp → ℓνc+N′ lp (N′ = N − 1), andWjj, meaning processes

without any final statec quarks.

Wbb denotesWbb̄+N lp → ℓνbb̄+N lp, where the twob quarks are massive, andN ∈
{0, 1, 2, 3}.

Wcc denotesWcc̄+N lp → ℓνcc̄+N lp. Thec quarks are massive, andN ∈ {0, 1, 2, 3}.
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Events with twoc quarks after parton showering are removed from theWlp and Wbb

samples, as well as events withb quarks in theWlp sample, such that there is no phase-

space overlap between the samples [44]. Further details about theW+jets subsamples are

given in Table 5.2 and 5.4.

W +jets Monte Carlo Sample Details

Process Matching Bσ [pb] k-factor Run IIa stat. Run IIb stat.

W + 0lp → ℓν + 0lp excl. 4550 1.30 2.9M 10.1M

W + 1lp → ℓν + 1lp excl. 1277 1.30 8.5M 3.5M

W + 2lp → ℓν + 2lp excl. 299 1.30 5.0M 2.3M

W + 3lp → ℓν + 3lp excl. 70.1 1.30 2.4M 1.1M

W + 4lp → ℓν + 4lp excl. 15.8 1.30 1.7M 1.0M

W + 5lp → ℓν + 5lp incl. 5.27 1.30 0.5M 0.2M

Wjj Total 6217 1.30 21.0M 18.3M

Wbb̄ + 0lp → ℓνbb̄ + 0lp excl. 9.34 1.91 1.2M 1.4M

Wbb̄ + 1lp → ℓνbb̄ + 1lp excl. 4.27 1.91 0.6M 1.0M

Wbb̄ + 2lp → ℓνbb̄ + 2lp excl. 1.55 1.91 0.2M 0.6M

Wbb̄ + 3lp → ℓνbb̄ + 3lp incl. 0.74 1.91 0.2M 0.4M

Wbb̄ Total 15.9 1.91 2.3M 2.5M

Wcc̄ + 0lp → ℓνcc̄ + 0lp excl. 24.0 1.91 1.0M 1.0M

Wcc̄ + 1lp → ℓνcc̄ + 1lp excl. 13.4 1.91 0.6M 0.9M

Wcc̄ + 2lp → ℓνcc̄ + 2lp excl. 5.38 1.91 0.3M 0.5M

Wcc̄ + 3lp → ℓνcc̄ + 3lp incl. 2.51 1.91 0.3M 0.5M

Wcc̄ Total 45.3 1.91 2.3M 3.0M

Table 5.2: TheALPGEN leading log cross sections provided during generation, theMLM

matching applied, an approximate NLO/LLk-factor, and the number of generated Run IIa

and Run IIb events.

TheZ+jets samples are generated similarly to theW+jets samples. TheZ bosons are set

to decay leptonically, and the factorization scale used ism2
Z +

∑

m2
T . Separate samples

for theZjj, Zbb andZcc processes are generated with up to four partons in the final state.
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Details about these samples can be seen in Table 5.4.

The tt̄ samples either have one of theW bosons decaying toℓν while the other decays to

two quarks (ℓ+jets), or bothW bosons decay leptonically (dilepton). Matrix elements for

tt̄ production with 0 to 2 additional light partons are used. Thetop quark mass is set to

170 GeV (just as for the signal sample), and the factorization scale tom2
t +

∑

p2
T (jets).

Details for these samples are given in Tables 5.3 and 5.4.

Top Pair Monte Carlo Sample Details

Process Matching Bσ [pb] k-factor Run IIa stat. Run IIb stat.

tt̄ + 0lp → ℓνbb + 0lp excl. 1.51 1.42 1.4M 0.7M

tt̄ + 1lp → ℓνbb + 1lp excl. 0.62 1.42 0.8M 0.4M

tt̄ + 2lp → ℓνbb + 2lp incl. 0.31 1.42 0.4M 0.2M

Total tt̄ → ℓ+jets 2.44 1.42 2.6M 1.3M

tt̄ + 0lp → ℓℓννbb + 0lp excl. 0.38 1.36 0.7M 0.3M

tt̄ + 1lp → ℓℓννbb + 1lp excl. 0.16 1.36 0.4M 0.6M

tt̄ + 22p → ℓℓννbb + 2lp incl. 0.08 1.36 0.2M 0.1M

Total tt̄ → ℓℓ+jets 0.61 1.36 1.3M 1.0M

Table 5.3: Information of thett̄ samples. The MLM matching applied, theALPGEN leading

log cross sections, the NLOk-factor applied, and the number of Run IIa and Run IIb events

generated. Thek-factor is calculated by dividing the theoretical NLO crosssection fortt̄

production (see Table 5.4) with the alpgen cross section.

Samples for the diboson processesWW , WZ, andZZ are generated usingPYTHIA. There

are no constraints on the decays of the bosons. Some details about these samples are pre-

sented in Table 5.4.
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Monte Carlo Sample Overview

Cross Section Branching Run IIa Run IIb
Event Type [pb] Fraction Statistics Statistics

Signals

tb → ℓ+jets 1.12+0.05
−0.12 0.3240 ± 0.0032 0.6M 0.8M

tqb → ℓ+jets 2.34+0.13
−0.17 0.3240 ± 0.0032 0.5M 0.8M

Signal total 3.46+0.18
−0.29 0.3240 ± 0.0032 1.1M 1.6M

Backgrounds

tt̄ → ℓ+jets 7.91+0.61
−1.01 0.4380 ± 0.0044 2.6M 1.3M

tt̄ → ℓℓ 7.91+0.61
−1.01 0.1050 ± 0.0010 1.3M 0.9M

Top pairs total 7.91+0.61
−1.01 0.5430 ± 0.0054 3.9M 2.2M

Wbb̄ → ℓνbb 93.8 0.3240 ± 0.0032 2.3M 2.5M

Wcc̄ → ℓνcc 266 0.3240 ± 0.0032 2.3M 3.0M

Wjj → ℓνjj 24, 844 0.3240 ± 0.0032 21.0M 18.3M

W+jets total 25,205 0.3240 ± 0.0032 25.6M 23.8M

Zbb̄ → ℓℓbb 43.0 0.10098 ± 0.00006 1.0M 1.0M

Zcc̄ → ℓℓcc 114 0.10098 ± 0.00006 0.2M 1.0M

Zjj → ℓℓjj 7, 466 0.10098 ± 0.00006 3.9M 7.0M

Z+jets total 7,624 0.03366 ± 0.00002 5.1M 9.0M

WW → anything 12.0 ± 0.7 1.0 ± 0.0 2.9M 0.7M

WZ → anything 3.68 ± 0.25 1.0 ± 0.0 0.9M 0.6M

ZZ → anything 1.42 ± 0.08 1.0 ± 0.0 0.9M 0.5M

Diboson total 17.1 ± 1.0 1.0 ± 0.0 4.7M 1.8M

Table 5.4: The cross sections, branching fractions, and initial numbers of events in the

Monte Carlo event samples. The symbolℓ stands for lepton (electron, muon or tau).
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5.4.4 Monte Carlo Corrections

The Monte Carlo simulations described in Section 5.4.1 modelthe particle interactions and

the detector response. However, aspects of wear-and-tear of the detector are not considered,

for example debris build-up and ageing effects. As a result,reconstruction efficiencies for

electrons, muons and jets tend to be overestimated in the simulations. The energy and

momentum resolutions for jets and leptons are also better inthe simulated samples relative

to data.

To account for these effects, scale factors and smearing factors are applied to the Monte

Carlo Samples. The smearing factors used in this analysis arerandom shifts sampled from

a Gaussian distribution. These factors are used to adjust the reconstructed energies and

momenta of the simulated objects such that the resolution inMonte Carlo agrees with the

resolution in data.

The following subsections describe the corrections that are applied to the simulated samples

in order to reach agreement with data.

Primary Vertex Position

The distribution of thez position of the primary interaction point tends to be wider in data

than it is in the simulation. A correction factor (weight) isapplied to each simulated event

depending on thez position of the primary vertex, the data epoch (Run IIa or Run IIb) and

the instantaneous luminosity [46]. The weight applied is about 1.5 for events with large|z|
(≈ 50cm) and close to unity for events with a central primary vertex.

Instantaneous Luminosity Reweighting

The instantaneous luminosity for a simulated event is determined from the corresponding

value for the overlayed zero-bias data event (see Section 5.4.1). The instantaneous lumi-

nosity is proportional to the average number of additionalpp̄ interactions and since the vast

majority of additional collisions result in dijet events, the instantaneous luminosity is also

correlated with the number of additional jets. The simulation does not do a perfect job when
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picking the overlay events. A weight depending on the instantaneous luminosity and the

data epoch is assigned to each simulated event such that the luminosity spectrum for each

individual Monte Carlo sample agrees with the spectrum observed in data.

Z pT Reweighting

In theZ+jets samples, theZ pT spectrum generated byALPGEN does not quite agree with

the next-to-leading order theory prediction. To account for this, a weight depending on the

trueZ pT and the jet multiplicity is assigned to the event [47].

Electron Identification Efficiencies

Each event with an isolated electron is scaled by a factor that accounts for the differences in

electron cluster finding and identification efficiency between data and Monte Carlo. The

scale factor is divided into two parts: preselection and post-preselection. Preselection

refers to the basic requirement for electron identification: the presence of an electromag-

netic calorimeter cluster with a loose track match, electromagnetic fraction, and isolation.

The preselection scale factor is parametrized inηdet. The post-preselection criteria consist

of requirements on the H-matrix variable, track-matching and the likelihood. The post-

preselection scale factor is parametrized in (ηdet,φ). These factors are derived usingZ→ee

data and simulated events [48, 49].

The correction factor is given by:

εe−ID =
εData
Presel

εMC
Presel

× εData
PostPresel

εMC
PostPresel

.

Muon Efficiency Correction

The muon momenta in the Monte Carlo samples are smeared to match the resolution ob-

served in data [50]. The muon smearing is parametrized inq/pT and is determined in

Z → µµ events.

After the smearing is applied, a muon efficiency correction factor is calculated from three



CHAPTER 5. ANALYSIS: EVENT SELECTION 51

independent factors for identification, track matching andisolation efficiencies, according

to

εµ−ID =
ε Data
Reco

ε MC
Reco

×
ε Data
Track|Reco

ε MC
Track|Reco

×
ε Data
Isolation|Track

ε MC
Isolation|Track

.

This factor is applied to the event weight. The identification efficiency scale factor is

parametrized in (ηdet,φ), the track match scale factor is parametrized in track-z andη, and

the isolation one inη.

Jet Corrections

Simulated jets have a better energy resolution, a higher reconstruction efficiency, and some-

times a higher average jet energy than what is observed in data. To correct for this, a proce-

dure called JSSR (Jet Smearing Shifting and Removal) is applied at DØ [51]. The smearing

and shifting parameters are measured as functions of jetpT andηdet in direct photon events

(γ+jets). The JSSR procedure only applies to jets withpT > 15 GeV.

b Jet Identification Corrections

There are large differences for the track reconstruction efficiency between simulated sam-

ples and data. The tracking efficiency is significantly higher in Monte Carlo. One cannot

directly apply the data neural networkb-tagger to the simulated events since the algorithm

relies heavily on tracks. Instead the probability to tag ab jet, a charm jet or a light jet is

measured in data and applied to the Monte Carlo events. These probabilities are called Tag

Rate Functions (TRFs).

In order to apply theb-tagging algorithm to a jet, it has to betaggable, meaning that there

has to be a set of tracks associated with the jet. The probability for a jet to be taggable

is also higher in Monte Carlo than in data, so an additional taggability correction must be

applied. The probabilityPtag for a jet to beb-tagged can be written as

Ptag(pT , η, z, f) = ǫtaggable(pT , η, zvtx, f)TRF(pT , η, zvtx, f), (5.1)
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whereη and pT are for the jet,f is the flavour of the jet:b, c or light, ǫtaggable is the

taggability efficiency for jets in data, and TRF is the tag ratefunction also for jets in data.

zvtx is thez-position of the vertex associated with the jet.

To simulate theb tagging in the Monte Carlo samples, severalpermutationsof each event

are created where each jet is set to either beb-tagged or not. If there areNjets jets in an

event, then2Njets such permutations can be created. For instance, four permutations can

be created when an event has two jets: both jets can be tagged,both jets can be untagged,

or either of the two jets can be tagged while the other is not. The probability for a given

permutation to occur is given by
Njets
∏

i

(Itag(i)Ptag(i) + (1 − Itag(i))(1 − Ptag(i))) , (5.2)

wherePtag is given by Equation 5.1, andItag(i) is 1 if jet i is b-tagged and 0 if it is not. The

probabilities for all permutations add up to unity.

For each simulated event, all possibleb-tagging permutations are created, and each permu-

tation is weighted by its probability according to Equation5.2. All the permutations, except

the ones with zero probability, are considered for event selection.

As described in Section 4.7, this analysis uses two different b-tagging operating points:

LOOSE and TIGHT, meaningb-tag NN> 0.5 and NN> 0.775 respectively. More specif-

ically, each event is required to have either exactly one jetsatisfying TIGHTb-tagging

while the other jets do not satisfy LOOSEb-tagging, or exactly two jets satisfying LOOSE

b-tagging. Separate tag rate functions are derived for the TIGHT and LOOSE operating

points. The permutation weight for jeti being a TIGHTb jet while all other jets are not

LOOSE can be written as:

PTIGHT
tag (i)

Njets
∏

j 6=i

(1 − P LOOSE
tag (j)). (5.3)

The permutation weights for two jets fulfilling LOOSEb-tagging can be calculated using

the general formula (Equation 5.2) withPtag set toP LOOSE
tag . For example, the permutation

of an event with three jets where jet 1 and 3 areb tagged (Itag(1) = Itag(3) = 1, Itag(2) = 0)

will get the permutation weight:

P LOOSE
tag (1)(1 − P LOOSE

tag (2))P LOOSE
tag (3).
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W +jets Reweighting

After comparing with data, it is found thatALPGEN mismodels some of the kinematic

variables, in particular the number of forward jets. To dealwith this, theW+jets samples

are reweighted beforeb-tagging to reach agreement with the jetη distributions observed

in data. The reweighting is derived by comparing theW+jets sample to the data after

subtraction of all other backgrounds. Reweighting functions are derived for the following

variables in the order specified: leading jetη, second leading jetη, the∆φ and∆η between

the two leading jets, and thereafter the third and fourth jetη when applicable.

These reweighting functions are derived such that the overall normalization stays the same.

Only the kinematic shape of the sample is affected.

5.4.5 Monte Carlo Sample Normalization

Thett̄, Z+jets, dibosons, and single top samples are normalized to the integrated luminos-

ity (Equation 3.3) of the dataset using the cross sections and branching fractions listed in

Table 5.4. Thereafter the corrections described in Section5.4.4 are applied, and no further

normalization is necessary.

TheW+jets background is corrected in the same way as the other Monte Carlo samples, but

here further corrections are needed. The sample is first normalized to theALPGEN leading

log cross sections listed in Table 5.2, but these cross sections have large uncertainties and

are very sensitive to renormalization and factorization scale choices. Also, the higher order

corrections to the cross section calculations are quite large, and from comparisons with

NLO calculations, it is clear that the amount ofW+jets is underpredicted. Approximate

NLO/LL k factors are listed in Table 5.5. Thesek-factors are applied, but from comparison

with data, it is clear that further scaling of theW+jets is needed.

The finalW+jets normalization factors are derived from comparison with data. TheW

heavy flavour componentsWbb andWcc are adjusted by the scale factorSHF = 0.95 ±
0.13, which is calculated from theb tagging efficiencies in the subset of the data that con-

tains two jets [52]. This subset is dominated byW+jets sincett̄ events tend to have more

jets. The final normalization factors applied toW+jets are the described in Section 5.4.6.
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W +jets Scale Factors

Subset Wjj Wcj Wbb Wcc

k-factor 1.3 1.8 1.91 1.91

SHF - - 0.95 0.95

Table 5.5: Scale factors applied to theW+jets sample. Thek-factor is correcting theALP-

GEN leading log cross section normalization to NLO, and theSHF factor is measured by

comparing the simulated samples to data [52]. The final scalefactors needed to reach

agreement with data are listed in Table 5.6 (see Section 5.4.6).

5.4.6 Multijets and W+jets Normalization

Multijet events enter the dataset by faking an isolated lepton and/ET . To model this back-

ground, a data sample is created using the same selection criteria as for the main analysis

(Section 5.5), but an “inverted” lepton identification criterion. For the electron channel, the

reconstructed electrons are no longer required to have a track match, and the likelihood cut

is inverted:LEM < 0.85. For the muon channel, the muon isolation criterion is dropped,

and events with a muon fulfilling tight muon isolation are rejected.

The data sample resulting from this selection is orthogonalto the analysis dataset since no

events satisfy the tight lepton requirements. The reconstructed lepton is highly probable to

be a fake lepton since the lepton identification criteria arevery loose at the same time as

tight leptons are rejected.

Two scale factors,SW+jets andSmultijets, are applied to theW+jets and mulitjet samples

respectively. They are derived such that the total number ofpredicted events match data

before anyb tagging selection is applied. These scale factors hence fulfill the relation:

Ndata = SW+jetsYW+jets + SmultijetsYmultijets + Yall other MC, (5.4)

whereNdata are the number of events in data,YW+jets andYmultijets are the sum of weights

for all events in theW+jets and mulitjet samples, andYall other MC are the predicted number

of events for the remaining signal and background samples normalized as described in Sec-

tion 5.4.5. Notice, that since all terms butSW+jets andSmultijets are known in Equation 5.4,
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these factors are anticorrelated, and we only have one unknown parameter.

The SW+jets andSmultijets are determined by comparing the leptonpT , /ET , andmT (W )

distributions between data and background, which all have significantly different shapes in

W+jets and multijet backgrounds. The calculation of theW transverse mass is described

in Section 7.1.2.

The procedure according to whichSW+jets andSmultijets are calculated is the following:

1. SetSW+jets = 1.0 and calculate the correspondingSmultijets from Equation 5.4

2. Do a Kolmogorov-Smirnov test (KS-test) between data and background for the each

of thepT , /ET , andmT (W ) distributions and record the KS-test values

3. IncreaseSW+jets by 0.001

4. Repeat from step 2 untilSW+jets reaches4.0 or whenSmultijets becomes negative

5. For each of the three variables, select the recorded (SW+jets,Smultijets) which gave the

highest KS-test value

6. The final scale factors are the weighted average of the three scale factors selected in

step 5, using the KS-test value as weight.

The procedure above is done individually for electrons and muons and each jet multiplicity

bin. The derived scale factors are listed in Table 5.6.

W+jets and Multijet KS Scale Factors

SW+jets Smultijets

Run IIa Run IIb Run IIa Run IIb

e µ e µ e µ e µ

2 jets 1.51 1.30 1.41 1.23 0.348 0.0490 0.388 0.0639

3 jets 1.92 1.79 1.75 1.57 0.291 0.0291 0.308 0.0410

4 jets 2.29 2.06 1.81 1.92 0.189 0.0244 0.424 0.0333

Table 5.6:W+jets and multijets normalization scale factors derived asdescribed in Sec-

tion 5.4.6.
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5.5 Event Selection Criteria

The event selection is designed to find events with a leptonically decayingW boson and

jets. Each event is required to have an isolated lepton, missing transverse energy from the

neutrino and two to four jets. The selection is applied separately for the electron and muon

data.

General selection

• Good quality (for data)

• Trigger requirement: at least one of the selected triggers has to fire (see Section 5.2)

• Good primary vertex:|zPV| < 60 cm with at least three tracks attached

• 2-4 good jets withpT > 15 GeV and|ηdet| < 3.4

• The leading jet is required to havepT > 25 GeV

• Missing transverse energy

20 < /ET < 200 GeV in events with exactly two good jets

25 < /ET < 200 GeV in events with three or more good jets

b-tagging selection

• Each jet must have|η| < 2.5 to be considered forb-tagging

• One jet fulfilling the TIGHTb-tagging criterion (NN> 0.775) while the other jets do

not fulfill LOOSE b-tagging (NN< 0.5), or two jets fulfilling LOOSEb-tagging

• The leadingb-tagged jet is required to havepT > 20 GeV

Electron channel selection

• One tight electron with|ηdet| < 1.1 andpT > 15 (20) GeV in events with 2 (3 or

more) good jets

• No additional loose electron withpT > 15 GeV

• No tight isolated muon withpT > 15 GeV and within|ηdet| < 2.0
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• Electron track pointing back to the primary vertex:|∆z(e, PV)| < 1 cm

Muon channel selection

• One tight muon withpT > 15 GeV and|ηdet| < 2.0

• No additional loose muons withpT > 4 GeV

• No loose electron withpT > 15 GeV and within|ηdet| < 2.5

• Muon track pointing back to the primary vertex:|∆z(µ, PV)| < 1 cm

• Additional pT > 30 GeV criterion applied to the leading jet when it is in the inter-

cryostat region1.0 < |ηdet| < 1.5

The selection criteria listed up to this point select a significant amount of multijet back-

ground. It is desirable to reduce this background since it isdifficult to model, especially

when the/ET is parallel or back-to-back with a (mis)reconstructed object.

The following selection criteria have been designed to reduce the amount of mulitjet back-

ground while keeping most of the signal:

Multijet reduction criteria

• Various angular selection criteria that remove events withlow /ET at the same time

as the/ET vector is either back-to-back or parallel to the lepton or the leading jet (see

Figures 5.3 and 5.4)

• Selection on the scalar sum of the/ET and thepT of the lepton and all jets

In the electron channel:

– HT (alljets, e, /ET ) > 120 GeV for events withNjets = 2

– HT (alljets, e, /ET ) > 140 GeV for events withNjets = 3

– HT (alljets, e, /ET ) > 160 GeV for events withNjets = 4

In the muon channel:

– HT (alljets, µ, /ET ) > 110 GeV for events withNjets = 2

– HT (alljets, µ, /ET ) > 130 GeV for events withNjets = 3

– HT (alljets, µ, /ET ) > 160 GeV for events withNjets = 4
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Figure 5.3:∆φ(jet1,/ET ) versus/ET (first and third rows) and∆φ(lepton,/ET ) versus/ET

(second and fourth rows) distributions for data (left), multijets (centre) andtb+tqb signal

(right), in the electron channels in Run IIa (two first rows) and Run IIb (second two rows)

data. The “triangular” selection criteria applied are given by the lines in the plots. All

events are required to fall to the right of the lines shown. The events that fail these cuts

have low /ET at the same time as the/ET is aligned or anti-aligned with a reconstructed

object in the event.
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Figure 5.4:∆φ(jet1,/ET ) versus/ET (first and third rows) and∆φ(lepton,/ET ) versus/ET

(second and fourth rows) distributions for data (left), multijets (centre) andtb+tqb signal

(right), in the muon channels in Run IIa (two first rows) and Run IIb (second two rows)

data. The “triangular” selection criteria applied are given by the lines in the plots. All

events are required to fall to the right of the lines shown. The events that fail these cuts

have low /ET at the same time as the/ET is aligned or anti-aligned with a reconstructed

object in the event.
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5.6 Event Yields

The number of events in data, and the predicted number of signal and background events

are here referred to asyields. The yields after the selection described in Section 5.5 are

presented for the Run IIa dataset in Table 5.7 and for Run IIb in Table 5.8.

The Run IIa data, signal and background yields for events withexactly oneb-tagged jet, are

presented in Table 5.9, and the corresponding yields for Run IIb are shown in Table 5.10.

The yields for events with exactly twob-tagged jets are given in Tables 5.11 and 5.12 for

the Run IIa and Run IIb datasets respectively.

Figure 5.5 illustrates the proportions of the signal and background components in the

datasets classified by number of jets and number ofb-tagged jets.

tb

tqb

tt → ll

tt → l+jets

Wbb

Wcc

Wcj

Wjj

Z+jets

Dibosons

Multijets

2 jets                  3 jets                 4 jets

Pretag

1 b tag

2 b tags

Figure 5.5: Illustration of the signal and background composition of the dataset depending

on the number of jets and number ofb tags.
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Run IIa Event Yields Beforeb Tagging

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 23 8.2 2.2 27 11 2.8

tqb 43 17 5.8 51 23 7.0

tb+tqb 67 26 8.0 77 33 10

Backgrounds

tt̄→ℓℓ 60 37 12 57 41 13

tt̄→ℓ+jets 41 136 158 32 143 196

Wbb̄ 479 160 45 530 211 57

Wcc̄ 1,041 356 101 1,196 485 125

Wcj 1,338 315 65 1,514 389 81

Wjj 13,847 3,309 722 17,028 4,612 984

Zbb̄ 18 7.1 3.5 70 22 6.6

Zcc̄ 33 12 4.2 151 46 13

Zjj 461 125 40 1,309 348 84

Dibosons 339 98 24 457 142 34

Multijets 923 278 74 896 235 69

Background Sum 18,582 4,834 1,246 23,243 6,675 1,663

Data 18,582 4,834 1,246 23,243 6,675 1,663

Table 5.7: Yields for Run IIa data, signal and all background components after event selec-

tion. Nob tagging requirements have been applied.
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Run IIb Event Yields beforeb tagging

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 24 8.4 2.3 26 11 3.3

tqb 43 19 6.3 49 24 7.9

tb+tqb 67 27 8.6 75 35 11

Backgrounds

tt̄→ℓℓ 65 42 13 61 46 14

tt̄→ℓ+jets 43 141 168 33 145 198

Wbb̄ 458 161 42 499 200 61

Wcc̄ 1,006 351 94 1,126 453 137

Wcj 1,327 316 70 1,442 377 96

Wjj 14,166 3,489 795 16,941 4,710 1,137

Zbb̄ 19 8.2 3.4 70 26 7.4

Zcc̄ 35 15 5.9 152 54 14

Zjj 596 167 55 1,833 507 118

Dibosons 343 103 26 445 145 37

Multijets 987 294 188 1,369 377 108

Background Sum 19,048 5,087 1,460 23,972 7,040 1,927

Data 19,048 5,087 1,460 23,972 7,040 1,927

Table 5.8: Yields for Run IIb data, signal and all background components after event selec-

tion. Nob tagging requirements have been applied.
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Run IIa Single-Tagged Event Yields

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 9.1 3.1 0.82 10.2 3.9 1.0

tqb 17.4 6.6 2.1 20.5 8.6 2.6

tb+tqb 26.4 9.7 3.0 30.7 12.5 3.6

Backgrounds

tt̄→ ℓℓ 23.6 14.2 4.3 22.1 15.6 4.8

tt̄→ℓ+jets 16.3 52.0 57.0 12.5 54.3 69.8

Wbb̄ 135.4 44.2 12.0 146.4 57.1 16.0

Wcc̄ 66.0 24.8 8.1 73.9 33.4 9.9

Wcj 98.3 24.0 5.0 112.1 30.2 6.3

Wjj 73.6 21.9 6.1 87.0 30.1 8.1

Zbb̄ 6.5 2.8 0.89 26.8 7.9 2.5

Zcc̄ 2.7 1.2 0.55 13.3 4.6 1.5

Zjj 5.4 1.8 0.63 12.7 4.3 1.1

Dibosons 16.2 5.3 1.4 22.3 7.8 2.1

Multijets 28.0 10.3 3.0 51.5 17.2 7.3

Background Sum 472.1 202.4 99.0 580.6 262.5 129.4

Bkgds+Signals 498.5 212.2 101.8 611.3 275.0 131

Data 508 202 103 627 259 131

Table 5.9: Yields for Run IIa data, signal and all background components after event selec-

tion and requiring every event to have exactly oneb tagged jet.
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Run IIb Single-Tagged Event Yields

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 9.5 3.3 0.91 9.9 4.3 1.2

tqb 16.9 7.2 2.5 18.5 8.7 3.0

tb+tqb 26.4 10.5 3.4 28.4 13.0 4.2

Backgrounds

tt̄→ ℓℓ 25.6 16.1 4.9 23.5 17.0 5.0

tt̄→ℓ+jets 16.4 53.8 61.5 12.2 53.6 70.6

Wbb̄ 129.5 44.3 11.6 136.0 53.4 16.8

Wcc̄ 68.6 26.2 7.6 72.4 32.6 10.9

Wcj 106.1 25.8 5.4 111.9 29.7 6.6

Wjj 114.4 35.4 9.6 128.3 46.5 14.5

Zbb̄ 5.0 2.4 1.0 20.1 7.7 2.2

Zcc̄ 2.1 1.1 0.57 10.7 4.3 1.2

Zjj 6.0 2.1 0.79 13.9 5.0 1.3

Dibosons 17.4 5.8 1.7 22.7 8.4 2.4

Multijets 31.0 10.1 7.1 73.5 28.2 9.0

Background Sum 522.1 223.2 111.6 625.3 286.5 140.5

Bkgds+Signals 548.5 233.6 115.2 653.6 299.4 144.7

Data 547 207 124 595 290 142

Table 5.10: Yields for Run IIb data, signal and all backgroundcomponents after event

selection and requiring every event to have exactly oneb tagged jet.
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Run IIa Double-Tagged Event Yields

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 5.69 2.12 0.58 6.66 2.75 0.75

tqb 0.81 1.61 0.90 0.92 2.15 1.07

tb+tqb 6.50 3.72 1.49 7.59 4.90 1.82

Backgrounds

tt̄→ ℓℓ 13.91 9.70 3.12 14.09 11.22 3.58

tt̄→ℓ+jets 4.32 28.63 43.16 3.51 32.18 55.38

Wbb̄ 33.96 12.34 3.69 35.64 15.71 4.77

Wcc̄ 5.12 2.75 1.28 5.62 3.56 1.50

Wcj 1.44 0.68 0.19 1.62 0.83 0.26

Wjj 1.45 0.86 0.34 1.70 1.20 0.46

Zbb̄ 0.88 0.74 0.31 6.14 2.60 0.91

Zcc̄ 0.15 0.13 0.10 1.05 0.54 0.25

Zjj 0.14 0.09 0.05 0.31 0.20 0.07

Dibosons 2.05 0.85 0.28 3.06 1.37 0.46

Multijets 1.90 1.10 0.48 3.28 1.98 0.93

Background Sum 65.33 57.88 53.00 76.03 71.40 68.57

Bkgds+Signals 71.82 61.59 54.48 83.60 76.29 70.40

Data 67 61 37 71 62 56

Table 5.11: Yields for Run IIa data, signal and all backgroundcomponents after event

selection and requiring every event to have exactly twob tagged jets.
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Run IIb Double-Tagged Event Yields

Electron Channel Muon Channel

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets

Signals

tb 5.26 2.00 0.58 5.61 2.59 0.78

tqb 0.94 1.89 1.01 0.99 2.22 1.21

tb+tqb 6.20 3.89 1.58 6.60 4.80 1.99

Backgrounds

tt̄→ ℓℓ 13.58 9.99 3.17 12.95 10.79 3.33

tt̄→ℓ+jets 4.07 27.71 43.44 3.11 29.00 51.06

Wbb̄ 30.54 12.19 3.43 30.84 14.42 5.07

Wcc̄ 5.55 3.15 1.17 5.60 3.72 1.67

Wcj 2.04 0.96 0.28 2.07 1.04 0.33

Wjj 2.81 1.66 0.64 3.21 2.20 0.98

Zbb̄ 0.69 0.60 0.34 4.34 2.07 0.70

Zcc̄ 0.14 0.14 0.10 0.86 0.53 0.19

Zjj 0.16 0.11 0.06 0.34 0.24 0.09

Dibosons 1.96 0.91 0.30 2.98 1.38 0.46

Multijets 2.25 1.37 1.13 4.92 3.12 0.97

Background Sum 63.78 58.80 54.06 71.22 68.50 64.85

Bkgds+Signals 69.99 62.68 55.64 77.81 73.31 66.85

Data 79 56 51 85 79 80

Table 5.12: Yields for Run IIb data, signal and all backgroundcomponents after event

selection and requiring every event to have exactly twob tagged jets.
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5.7 Data-Background Model Comparison

This section, and many of the subsequent sections in this thesis, show plots where the data

are compared with the total background and signal predictions. Figure 5.6 shows the colour

scheme used to label the data and the different signal and background components in these

plots.

After all but theb-tagging selection criteria are applied, the dataset is referred to as thepre-

tag sample (see Figure 5.5). This sample is divided into twelve channels depending on the

run period (Run IIa or Run IIb), the lepton flavour (e or µ), and the jet multiplicity (two,

three or four jets). Afterb-tagging is applied, the total number of analysis channels grows

to 24: twelve single-tagged and twelve double-tagged channels.

In order to ensure that the background is well modeled, the agreement between the data

and the signal and background samples is studied for a long list of variables, both for

each channel individually, and for various combinations ofchannels. This task is very time

consuming due to the large number of variable and channel combinations. Several thousand

plots are produced and checked. Initially, most attention is spent on the distribution of basic

kinematic quantities. Examples of such distributions are shown in Figure 5.7, where all 24

channels are combined. One of the variables shown in Figure 5.7 is theW transverse mass

defined by

m2
T (W ) = E2

T (W ) − ~p 2
T (W ) = (/ET + pT (ℓ))2 − (~/ET + ~pT (ℓ))2. (5.5)

This variable is expected to peak close to the mass of theW boson (around 80 GeV) for

events containing realW bosons. TheW transverse mass distribution for various combina-

tions of channels, both before and afterb-tagging, is shown in Figure 5.8.

More details about the different variables and the agreement between data and the signal

and background model is presented in Section 7.1.2.
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Figure 5.6: The colour scheme used to label the signal and background components in

many of the plots shown in this thesis.
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Figure 5.7: Data-background agreement of various variables afterb tagging has been ap-

plied (all 24 channels combined). A colour key for the signaland background components

is shown in Figure 5.6.
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Figure 5.8: Distributions of theW transverse mass (Equation 5.5) for data and background

in the pre-tag sample (top row), the single-tagged sample (middle row) and the double-

tagged sample (bottom row). Channels with two, three and fourjets are shown in the

left, middle and right columns respectively. The colour keyfor the signal and background

components can be seen in Figure 5.6.
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5.8 Systematic Uncertainties

This section describes the different systematic uncertainties associated with the analysis.

The relative uncertainties on each of the sources are summarized in Table 5.13, and pre-

sented in greater detail in Appendix B.

• Integrated luminosity

There is a 6.1% uncertainty on the integrated luminosity estimate, which affects the

signal,tt̄, Z+jets, and diboson yields.

• Theory cross sections

For the single top andtt̄ cross sections, there are uncertainties due to the scale, par-

ton density functions, kinematics, and top quark mass choice that are combined in

quadrature [13, 56]. The mass uncertainty is calculated as the difference between the

cross section at 170 GeV (the value the analysis is performedat) and the most recent

combined top mass measurement of 172.4 GeV [57].

The diboson cross section uncertainty is derived using the NLO MCFM genera-

tor [45]. The uncertainty forWW is 5.6%, forWZ 6.8%, and forZZ 5.5%, and

for the sum of the processes it is 5.8%. The average value of 5.8% is also used for

theZ+jets background.

• Branching fractions

The branching fractions for aW boson to decay to an electron, muon, or tau lep-

ton, have an average uncertainty of 1.5% [1]. This is one of the MC normalization

uncertainties.

• Parton distribution functions

The effect of changing the parton distribution functions isevaluated by reweighting

each event in the single top Monte Carlo according to the 40 different CTEQ error

PDFs. The systematic uncertainty affecting the signal acceptances from this source

is estimated to be 3%.

• Trigger efficiency

This analysis uses an OR of many trigger conditions which gives a trigger efficiency
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of close to 100%. The uncertainty of this trigger efficiency is measured to be 5% in all

channels except for the Run IIbµ+jets channels, where 10% is used. This uncertainty

is treated as uncorrelated between Run IIa and Run IIb and betweene+jets andµ+jets

channels.

• Instantaneous luminosity reweighting

The instantaneous luminosity distributions are reweighted for all Monte Carlo sam-

ples in order to match the Run IIa or Run IIb data distributions as appropriate. The

initial distributions are from the zero-bias data overlaidon the MC events to simu-

late the underlying events, and are generally at too low values for later data-taking

conditions. The uncertainty on this reweighting is 1.0%.

• Primary vertex modeling and selection

The distribution of thez position of the primary vertex is reweighted in Monte Carlo

to match that in data [46]. The uncertainty due to this reweighting is 0.05% (negligi-

ble). The uncertainty on the difference in primary vertex selection efficiency between

data and MC is 1.4%.

• Electron reconstruction and identification efficiency

The electron scale factor uncertainty includes the dependence of the electron ID scale

factor on the variables ignored in the parametrization, jetmultiplicity dependence,

track match and likelihood scale factor. The dependencies on φ andpT of the electron

are included in the systematic error as well and also the limited statistics in each bin

of the parametrization. The assigned total uncertainty is 2.5%.

• Muon reconstruction and identification efficiency

The MC scale factor uncertainties for muon reconstruction and identification, includ-

ing isolation requirements, are estimated by the muon ID group as coming from the

tag/probe method, background subtraction, and limited statistics in the parametriza-

tion. The assigned total uncertainty is 2.5%.

• Jet fragmentation

The systematic uncertainty due to the modeling of the jet fragmentation is evaluated

by comparing the acceptance oftt̄ events generated withALPGEN+PYTHIA (as used
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in the analysis) to ones generated withALPGEN+HERWIG, with all other generation

parameters unchanged. The resulting uncertainty is about 1% to 4%, and is applied

to all MC samples in the analysis.

• Initial-state and final-state radiation

This uncertainty is evaluated intt̄ samples generated with different amounts of initial-

and final-state radiation. The uncertainty ranges from 0.6%to 12.6%.

• b-jet fragmentation

The size of the uncertainty from theb-jet modeling is evaluated in thett̄ pairs cross

section analysis following the method described in Reference [59]. The uncertainty

arises from the difference between the fragmentation parametrizations preferred by

SLD vs. LEP data. A 2.0% value is measured.

• Jet reconstruction and identification

The efficiency to reconstruct and identify jets is measured in both data and Monte

Carlo [30, 31]. These efficiencies are slightly higher for Monte Carlo, and a small

correction is applied to the simulated samples. The uncertainty on the Monte Carlo

normalization due to this correction is 1%.

• Jet energy scale

The jet energy scale correction is raised and lowered by one standard deviation on

each MC sample and the whole analysis repeated, which produces a shape-changing

uncertainty, and an overall normalization uncertainty. The normalization part ranges

from 1.1% to 13.1% on the signal acceptance and from 0.1% to 2.1% on the combined

background.

• Jet energy resolution

A flat uncertainty of 4% is assigned due to the jet energy resolution. Using the method

described in Reference [51], it is found that the shape variations due to this uncer-

tainty are smaller than 4% for all signals and backgrounds.

• ALPGEN reweighting

The uncertainty due to the reweighting of theALPGEN W+jets background affects

the shapes of theW+jets background components (see Appendix B).
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• W+jets and multijets normalization

The W+jets and multijets background normalizations are determined from a fit to

the pretagged data, as described in Section 5.4.6. The uncertainties from this fit vary

from channel to channel and range from 30% to 54% for the multijets backgrounds

and from 1.8% to 5.0% for theW+jets backgrounds.

• Taggability and tag-rate functions for MC events

The uncertainty associated withb tagging in MC events is evaluated by adding the

taggability and the tag rate components of the uncertainty in quadrature. The TRF un-

certainties originate from several sources: statistical errors of the Monte Carlo event

sets; the assumed fraction of heavy flavour in the multijets Monte Carlo events for the

mistag rate determination; and, the TRF parametrizations. These uncertainties affect

both shape and normalization of the Monte Carlo samples. The normalization part

of the uncertainty is about 2.3% (9.9%) to 4.7% (10.8%) for single-tagged (double-

tagged) signal acceptances, and from 2.1% (9.0%) to 7.0% (11.4%) for single-tagged

(double-tagged) combined backgrounds. More details are given in Appendix B.

• W+jets heavy-flavour scale factor correction

The heavy-flavour scale factor correctionSHF is measured in data [52]. The Monte

Carlo tag rate function uncertainty induces fluctuations in the effective scale factor

that are at least as large as the channel-to-channel variations in the measurement.

Therefore, it can be argued that any additional systematic is double counting. How-

ever, an uncertainty of 13.7% is still assigned on the scale factor.

• Z+jets heavy-flavour scale factor correction

The uncertainty used for theZ+heavy-flavour normalization scale factor is 13.7%,

taken from theSHF factor used forW+jets.

• Sample statistics

The Monte Carlo and data samples used to estimate the signal and background shapes

are limited in size. In particular, the number of multijets background events is quite

low after b tagging. The statistical uncertainty on the different background com-

ponents is taken into account for each sample in each bin of the final discriminant

distribution.
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Relative Systematic Uncertainties

Components for Normalization

Integrated luminosity 6.1%

tt̄ cross section 12.7%

Z+jets cross section 5.8%

Diboson cross sections 5.8%

Branching fractions 1.5%

Parton distribution functions 3.0%

(signal acceptances only)

Triggers (5.0-10.0)%

Instantaneous luminosity reweighting 1.0%

Primary vertex selection 1.4%

Lepton identification 2.5%

Jet fragmentation (0.7–4.0)%

Initial-and final-state radiation (0.6–12.6)%

b-jet fragmentation 2.0%

Jet reconstruction and identification 1.0%

Jet energy resolution 4.0%

W+jets heavy-flavour correction 13.7%

Z+jets heavy-flavour correction 13.7%

W+jets normalization to data (1.8–5.0)%

Multijets normalization to data (30–54)%

MC and multijets statistics (0.5–16)%

Components for Normalization and Shape

Jet energy scale for signal (1.1–13.1)%

Jet energy scale for total background (0.1–2.1)%

(not shape forZ+jets or dibosons)

b tagging, single-tagged (2.1–7.0)%

b tagging, double-tagged (9.0–11.4)%

Component for Shape Only

ALPGEN reweighting —

Table 5.13: A summary of the relative systematic uncertainties for each of the correction

factors and normalizations scales used in the analysis.



Chapter 6

Analysis: Decision Trees

A decision treeis a multivariate technique which can be used to classify observations [60,

61]. In this thesis, the term decision trees refers to what ismore specifically known as

classification trees, and this technique is applied to separate single top quark events from a

vast amount of background.

This chapter gives an overview of decision trees and motivates why and how they can be

used in experimental particle physics.

6.1 Motivation

Single top production is a very rare process. After applyingthe event selection described in

Chapter 5, the signal to background ratio is 1:20, and the signal excess is smaller than the

uncertainty on the background prediction. In this situation, it is not possible to conduct a

cross section measurement—better separation of signal from background is needed.

The traditional approach is to apply further selection criteria (cuts) on discriminating vari-

ables and select a subset of the original sample with an enhanced signal to background ratio.

The main disadvantage with this method is that we lose precious signal every time a cut is

applied.

76
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A more effective way is to use a multivariate technique, where the separation power of

several variables~x is combined into a discriminantD(~x). This discriminant will separate

signal from background better than any individual variable. The signal significance and

cross section can then be calculated either by applying a selection criterion onD(~x), or,

more effectively, by integrating over the full discriminant distribution.

The analysis described in this thesis uses boosted decisiontrees as a multivariate technique

to derive a discriminantD(~x) that monotonically increases with the probability of an event

being signal. The cross section and the signal significancesare derived from theD(~x)

distributions observed in data and expected for the signal and background processes using

Bayesian calculations as described in Section 7.2.1.

6.2 Overview of Decision Trees

6.2.1 History and Usage

Decision trees originated in the fields of data mining and pattern recognition. Much of

the initial development was done by Breimanet al. who developed the CART algorithm

(Classification And Regression Trees) [60] in the early 1980s.Extensive studies of deci-

sion trees have been conducted since then resulting in a longlist of publications mainly

in different branches of computer science. Several methodsthat improve the classification

performance by creating an ensemble (forest) of decision trees were developed in the 1990s

(see Section 6.5). One of these extensions isboosting(section 6.5.3) which is used in this

analysis.

There are vast applications of decision trees in various fields including medical diagnos-

tics, mass spectrum classification, financial analysis and hand writing recognition. In high

energy physics, decision trees have rarely been used until quite recently. The two main ap-

plications are particle identification (PID) and isolationof a specific physics process from

background processes (as in this analysis). Examples of PIDapplications include distin-

guishing jets originating from either ab quark or from the hadronic decay of aτ lepton

from ordinary QCD jets. Boosted decision trees were first used in high energy physics by
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the MiniBooNE experiment [63, 64] for particle identification, and later by our group at

Simon Fraser University as part of DØ’s search for single topquark production [4, 5].

6.2.2 What is a Decision Tree?

A binary tree, or 2-tree, is a structure ofnodeswhere each node can have up to two daughter

nodes. The initial node is referred to as theroot nodeand is typically assigned the identifier

numbert = 1. Left and right daughter nodes are assigned IDs2t and2t+1 respectively.

The nodes are eitherinternal (have daughter nodes) orterminal (no daughters). Terminal

nodes are calledleaves. An example of a binary tree is illustrated in Figure 6.1.

Figure 6.1: Illustration of a binary tree. Each node is shownwith its identifier numbert.

A decision tree is an-tree (up ton children per node) which can be used to classify obser-

vations inton-classes. Hereafter we will assume that we are dealing with only two classes,

signalS and backgroundB, in which case the decision tree is a binary tree. Internal nodes

each have an associated test that, given the features of an observation~x, returns either true

or false (“go right” or “go left”). Each leaf has an assigned decision tree output value.

An observation defined by variables~x will, starting from the root node, follow a unique

path through the decision tree depending on the outcomes of the tests from the internal

nodes passed. Eventually the observation will end up at a leaf and the classification of the

observation is the decision tree output value of this leaf. Asimple decision tree is illustrated

in Fig. 6.2.
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Figure 6.2: Graphical representation of a decision tree. Nodes with their associated splitting

test are shown as (blue) circles and terminal nodes with their purity output values are shown

as (green) leaves. An event (observation) defined by variables~xi of whichHT < 242 GeV

andmtop > 162 GeV will returnD(~xi) = 0.82, and an event with variables~xj of which

HT ≥ 242 GeV andpT ≥ 27.6 GeV will haveD(~xj) = 0.12. All nodes continue to be split

until they become leaves.

6.2.3 Advantages and Limitations

As previously mentioned, a big advantage with decision trees compared with a selection

based analysis is that events which fail an individual selection criterion will continue to be

considered by the algorithm.

Compared with other multivariate techniques, decision trees have several beneficial fea-

tures: the tree has a human-readable structure, making it possible to know why a particular

event is labelled signal or background; learning is fast compared to neural networks; de-

cision trees can use discrete variables directly; and, no preprocessing of input variables is

necessary. In addition, unlike neural networks, decision trees are relatively insensitive to

including extra variables. Adding well-modelled variables that are not powerful discrimi-

nators does not degrade the performance of the decision tree(no additional noise is added

to the system).
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Limitations of decision trees include the instability of the tree structure with respect to the

learning sample composition, sub-optimal performance on non-linear data, and the piece-

wise nature of the output. Creating decision trees using random subsets of the same samples

may produce very different trees, but usually with similar separation power. The decision

tree output is discrete since the only possible output values are the purities of each leaf, and

the number of leaves is finite.

It is possible to overcome these limitations by creating many different trees and taking the

average of their output as described in Section 6.5. This results in a smooth combined

discriminant which performs better than any individual tree. The price one has to pay is a

slower more complex algorithm. One also loses the easy interpretation of why events are

classified the way they are. It should be pointed out that evenif the algorithm gets slower,

it is in most cases still significantly faster than neural networks.

6.3 Growing a Tree

The process in which a decision tree is created is usually referred to asdecision tree learn-

ing, but also decision treetraining, building or growing. We start with a learning sample

L containingN known signal and background events. Each eventj is defined by an event

weightwj, a list of variables~xj and a labelyj ∈ {S,B} with valueS for signal andB for

background. Hence we can writeL = {(w1,~x1, y1), ..., (wN ,~xN , yN)}.

The number of weighed signal and background events in the learning sample is given by

s =
∑

L

wj × I(yj = S), and (6.1)

b =
∑

L

wj × I(yj = B), (6.2)

whereI(statement) is 1 if the statement is true, and 0 if not. In this analysis, each event

weight,wj, is the product of all normalization scales and efficiency corrections for thejth

event, which are derived from the event properties as described in Section 5.4. In this

situation,s andb correspond to the predicted number of signal and backgroundevents in

the dataset.
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The following list outlines the steps required to create a decision tree fromL. More details

are found in subsequent sections as indicated in each step.

1. (Optional) Initially normalize the learning sample suchthat the weighted sums of

signal and background become the same (s = b):
∑

L

wj × I(yj = S) =
∑

L

wj × I(yj = B). (6.3)

2. Create the root node with indext = 1 (see Figure 6.1) containing all events in the

learning sample:L1 = L.

3. Check if any of the stopping conditions are met (see Section6.4.1). If so, the node

becomes a leaf and the algorithm is aborted.

4. For each variable, find the splitting value that gives the best signal-background sep-

aration (more on this in Section 6.3.1). If no split that improves the separation is

found, the node becomes a leaf.

5. The variable and split value giving the best separation are selected, and the events

Lt in the node are divided into two subsamplesL2t andL2t+1 depending on whether

they pass or fail the split criterion. These subsamples define two new daughter nodes.

6. Apply the algorithm recursively from Step 3 until all remaining nodes have been

turned into leaves.

Each leaf is assigned an output value. In most cases, the output value is the signal purity

pl =
sl

sl + bl

, (6.4)

wheresl (bl) is the weighted sum of the signal (background) events whichreach the leaf.

This is the decision tree output,ODT , for a given event ending in leafl.

A leaf l is deemed a signal or background leaf depending on whether the puritypl is greater

or smaller than a parameter called the purity limit,plim. Often, this parameter is set to the

initial signal purity of the sample, which is 0.5 if signal isnormalized to background in

Step 1 above. Each leafl is hence associated with a class:S if pl ≥ plim or B if pl < plim.

It is also common to define the leaf output value depending on the class only, for instance,

1 for a signal leaf, and 0 (or−1) for a background leaf.
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6.3.1 Node Splitting

The most important part of decision tree learning is thenode splitting. Here, all eventsLt

in the nodet that are about to be split, are divided into the two subsetsL2t andL2t+1, which

define two new daughter nodes indexed2t and2t+1 (see Figure 6.1), or more simply,L (R)

for the left (right) subnode. Since this is a split, the weighted sum of signal and background

events in the samples are conserved:s = sL + sR andb = bL + bR.

The best split maximizes some figure of merit (FOM) calculated from the weighted sum of

signal and background events after the split. The mathematical formulation generally used

is to define an impurity measurei(s, b) and calculate the figure of merit for a split as the

decrease in impurity,∆i:

∆i = i(s, b) − isplit(sR, sL, bR, bL) = i(s, b) −
(

i(sL, bL) + i(sR, bR)
)

. (6.5)

This quantity is also referred to as the “goodness” or “gain”of the split. The split that

best separates signal from background (according to the figure of merit) is the one that

reduces the impurity the most (largest∆i). This split will result in the smallest impurity

isplit(sR, sL, bR, bL), since the initial condition (s, b and i(s, b)) is the same for all splits.

Finding the best split is hence a minimization problem.

For certain applications, an alternative definition ofisplit is used [66, 67]:

isplit(sR, sL, bR, bL) = min
(

i(sL, bL), i(sR, bR)
)

, (6.6)

which means that the right hand side of Equation 6.5 needs to be modified accordingly.

Technically, the splitting of a node containingN events with weighted signal and back-

ground sums andb, can be implemented in the following way:

1. Set the variable indexk = 1, and setsL = bL = 0.

2. Sort (re-index) all events in increasing order accordingto thekth variablexk. We

now havexk
j ≤ xk

j+1 for every eventj.

3. Go through the events in order, and add the weight of the current eventj to sL

(bL) if the event is a signal (background) event. If it is possible to split the sam-

ple between the current event and the next (xk
j 6= xk

j+1), calculate∆i for the split
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usingsR = s − sL andbR = b − bL. Record the corresponding selection criterion:

xk < (xk
j + xk

j+1)/2, as the best if∆i is the highest encountered so far.

4. Set the next variable in the list as the current:k = k + 1, and repeat from Step 2 until

all variables have been processed.

5. Split the sample according to the best split (from Step 3) if the ∆i improvement for

this split is positive.

6.3.2 Impurities

There are several different impurity measures suggested inliterature. The two most com-

monly used are the Gini Index [65] and the Cross Entropy [60] defined by

Gini Index :
sb

s + b
(6.7)

Cross Entropy : −s log
s

s + b
− b log

b

s + b
. (6.8)

Both of these functions are maximal for equal amounts of signal and background and sym-

metric and strictly concave for any deviation thereof. It should be pointed out that most

literature defines these quantities scaled by an additionalfactor of (s + b)−1. Using such

impurity definitions one needs to add additional factors ofs + b to Equation 6.5. In this

thesis, the “already weighted” impurity definitions above (also used in [63]) are used since

these quantities are additive and easy to work with.

Another quantity that can be used as an impurity measure is the weighted sum of misclas-

sified events:

Misclassification Error, e :







s, if s/(s + b) < plim

b, otherwise.
(6.9)

If plim = 0.5 (often the case), the definition simplifies toe = min(s, b). The misclassifi-

cation errore is used for many of the traditional decision tree applications to measure the

performance. For instance, if a decision tree is used to classify whether a patient is sick or

not, then it’s most likely desirable to have a minimal misclassification rate. As will be dis-

cussed in greater detail in Section 6.7, for high energy physics applications, we are usually
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more interested in optimizing signal significance. The following three impurity definitions

have been constructed to optimize figures of merits used in high energy physics:

“s/
√

s + b” : − s√
s + b

(6.10)

Cross Section Significance, S2
σ : − s2

s + b
(6.11)

Excess Significance, S2
s : −s2

b
. (6.12)

The former was used in Ref. [67]; the latter two were developedand tested in this analysis.

6.4 Pruning the Tree

During the decision tree learning process described in Section 6.3, the crucial part is the

calculation of the maximal decrease in impurity∆i. Due to the finite number of events

in the learning sample, there will always be a statistical uncertainty associated with this

calculation. Since the sample size is reduced after each split, the relative statistical uncer-

tainty grows as the learning process proceeds. As a result, the splits get successively more

affected by statistical fluctuations, which, in most cases,eventually leads to a degradation

of performance.

To mitigate this, one usually applies so-calledpruning criteria which limits the growth

of the tree. There are two main approaches,pre-pruning(often just referred to as “stop-

ping condition”), which is applied during the learning phase, andpost-pruning(often just

“pruning”), which is applied in a separate stage after the learning process is finished. The

following two subsections will discuss these approaches.

6.4.1 Pre-Pruning

Pre-pruning refers to one or several stopping criteria applied during the learning process

(see Step 3 in Section 6.3). One option is to require a minimalimpurity improvement for

each split. The disadvantage with this method is that one might miss out on good splits that

would have occurred later.
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The most common approach (also used in this thesis) is to require a minimum number of

events in each leaf. The idea is that if leaves are not allowedto become too small, then

splits that are not statistically significant are avoided and there is little or no need for post-

pruning. However when dealing with weighted events, this isnot always true as discussed

in Section 6.8.

6.4.2 Post-Pruning

The idea behind post-pruning is to first grow the tree very large, and then prune the tree by

turning an internal node into a leaf and hence remove the sub tree above this node. There

are a long list of different pruning algorithms available. Two of the most common such

methods areCost Complexity PruningandReduced Error Pruning

Reduced Error Pruning

This method was developed by J.R. Quinlan [68]. It is a recursive leaves-down method

(meaning that we start from the leaves and recursively move down towards the root node).

A separate pruning sampleP is used to calculate the classification error rate of the tree.

This sample needs to be independent of (orthogonal to) the learning sample:P ∩ L = {}.

For each internal nodet, the number of classification errorset (Equation 6.9) of the node is

compared with the sum of classification errors of all the leaves in the subtree rooted at node

t. The current node is pruned if the subtree has a larger error.

Cost Complexity Pruning

This method, also know as weakest link pruning or the CART pruning algorithm [60],

assigns—as the name suggests—a cost for complexity. The algorithm has two stages. The

first stage is a root-up recursive algorithm which creates a set of subtrees of the original tree

Tmax: {T0, T1, ...TL}. The crucial quantity calculated here is

α(t) =
R(t) − Rsub(t)

Nleaves(t) − 1
, (6.13)
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whereR(t) (the “resubstitution estimate”) is a figure of merit set by the user calculated

from the events in the node (st andbt), Rsub(t) is the same quantity but calculated from all

leaves in the subtree rooted att, andNleaves is the number of leaves of this subtree. In most

cases, the resubstitution estimate is set to the misclassification rateR(t) = et/(st +bt). The

weakest link of the tree is the node with the minimalα(t). The tree is pruned at this node,

and the resulting tree is labelledTj. The algorithm then repeats the same procedure starting

from the root node in treeTj. The weakest link is again found and pruned resulting in tree

Tj+1. Eventually we end up with a tree only consisting of the root node.

In the second stage of the algorithm, all trees are evaluatedusing an independent pruning

sample. The best performing tree is chosen, and the other trees discarded. The figure of

merit used to measure the performance is often the misclassification error of the tree.

6.5 Forests of Decision Trees

This section will discuss a few algorithms that grow many decision trees and combine them

into a stronger classifier. Each tree will classify an event (“vote” for its class) based on its

features~x, and the combined output will be an average of all trees (“vote by majority”).

These methods are not restricted to decision trees. Any set of weak classifiers, meaning

a classifier performing slightly better than random guessing, can be combined according

to these procedures. The performance (strength) of the combined discriminant depends on

the strength of the individual classifiers (stronger is better), and on their correlation. The

strategy behind the methods described in this section is to create a set of independent trees

by forcing the learning process for each tree to emphasize a certain subset of the information

available. The combined performance might improve as long as the new trees contain some

degree of uncorrelated information.

Other advantages with these methods are that the learning process gets more stable and the

combined discriminant output gets smoother compared to a single decision tree.
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6.5.1 Bagging

Bootstrapaggregating is a method proposed by Breiman in 1994 [69]. The learning sam-

ple L is split intoNtrees bootstrap samples{L1, ...,LNtrees
} by sampling randomlyfbsNL

events fromL, wherefbs ≤ 1 is parameter set by the user (oftenfbs = 1). The same event

is allowed to be picked several times (“sampling with replacement”). Statistical fluctuations

are hence introduced, randomly giving more weight to certain events. Iffbs = 1, then on

average, 63.2% of the events in any of the bootstrap samples are unique, and the rest dupli-

cated. The events which are not picked can be used to form an independent testing sample

Tk that can be used to evaluate the performance. A decision tree(or any other classifier) is

generated for each bootstrap sampleLi, and the bagged decision tree output is the average

of the output of each of theNtrees decision trees.

6.5.2 Random Forest

Random Forest is an extension of bagging. Just as in case of bagging, a decision tree

is grown from each bootstrap sampleLk, but an additional step is added to the learning

process: when splitting a node, only the fractionfrf of theNvars variables is considered for

the split. ThesefrfNvars variables are selected randomly at each node.

6.5.3 Boosting

The idea behind boosting is to boost (assign a higher weight to) a subset of the learning

sample rather than randomly selecting a subset as in case of the bagging and random for-

est algorithms. Many different boosting algorithms have been developed over the years.

The analysis described in this thesis uses a boosting methodknown in the literature as

AdaBoost [70]. This algorithm createsNtrees decision trees{T1, T2, ...TNtrees
} in succes-

sion, where the learning process for each tree is adapted depending on the performance of

the previous tree (adaptive boosting). Once a treeTn has been created, the events in the

learning sample that are misclassified by the tree are assigned a higher weight (boosted).

When creating the next treeTn+1, the learning process will hence focus more on the previ-
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ously misclassified events. The algorithm works as follows:

1. A first treeT1 (n = 1) is created using the full learning sampleL.

2. The misclassification rateǫn for the tree is calculated as the weighted sum of mis-

classified events in each leaf (Equation 6.9) divided by the initial weighted sum of all

events in the learning sample. A tree weightαn is calculated according to

αn = β × ln
1 − ǫn

ǫn

, (6.14)

whereβ is the boosting parameter.

3. Each misclassified eventj in the learning sample is scaled by the factoreαn (which

will be greater than 1):wj → wj × eαn.

Hence misclassified events will get higher weights.

4. (Optional) The learning sample is normalized such that the total weighted sum of

signal and background events is the same as before the boosting described in the

previous step. This prevents the average decision tree output value from shifting as

the boosting proceeds.

5. A new tree, indexedn+1, is created from the boosted sample. The learning process

will now work harder on the previously misclassified events.The algorithm continues

from Step 2 untilNtrees decision trees have been created.

6. The final boosted decision tree result for eventj is

D(~xj) =
1

∑N

n=1 αn

N
∑

n=1

αnDn(~xj), (6.15)

whereDn(~xj) is the decision tree output for eventi from treeTn.

An example of how the misclassification rate and the tree weights develop during the boost-

ing procedure is illustrated in Figure 6.3.
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Figure 6.3: Example of the misclassification rateǫn (top) and the corresponding tree weight

αn (bottom) versus the tree indexn (β = 0.2). The misclassification rate for the individual

trees tends to get worse the more boosting cycles are applied, and the tree weights hence get

lower according to Equation 6.14. Even if the individual trees perform worse, the combined

performance becomes better than using the first, best tree alone as can be seen in Figure 6.4.
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6.6 Decision Tree Options

Most of the different parameters and options discussed in the previous sections are summa-

rized below.

Impurity measure

Figure of merit used to define the optimal split during the learning process.

Splitting condition

The definition ofisplit—most commonly according to Equation 6.5, but Equation 6.6

or other definitions might be useful for certain applications.

Minimal leaf size, Nmin
leaf

Pre-pruning condition. The lower the value, the larger the tree.

Number of trees,Ntrees

The number of trees in the forest of decision trees. Applies to bagging, random forest

and boosting. For boosting,Ntrees − 1 boosting cycles will be applied (the first tree

is created from the unboosted learning sample).

Bootstrap fraction, fbs

(Bagging and random forest only) The fraction of events to be sampled from the

learning sample when creating the bootstrap samples used tocreate the decision trees.

Random forest variable fraction, frf

(Random forest only) Determines how many randomly selected variables that are

considered when splitting each node during the random forest learning process.

AdaBoost parameter,β

Scale factor that affects the strength of the boosting. In the original algorithm, this

parameter is set to unity. Lower values (β ≈ 0.5 or less) often perform better. The

lower theβ, the softer the boosting, and the moreNtrees might be needed to reach

optimal performance.

Resubstitution estimate,R(t)

Figure of merit used during Cost Complexity Pruning.
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6.7 Evaluating the Performance

Since the decision tree learning process is affected by statistical fluctuations in the learning

sample as discussed in Section 6.4, the performance evaluated on the learning sample will

always be artificially enhanced. As a consequence, the performance of a decision tree must

be evaluated on a (testing) sample,T , which is completely (statistically) independent of the

learning sample:T ∩ L = {}.

A common figure of merit traditionally used to evaluate the performance of a decision tree

is the misclassification rate of the testing sample. In high energy physics applications, this

is not generally the quantity of interest. When trying to isolate a physics process, the goal

is usually to maximize thesignal significance. In particle physics, several definitions of

significance have been used [71]. The simplest one is the ratio of expected signal excess

over the statistical uncertainty of the predicted number ofevents, which can be written as

s/
√

b or s/
√

s + b, depending on whether we assume the background-only hypothesis, or

thes+b hypothesis.

In this analysis, two figures of merit where constructed:cross section significanceand

excess significance. As the names imply, the former is correlated to the precision of a

cross section measurement, and the latter to the significance of a signal excess over back-

ground. These quantities are calculated from histograms containing the decision tree out-

put of the testing sample separately for signal and background (see the histograms shown

in Appendix C for an example). When filling these histograms, it should be ensured that

the relative statistical uncertainties on the signal and background predictions are reasonably

small. If this is not the case, histogram bins need to be merged, which is further discussed

in Section 7.1.4.

Cross Section Significance,Sσ

The cross section significance is calculated by adding thes/
√

s + b significance in quadra-

ture for each of the histogram bins of the decision tree output distribution:

Sσ ≡
√

∑

i

s2
i

si + bi

. (6.16)
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si and bi are the signal and background predictions (weighted numberof events) in his-

togram bini. Each histogram bin is hence treated as an individual analysis with its own

dataset, similar to what is done during the actual cross section measurement described in

Section 7.2. This analysis find that the cross section significance is a good approximation

of the actual significance for the expected cross section measurement when no systematics

are included in the calculation. The cross section significanceSs can hence be used as a

quick estimate of the expected precision of a cross section measurement.

Figure 6.4 shows the cross section significance evaluated after including different numbers

of boosted decision trees. It should be pointed out that onlystatistical uncertainties are

considered when calculatingSσ according to Equation 6.16. It should be possible to extend

the formula to also include approximate systematic uncertainties, possibly as suggested in

Section 6.8.3.

Excess Significance,Ss

The excess significance is calculated by adding thes/
√

b significance for each histogram

bin in quadrature

Ss ≡
√

∑

i

s2
i

bi

. (6.17)

Since only the background prediction appears in the denominator, it is particularly impor-

tant to ensure that the relative statistical uncertainty onb is reasonably small.

Figure 6.4 shows a comparison between the cross section and excess significances evaluated

after combining different numbers of boosted decision trees. It is clear thatSs is always

larger thanSσ as expected from the definitions above. It can also be seen howthe excess

significance is less stable compared to the cross section significance since this quantity is

more sensitive to statistical fluctuations in the denominator.
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Figure 6.4: Cross section significance (top) and excess significance (bottom) versus number

of combined decision trees. These plots are made from the same forest of boosted decision

trees as are used to create the plots in Figure 6.3. These significance estimates are correlated

with the expected significance measurements described in Section 7.4.
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6.8 Thoughts and Suggested Improvements

This section presents some of the author’s thoughts of and suggested adaptions to the deci-

sion tree algorithm to better suit the needs and applications of high energy physics. Most

of what is discussed in this section has not been tested due totime constraints.

6.8.1 Weighted Events and Pre-Pruning

Most decision tree applications require a minimum number ofevents in each leaf. The idea

is to avoid splits of leaves with very few events where statistical fluctuations will dominate

the decision. This might be a reasonable approach when all learning sample events have the

same weight since the relative statistical uncertainty on acount can be estimated by1/
√

N

(according to Poisson statistics).

In the vast majority of high energy physics applications, the input sample consists of

weighted events. The sum of weighted eventsd in any subset of the sample corresponds to

the expected number of data events in the subset:d =
∑N

j=1 wj. The statistical uncertainty

on the sumd can be calculated as

δd =

√

√

√

√

N
∑

j=1

w2
j , (6.18)

whereN is the number of weighted events in the subset. From this uncertainty, one can de-

fine the effective number of events as the prediction squaredover the statistical uncertainty

of the prediction squared:

Neff =
d2

(δd)2
=

(
∑N

j=1 wj)
2

∑N

j=1 w2
j

. (6.19)

The relative statistical uncertainty is1/
√

Neff , andNeff = N when all weights are the same.

The most commonly used pre-pruning condition is a requirement on Nmin
leaf —the minimal

number of events in each leaf. When dealing with weighted input samples, it is more

appropriate to instead use the number of effective events asdiscussed above. The require-

ment should be applied both to signal and background since both these quantities enter
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the optimization calculation (Equation 6.5). SettingNmin
leaf = 20 should hence require the

effective number of signal and background events in each leaf t, calculated according to

Equation 6.19 as(st/δst)
2 and(bt/δbt)

2, to both be greater than 20.

6.8.2 Impurity Optimization

The decision tree learning process should ideally optimizethe figure of merit of interest for

the analysis. A search for a new physics process could hence use the excess significance

both for the learning and testing. The cross section significance should be a better choice

when the goal is to measure the cross section or any other property of the signal process.

If the aim of the analysis is to apply a single selection criterion on the decision tree output

distribution, as in case of particle identification, then itshould be more optimal to pro-

duce the decision trees using the asymmetric node splittingcriterion given by Equation 6.6

instead of the standard splitting criterion 6.5.

6.8.3 Consideration of Systematic Uncertainties

Systematic uncertainties are an important part of all experimental particle physics analyses,

and should ideally be taken into account during the decisiontree learning and evaluation

processes. However, it is not obvious how this information should enter the calculations

without significantly increasing the learning process computing time. It is possible that the

impact of the systematic uncertainties can be estimated simply by adding all uncertainties

in quadrature:

Sall
s ≡

√

∑

i

s2
i

bi + (δbi)2 +
∑

j ǫ2
ijb

2
i

, (6.20)

whereδbi is the Monte Carlo statistics uncertainty (Equation 6.18) and ǫij is the relative

systematic uncertainty from sourcej of the background in subset (bin)i. However, this does

not take into account the correlations of the systematic uncertainties between the subsets

(histogram bins).
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6.8.4 Logging

The idea behind logging is simple: decision trees that do notimprove the performance ac-

cording to some figure of merit are removed. After all trees are created, the performance

is first evaluated using only the first tree. Trees are then sequentially added, and the per-

formance is reevaluated after adding each tree. If the performance degrades when adding a

tree, the tree is discarded.

For instance, in Figure 6.4, the first drop in excess significance occurs after tree number 6 is

included. This would be the first tree that logging would remove (if the excess significance

is the figure of merit used for logging).



Chapter 7

Analysis: Measurements

This chapter describes how boosted decision trees are created and applied in order to sepa-

rate single top quark events from background events, and howthe single top quark produc-

tion cross section is measured using the boosted decision tree output distributions. Mea-

surements of the signal significance and the CKM matrix element |Vtb| are also presented,

as well as several cross checks of the measurements.

7.1 Decision Tree Analysis

This section describes the procedure to create the boosted decision trees used in the subse-

quent sections. The decision tree software used was theclassifier package [72] in the

DØ CVS code repository. This program was originally created by Toby Burnett and Gor-

don Watts. Several alterations and new features were introduced mainly by Yann Coadou

and the author to suit the needs of this and the previous [4, 5]analyses.

97
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7.1.1 Input Samples

Each of the signal and background samples, created as described in Section 5.4, are divided

into three independent subsets. The first subset of events isused for the decision tree learn-

ing, the second subset is used for decision tree optimization (Section 7.1.3), and the third

independent subset is used for the final measurements and to produce all plots.

Because of theb-tagging modeling described in Section 5.4.4, all Monte Carlo samples

contain permuted events with highly correlated kinematics. In order to make the subsets

independent, it is important to ensure that all permutations of an event end up in the same

subset. To ensure this, the samples are divided based on the modulus of the event number,

which is given to Monte Carlo events during generation, as specified in Table 7.1.

This splitting procedure results in three subsets of very similar sizes. For each signal and

background component, a normalization scale factor is applied to each subset such that the

total sum of weights becomes the same as before splitting.

Sample Subset Splitting Procedure

Subset Splitting Criterion

Learning subset,L EventNumbermod 3 = 0

Testing subset,T EventNumbermod 3 = 1

Yield subset,Y EventNumbermod 3 = 2

Table 7.1: Sample splitting procedure in order to avoid biasfrom permuted events. The

event number is given to a MC event during generation and is the same for all permutations

of an event. The learning subset is used to create the decision trees, the testing subset

is used for decision tree evaluation and optimization, and the yield subset is used for the

measurements.

7.1.2 Discriminating Variables

One of the most important parts of a decision tree analysis isthe identification and selection

of the input variables. To maximize the performance, it is desirable to include uncorrelated
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variables with good discriminating power. However, it is crucial that all variables and

their correlations are well modeled such that the decision tree performance for the modeled

samples reflect the real performance in data.

Introducing more variables when creating a decision tree does not degrade the performance.

If the newly introduced variables have some additional discriminative power, they will im-

prove the performance of the tree. If they are not discriminative enough, they will be

ignored. However, to reduce computing time and memory consumption, and to keep the

analysis simple, it is preferred to use a reasonably short list of variables.

A long list of candidate input variables was considered for this analysis. Many of these

variables were derived based on an analysis of the signal andbackground Feynman dia-

grams [73, 74] and on a study of single top quark production atnext-to-leading order [75].

Other variables were constructed and evaluated for this analysis. All variables considered

fall into five categories, which are described below.

• Object kinematics

Transverse momentumpT , pseudorapidityη, andQ(ℓ) × η for the individual objects

in the event. The latter quantity takes advantage of the CP symmetry in t-channel

production as discussed in Section 2.3.4.

• Event kinematics

These variables are calculated from the four-vectors of all, or a subset of the objects

in the event.H, HT and centrality are defined as:

H =
∑

objects E energy sum, (7.1)

HT =
∑

objects pT scalar pT sum, (7.2)

Centrality = HT /H. (7.3)

All other variables in this category are calculated from thefour vector sums of the

objects, for instance the invariant massM =
√

E2 − ~p 2 and the transverse mass

MT =
√

E2
T − ~p 2

T , where(E, ~p) =
∑

object i(Ei, ~pi).
√

ŝ is the invariant mass of all

objects in the event.

• Angular correlations

These are either∆R or ∆φ angles between jets and leptons, or cosine of angles
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between various objects in different reference frames thathave been shown to be

correlated with the top quark spin [73, 74].

• Top quark reconstruction

There are several ways to reconstruct the top quark in an event depending on which

jet is used, and which neutrino solution is picked when reconstructing theW boson.

– Neutrino pz solutions

Thepz of the neutrino cannot be directly measured in the detector,but can be

estimated using the lepton momentum~p(ℓ) and theW boson mass constraint.

This leads to a quadratic equation with two solutions forpz(ν). In this analysis,

the default choice is the solution with the smaller absolutevalue. However,

some variables use the second solution (S2), with larger absolute value ofpz(ν).

– Top mass difference∆Mtop

The top quark mass is reconstructed for each of all possible combinations of

the lepton, each neutrino solution and each jet. For any given such(ℓ, ν, jet)-

system, the top quark mass is calculated from

Mtop =
√

(Eℓ + Eν + Ejet)2 − (~pℓ + ~pν + ~pjet)2. (7.4)

The difference between this value and 170 GeV, which is the top mass used in

the Monte Carlo simulations, is called∆Mtop. The reconstructed top mass and

∆Mtop for the (ℓ, ν, jet)-combination yielding the smallest∆Mtop, define the

two variablesM∆Mmin

top and∆Mmin
top respectively.

– Significance of top quark candidate

In addition to calculating the mass difference, the significance of the recon-

structed top mass,Significance(Mtop), is also calculated for each(ℓ, ν, jet)

combination. This quantity relates the mass difference∆Mtop with the res-

olution of the reconstructed top mass. It is assumed that thetop quark mass

resolution is a Gaussian distribution of widthδMtop, and the significance of the

reconstructed top mass is calculated from

Significance(Mtop) = ln
Gauss(∆Mtop/(δMtop))

Gauss(0)
, (7.5)



CHAPTER 7. ANALYSIS: MEASUREMENTS 101

where Gauss is the probability density function of a Gaussian with mean 0 and

width 1. The resolution uncertainty of the reconstructed top massδMtop is

derived in terms of the resolution of the/ET , δ /ET [77], and the jet energy res-

olution, δEjet [78], by error propagation of Equation 7.4. The lepton energy

resolution is neglected as the lepton energy is well measured compared to that

of the jets and/ET . The variablesSignificancemin(Mtop) andM sig
top are defined

as the significance and reconstructed top mass from the(ℓ, ν, jet) combination

that gives the smallest top mass significance in an event.

• Jet reconstruction

The jet width inη andφ is the energy weighted root-mean-square of theη andφ for

all cells in the jet energy cluster.

Starting from several hundred variables, the variable listis reduced in two steps: variables

that showed unsatisfactory data-background agreement areremoved; and the most sensitive

variables are identified and selected.

To judge whether a variable is well modeled or not, the variable distribution for data is com-

pared with the sum of the signal and backgrounds. This is donefor each of the 24 channels

individually. Two requirements are enforced. The Kolmogorov-Smirnov test value [76],

calculated by comparing the variable distribution for datawith the sum of signal and back-

grounds, is required to be at least 0.1 for the majority of thechannels. Then the data-

background agreement has to be judged as satisfactory afterexamining the data-background

agreement by eye.

In order to further reduce the list, the most discriminatingvariables are identified using

decision tree variable ranking. This ranking is obtained bycreating one or several decision

trees and for each variable calculating the sum of impurity improvements∆i for each split

in which the variable is used. Hence frequently used variables tend to get high decision

tree rankings, while an unused variable will get a ranking equal to zero. Decision trees are

created using the full list of well modeled variables for each channel individually. A com-

bined list of variables is created using the 50 highest ranked variables from the 2jets,1tag

channels, the 30 best from the 3jets,1tag channels, the 20 best from the 2jets,2tag channels,

and the 10 best from each of the other threeN jets,N tags combinations. After removing the
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duplicated entries in this combined list, a final list of 64 well-modeled variables is obtained.

The 64 variables are listed in Table 7.2, and the data-background agreement for all channels

combined can be seen in Figures 7.1-7.6. The variable name describes which objects are

included when calculating the variable value. Jets are sorted inpT , and index 1 refers to the

leading jet in a jet category. “jetn” (n=1,2,3,4) corresponds to each jet in the event. “tagn”

are theb-tagged jets, “lightn” are defined as all jets but the leadingb-tagged jet. The “best”

jet is the one for which the invariant massM(W, jet) is closest tomtop = 170 GeV, and

“notbestn” are all but the best jet.

SOME OF THE MOST SENSITIVE VARIABLES
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Figure 7.1: Distributions of some of the most sensitive variables used as input when creating

the boosted decision trees. The plot key can be seen in Figure5.6.
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Decision Tree Input Variables

Object kinematics Event kinematics

pT (jet2) Centrality(alljets)

pT (jet3) HT (alljets)

pT (jet4) HT (alljets−tag1)

pT (tag1) HT (alljets−best)

pT (light2) HT (jet1,jet2)

pT (notbest2) HT (jet1,jet2,lepton,/ET )

pT (lepton) HT (alljets,lepton,/ET )

/ET HT (/ET ,lepton)

Q(lepton)×η(jet1) H(alljets−tag1)

Q(lepton)×η(jet2) M (alljets)

Q(lepton)×η(best) M (alljets−best)

Q(lepton)×η(light1) M (alljets−tag1)

Q(lepton)×η(light2) M (jet1,jet2)

M (jet1,jet2,W )

Jet Widths M (jet3,jet4)

Widthη(jet2) MT (jet1,jet2)

Widthη(jet4) pT (jet1,jet2)

Widthφ(jet4)
√

ŝ

Widthη(tag1) MT (W )

Widthη(light2)

Widthφ(light2)

Angular Correlations Top quark reconstruction

∆R(jet1,jet2) M(W,best1) (“best” top mass)

∆R(jet1,lepton) M(W, tag1) (“b-tagged” top mass)

∆R(tag1,lepton) M(W, tag1, S2) (with second neutrino solution)

∆R(light1,lepton) M(W, jet1)

∆φ(lepton,/ET ) M(W, jet1, S2)

cos(best,lepton)besttop M(W, jet2)

cos(best,notbest)besttop M(W, jet2, S2)

cos(jet1,lepton)btaggedtop M(W,notbest2)

cos(tag1,lepton)btaggedtop M(W,notbest2, S2)

cos(leptonbesttop,besttopCMframe) M∆Mmin

top

cos(leptonbtaggedtop,btaggedtopCMframe) M sig
top

cos(tag1,lepton)btaggedtop ∆Mmin
top

cos(lepton,Q(lepton)×z)besttop Significancemin(Mtop)

Table 7.2: The 64 variables used as input to the decision trees, in five categories: object

kinematics; jet reconstruction; angular correlations; event kinematics; and top quark recon-

struction. For the angular variables, the subscript indicates the reference frame.
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SINGLE OBJECT KINEMATICS

(jet2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

600

800
 channelµp17+p20 e+

1-2 b-tags
2-4 jets

(jet2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

600

800

(jet3) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

600

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

(jet3) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

600

(jet4) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

100

200

300

400  channelµp17+p20 e+
1-2 b-tags

2-4 jets

(jet4) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

100

200

300

400

(tag1) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

600  channelµp17+p20 e+
1-2 b-tags

2-4 jets

(tag1) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

600

(light2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

600

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

(light2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

600

(notbest2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

600  channelµp17+p20 e+
1-2 b-tags

2-4 jets

(notbest2) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

600

(lepton) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

(lepton) [GeV]
T

p
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

 [GeV]ET

0 50 100 150

Y
ie

ld
 [E

ve
nt

s/
5G

eV
]

0

200

400

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

 [GeV]E
0 50 100 150

Y
ie

ld
 [

E
ve

n
ts

/5
G

eV
]

0

200

400

(jet1)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

(jet1)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300

Eta(jet2)×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300

 channelµp17+p20 e+
1-2 b-tags

2-4 jets

Eta(jet2)×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300

(best1)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300  channelµp17+p20 e+
1-2 b-tags

2-4 jets

(best1)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
 [

E
ve

n
ts

/0
.2

]

0

100

200

300

(light2)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
[E

ve
n

ts
/0

.2
]

0

50

100  channelµp17+p20 e+
1-2 b-tags

2-4 jets

(light2)η×Q(lepton)
-4 -2 0 2 4

Y
ie

ld
[E

ve
n

ts
/0

.2
]

0

50

100

Figure 7.2: Distributions for most individual object kinematic variables used as input to the

decision trees. The plot key can be seen in Figure 5.6.
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EVENT KINEMATICS
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Figure 7.3: Distributions for event kinematic variables used as input to the decision trees.

The plot key can be seen in Figure 5.6.
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Figure 7.4: Distributions for event kinematic variables and jet width variables used as input

to the decision trees. The plot key can be seen in Figure 5.6.
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ANGULAR CORRELATIONS
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Figure 7.5: Distributions for most angular correlation variables used as input to the decision

trees. The plot key can be seen in Figure 5.6.
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Figure 7.6: Distributions for most top quark reconstruction variables used as input to the

decision trees. The plot key can be seen in Figure 5.6.
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7.1.3 Choice of Decision Tree Parameters

There are many parameters that can impact the performance ofa decision tree (see Sec-

tion 6.6). The impact from various parameter choices is studied by creating several sets of

decision trees, using the learning subset of events as described in Section 7.1.1, and then

evaluating the performance using the testing subset. The figure of merit used to evaluate the

performance is thecross section significance(Equation 6.16), calculated using histograms

with 100 bins with equal widths.

The parameter choice from the previous boosted decision tree analysis [4, 5] is used as a

starting point. Several different parameters are varied one at a time over the range of values

shown in Table 7.3. The strategy is to identify the optimal parameter value, fix this value

and optimize the next parameter. In order to reduce the computational time, the evaluation

is only done using two of the 24 channels, namely the Run IIb, 2jets, 1tage andµ channels,

which are two of the most sensitive channels.

Boosted Decision Tree Parameter Scan

Parameter Evaluation Points

Impurity measure Gini , Entropy,Sσ, Ss

Minimal leaf size,Nmin
leaf 50, 75, 90,100, 110, 125, 150, 200, 500

Number of boosting cycles,Nboosts 0, 20, 30, 50, 70

AdaBoost parameter,β 0.05, 0.15, 0.18,0.20, 0.22, 0.25, 0.3, 0.5

Table 7.3: The decision tree parameter values that are evaluated during the decision tree

optimization. The parameter values used in the previous single top analysis are indicated

with bold font.

Boosting Parameters

The results from varying the AdaBoost parameter and the number of boosting cycles are

shown in Figure 7.7. The result clearly improves when going from 0 to 20 boosts, thereafter

the performance improves only marginally and reaches a plateau. This can also be seen with

better resolution in Figure 6.4.
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The largest AdaBoost parameter valueβ = 0.5 performs worse than the other choices.β

values around 0.2 perform equally well within uncertainty.
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Figure 7.7: Cross section significance as a function of the number of boosting cycles for

different values of the AdaBoost parameter. The statisticaluncertainty on the evaluation

points is about±0.05.

Impurity Measures

The boosted decision tree performance for three different impurity measures are shown

versus different number of boosting cycles in Figure 7.8. The performance ofSs (excess

significance, Equation 6.12) is not shown since it performedsignificantly worse than the

others. The reason for this is most likely statistical instability of the background estimation

b in the denominator. This problem might be solved by requiring a minimal number of

effective background events in each leaf as discussed in Section 6.8.1. The performances

for the other impurity measures does not differ significantly.

Minimal Leaf Size

Figure 7.9 shows the decision tree performance for different minimal leaf size values. A

smaller minimal leaf size results in a larger tree. Leaf sizes in the range 50-200 all perform

equally within uncertainty.
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Figure 7.8: Cross section significance as a function of the number of boosting cycles for

different impurity measures used by the decision tree learning process. The uncertainty on

the evaluation points are about±0.05.

Pruning

Two different pruning methods are tested: Cost Complexity Pruning and Reduced Error

Pruning. No improvement in performance is observed using any of these methods (com-

pared to no pruning). Hard pruning resulted in worse performance, softer pruning made no

difference. This is probably because the pre-pruning choice of Nmin
leaves = 100 results in a

close to optimally grown tree which needs no further pruning.

Summary

From the study described above, the parameters listed in Table 7.4 are chosen. This list of

parameter settings results in a good separation for the channels studied: (Run IIa,e+2jets, 1tag)

and (Run IIa,µ+2jets, 1tag). The same set of parameters is used for the other analysis chan-

nels since no significance differences of optimal parameters are expected, and since most

of these channels have significantly less impact on the final result.
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Figure 7.9: Cross section significance as a function of the number of boosting cycles for

different minimum leaf size values. The uncertainty on eachcross section significance point

is roughly±0.05.

Chosen Decision Tree Parameters

Parameter Value

Impurity measure Gini

Minimal leaf size,Nmin
leaf 100

Number of boosting cycles,Nboosts 50

AdaBoost parameter,β 0.20

Table 7.4: The decision tree parameter values that are chosen based on the procedure de-

scribed in Section 7.1.3. These parameters are used when creating all final decision trees.
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7.1.4 Output Transformation

The decision tree output distribution given by Equation 6.15 tends to be very sparsely pop-

ulated close to 0 and close to 1 as can be seen in the top plot of Figure 7.10. This results in

problems with the stability of the cross section calculation since the signal and background

estimations in some histogram bins are based on very few simulated events, and hence have

a large Monte Carlo statistical uncertainty. This is particularly troublesome in the signal

region, where many bins have very few background events. In extreme cases, there might

even be bins containing signal events but no background events.

A monotonic re-binning scheme was designed in order to remove the instability described

above without losing too much resolution in the signal region. The re-binning is done indi-

vidually for each channel, and transforms the background distribution such that it follows

a 1/x-curve up to 0.8, and a linear slope from the intercept of the1/x graph at 0.8, down

to zero at 0.95. There are no shape constraints between 0.95 and 1.0, but all bins of width

0.02 are required to contain at least 40 background events inorder to keep the statistical

uncertainty reasonably small. The transformation is done from right (OBDT =1.0) to left.

The transformed background shape is:

f1(x) = k/x, when x < 0.8,

f2(x) = M − Kx, when 0.8 < x < 0.95,

with k = 0.346, K = 2.88 andM = 2.74, such thatf1(0.8) = f2(0.8).

Technically, a histogram of the original boosted decision tree distribution is created with

10,000 uniform bins between 0 and 1 and filled with the weightsof all background events.

The histogram is normalized to unity. A new, initially emptyhistogram with 50 uniform

bins is defined. Starting from the right (OBDT = 1) in the original histogram, the content

of each bin is moved to the rightmost bin in the new histogram until the two conditions

mentioned above are met: enough background statistics and enough background events to

make the weighted sum equal or greater than the value expected from the function. This

procedure continues until the contents of all histogram bins have been moved to the new

histogram. Each bin in the old histogram now has a corresponding bin in the new histogram,

and a “transfer function” can be derived from this mapping (see Figure 7.10).
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Figure 7.10: The original boosted decision tree discriminant for signal in blue and all back-

ground components combined in red (top). The distributionsare sparsely populated in

the high and low discriminant regions. In this particular histogram there is one histogram

bin in the signal region containing only 3 background events. The monotonic transforma-

tion function (bottom left) is applied to both the signal andthe background. The resulting

transformed boosted decision tree distributions (bottom right) have adequate statistics in all

histogram bins. These plots are for the Run IIa,e+jets, 2 jets, 1 tag channel.

This rebinning is equivalent to creating a histogram with variable bin-widths of the native

boosted decision tree distribution. The width of each bin isthen given by the conditions

described above.



CHAPTER 7. ANALYSIS: MEASUREMENTS 115

7.1.5 The Final Decision Trees

The final boosted decision trees are created using the learning subset for each of the 24

channels separately. The variable list presented in Table 7.2 and the decision tree parameters

in Table 7.4 are used for all channels. Various properties ofthe 24 boosted decision trees

are presented in Table 7.5. The average size of the trees is related to the number of events

in the input sample, which increases with the number of jets andb-tags due to the permuted

events.

The boosted decision tree output distributions for each of the 24 individual boosted de-

cision trees are shown in Appendix C in Figures C.1-C.4. Figure7.11 presents all these

distributions combined, by stacking the histograms. This does not truly reflect the per-

formance since each channel is considered individually when measuring the cross section.

Figure 7.12 shows the boosted decision tree distributions for the six different(N jet, Ntag)

combinations after combining the Run IIa and IIb and thee andµ channels.
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Figure 7.11: Decision tree discriminant output for all 24 channels combined using linear

scale (left) and log scale (right) for the y-axis. The plot colour key for the signal and

background components can be seen in Figure 5.6.
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Properties for the 24 boosted decision trees

Channel 〈Nnodes〉 〈Nleaves〉 〈depth〉 Sσ Ss

Run IIa,e+2jets, 1tag 596 299 20 2.00 2.48

Run IIa,e+3jets, 1tag 280 141 9 0.95 1.06

Run IIa,e+4jets, 1tag 190 96 9 0.45 0.49

Run IIa,e+2jets, 2tags 343 172 19 1.05 1.21

Run IIa,e+3jets, 2tags 394 197 15 0.69 0.81

Run IIa,e+4jets, 2tags 692 347 24 0.39 0.44

Run IIa,µ+2jets, 1tag 693 347 23 2.19 2.82

Run IIa,µ+3jets, 1tag 649 325 26 1.13 1.36

Run IIa,µ+4jets, 1tag 353 177 18 0.48 0.52

Run IIa,µ+2jets, 2tags 300 151 13 1.16 1.35

Run IIa,µ+3jets, 2tags 984 493 30 0.81 0.96

Run IIa,µ+4jets, 2tags 992 497 27 0.40 0.46

Run IIb,e+2jets, 1tag 335 168 16 1.82 2.13

Run IIb,e+3jets, 1tag 334 168 20 1.08 1.26

Run IIb,e+4jets, 1tag 178 89 11 0.55 0.61

Run IIb,e+2jets, 2tags 255 128 17 1.00 1.15

Run IIb,e+3jets, 2tags 516 258 24 0.73 0.90

Run IIb,e+4jets, 2tags 279 140 12 0.41 0.47

Run IIb,µ+2jets, 1tag 458 229 19 2.00 2.46

Run IIb,µ+3jets, 1tag 301 151 14 1.17 1.34

Run IIb,µ+4jets, 1tag 278 139 16 0.61 0.71

Run IIb,µ+2jets, 2tags 112 56 7 1.02 1.16

Run IIb,µ+3jets, 2tags 661 331 26 0.80 1.00

Run IIb,µ+4jets, 2tags 465 233 15 0.46 0.54

Table 7.5: Various properties for the 24 boosted decision trees. Each boosted decision

tree contains a forest of 51 decision trees, and the average number of nodes and leaves per

decision tree and the average tree depth is shown in the threefirst columns. These quantities

are mainly related to the size of the learning sample. The cross section significance and the

excess significance calculated after applying all trees aregiven in the last two columns.



CHAPTER 7. ANALYSIS: MEASUREMENTS 117

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

200

400

-1D0 RunII Prelim. 2.3 fb
 channelµp17+p20 e+
1 b-tags

2 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

200

400

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

50

100

150

200
-1D0 RunII Prelim. 2.3 fb

 channelµp17+p20 e+
1 b-tags

3 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

50

100

150

200

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

50

100 -1D0 RunII Prelim. 2.3 fb
 channelµp17+p20 e+
1 b-tags

4 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

50

100

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

20

40

60 -1D0 RunII Prelim. 2.3 fb
 channelµp17+p20 e+
2 b-tags

2 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

20

40

60

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

20

40

-1D0 RunII Prelim. 2.3 fb
 channelµp17+p20 e+
2 b-tags

3 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

20

40

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

nt
 Y

ie
ld

0

20

40

60 -1D0 RunII Prelim. 2.3 fb
 channelµp17+p20 e+
2 b-tags

4 jets

tb+tqb DT Output
0 0.2 0.4 0.6 0.8 1

E
ve

n
t 

Y
ie

ld

0

20

40

60

Figure 7.12: Boosted decision tree discriminant output distributions after combining the

Run IIa and Run IIb run periods as well as thee andµ channels. Combined channels with

oneb-tagged jet are shown in the top row, with twob-tagged jets in the bottom row, and

with two, three and four jets in the left, middle and right columns respectively. The plot key

can be seen in Figure 5.6.

7.1.6 Cross Checks

In order to validate every step of the decision tree analysiswithout being biased by a po-

tential sign of signal, cross-check samples are created andused to decide whether the back-

ground model and data are in agreement after applying the boosted decision trees. The

selection criteria “W+jets”: (2 jets, 1 tag,HT < 175 GeV) and “tt̄”: (4 jets, 1 or 2 tags,

HT > 300 GeV) are applied to construct samples dominated by theW+jets andtt̄ back-

grounds. Figure 7.13 shows the decision tree output distributions in these cross-check sam-

ples for Run IIa-b,e andµ, 1-2 tags combined. In Appendix D, the distributions for the

individual channels are shown separately for Run IIa and Run IIb, for e+jets andµ+jets.
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Figure 7.13: Combined decision tree outputs for the “W+jets” sample (left) and the “tt̄”

sample (right) cross-check samples.

As an additional cross check, the decision trees are appliedto the data and simulated sam-

ples before anyb tagging is applied. The purpose of this exercise is to look ata sample com-

posed of a large number of events and verify that the data and background are in agreement.

A complication with this exercise is that the boosted decision trees are trained with several

variables that use information about theb-tagged, and untagged jets (see Section 7.1.2).

Since this information is not available at the preb-tagging stage, variables associated with

tagged, or anti-tagged jets are replaced according to Table7.6. This change might affect

the validity of the cross check, but in principle the data-background agreement should still

be adequate since the decision trees treat data and background equally.

For each pre-tag subsample, the decision tree created in thecorresponding 1tag-channel

is applied. The resulting boosted decision tree output distributions for the four pre-tag

channels with 2 jets are shown in Figure 7.14. The corresponding distributions for all

twelve pre-tag channels are shown in Figure D.3 of Appendix D.

All boosted decision tree distributions shown in this section, and in Appendix D, show

good agreement between data and the background model. No bias from the decision trees

due to the composition of the background model is observed. Since the background model

and boosted decision trees behave well, the analysis can move forward with confidence to

measure the single top cross section.
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Variable Replacement for the Pre-Tag Sample

Used for Decision Tree LearningUsed when Applying to Pre-Tag Data

Leadingb-tagged jet,tag1 Best-top-mass jet,best

Leading light-quark jet,light1 Leading not-best jet,notbest1

Second light-quark jet,light2 Second not-best jet,notbest2

Table 7.6: The variables derived using the objects in the left column, are replaced by the

corresponding variables using the information in the rightcolumn when the boosted deci-

sion trees are applied to the pre-b-tagging (pre-tag) sample. This is done since nob-tagging

information is available for the events in the pre-tag sample. Further explanation of the

variables and the naming convention is given in Section 7.1.2.
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Figure 7.14: Boosted decision tree output distribution fromapplying the final 2jets,1tag

boosted decision trees to the corresponding 2jets channelsbeforeb tagging is applied.
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7.2 Cross Section Measurement

This section describes how the single top cross section is extracted from the final observed

boosted decision tree distributions seen in Figures C.1-C.4,and how the measurement

is cross checked and calibrated using ensembles of pseudo-data. All measurements as-

sume the standard model ratio of thes andt-channel single top cross section:σtb/σtqb =

1.12/2.34 = 0.48 (see Table 2.3).

7.2.1 Bayesian Analysis

In a given histogram bin, the probability to observeD data events, if the expected number

of events isd, is given by the Poisson distribution

P (D|d) =
e−ddD

Γ(D + 1)
, (7.6)

whereΓ is the gamma function. The expected number of eventsd in the bin is the sum of

the predicted signals and backgroundb, which further can be expressed as

d = s + b = aσ +

Nbkg
∑

j=1

bj, (7.7)

wherea is the effective luminosity for the signal,σ is the signal cross section,bj is the

expected number of events (yield) of background sourcej andNbkg is the number of back-

ground sources. When dealing with many bins from a single or several histograms, one can

construct a combined likelihood as a product of the single-bin likelihoods [5, 79]

L(D|d) ≡ L(D|σ, a,b) =

Nbins
∏

i=1

P (Di|di), (7.8)

whereD andd are vectors of the observed and predicted number of events ineach bin, and

a andb are vectors of effective luminosity and background yields.Using Bayes’ theorem,

the posterior probability densityp(σ, a,b|D) can be obtained and further converted into the

function of interest by integrating with respect to the parametersa andb [5, 80]:

p(σ|D) =
1

N

∫∫

L(D|σ, a,b)π(a,b)π(σ)dadb. (7.9)
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N is here an overall normalization factor, the prior densityπ(σ) is set to1/σmax for 0 <

σ < σmax, and 0 otherwise. The prior probability densityπ(a,b) encodes all knowledge of

the effective signal luminosity and background yields, including all systematic uncertainties

and their correlations.

The peak position of thep(σ|D) distribution is interpreted as the measured cross section,

and the 68% interval around the peak as the uncertainty of themeasurement as illustrated

in Figure 7.15. This interval is constructed such that the posterior probabilities are equal at

the start and end points of the interval.
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Figure 7.15: Illustration of the posterior densityp(σ|D). The measured cross section is the

peak positionσpeak, and the uncertainty of the measurement is the interval∆σ covering

68.27% of the posterior as indicated in the plot.

7.2.2 Numerical Calculation

The integration of Equation 7.9 is done numerically using Monte Carlo sampling.Nsamples

systematically-shifted histograms(ak,bk) are generated by random sampling from the prior

densityπ(a,b). Uncertainties that affect the normalization only are modeled as the widths

of Gaussian distributions with means set to the expected yields. Systematic uncertainties
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that affect the boosted decision tree discriminant shape are modeled bin by bin by evaluating

the effect of shifting the uncertainty up and down by one standard deviation. This results in

different positive and negative shifts as illustrated in Figure 7.16. This is further discussed

in Appendix B. Uncertainties that are correlated between different bins, are treated by using

the same random Gaussian shift.

Using the systematically-shifted histograms(ak,bk), the posterior density given in Equa-

tion 7.9 is estimated by

p(σ|D) ≈ 1

NσmaxNsamples

Nsamples
∑

k=1

L(D|σ, ak,bk). (7.10)

For the combined measurements in this analysis, the posterior density is calculated using

this formula withσmax set to 12 pb, andNsamples set to20, 000.

Figure 7.16: Illustration of the treatment of shape shifting systematic uncertainties. This

analysis uses shape-changing systematics for the jet energy scale,b-tagging efficiency and

theALPGEN reweighting. Separate boosted decision tree histograms are created from events

where these quantities are shifted up and down by one standard deviation (see Section B.2).

The systematic uncertainty in any given bin is modeled by a Gaussian distribution with

different positive and negative widths,δ+
ibin andδ−ibin, as illustrated in the plot.
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7.2.3 Ensemble Tests

Ensemble testing is performed in order to ensure that there is no bias in the cross section

measurements. An ensemble is a collection of pseudo-data sets generated with a known

signal to background fraction. Each pseudo-data set is randomly sampled from the signal

and background in the yield sample (see Section 7.1.1), taking into account both statistical

and systematical uncertainties. The probability to pick any given event is proportional to the

event weight modified by the unique systematic shifts for thepseudo-dataset in question.

The pseudo data hence mimic all expected characteristics ofreal data, and can also be

treated just like real data.

Eight ensembles are generated with the single top cross section set to 2, 3, 3.46 (standard

model), 4.2, 5, 7, 8 and 10 pb respectively. When generating these ensembles, the event

weights for the single top events are initially scaled such that the probability to sample a

single top event is increased or decreased by the desired amount.

The cross section is measured for each pseudo-data set, treating the pseudo-data in exactly

the same way as real data. The measured cross sections in the ensembles can be seen in

Figure 7.17, where also a Gaussian fit is performed around thepeak of the distribution. The

average measured cross sections closely match the cross section used when generating the

ensembles. This is further illustrated in Figure 7.18, which shows a linear calibration fit

from the means of the fitted Gaussians shown in Figure 7.17. Nocorrection to the cross

section measurements is hence needed.

The distribution of measured cross sections in the ensemblecontaining the standard model

amount of single top resemble thestandard model expectationof the cross section mea-

surement. The average measured cross section is very close to the standard model value of

3.46 pb, and the distribution has a standard deviation of 0.90 pb.
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Figure 7.17: Measured single top cross sections in ensembles generated with various

amounts of single top. The input single top cross sections used are 2, 3, 3.46 (SM), 4.2, 5,

7, 8 and 10 pb.
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Figure 7.18: Linear fit through the means from the Gaussian fits (Figure 7.17) of the mea-

sured cross sections in ensembles generated with differentamounts of single top. The fit is

constrained to the range[2, 10]. The correct cross section is measured on average.
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7.2.4 Observed Results

This section presents the boosted decision tree cross section measurements using the 2.3 fb−1

dataset. The histograms used for the cross section calculation are shown in Appendix C.

The boosted decision tree output for all channels stacked ontop of each other is shown in

Figure 7.19, visualizing the excess of data over backgroundin the signal region.
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Figure 7.19: Boosted decision tree discriminant output distributions for all 24 channels

combined. The single top contribution in this plot is normalized to the measured cross

section. The same combined distribution is shown on linear scale (top left), log scale (top

right) and a zoom in the signal region (below).
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The measurement is performed as described in Section 7.2.1,and the resulting posterior

density for all channels combined is shown in Figure 7.20. The measured cross sections is

σ (pp̄→tb + X, tqb + X) = 3.74+0.95
−0.74 pb.

This measurement assumes the standard model ratio of singletop s andt-channel produc-

tion σtb/σtqb = 0.48. The measured cross sections for various combinations of analysis

channels are presented in Table 7.7. All results are consistent with the standard model cross

section of 3.46 pb within uncertainty. The peak over half-width significance (P/HW) is

defined as the ratio of posterior peak position over the lower68.3% confidence bound. The

peak over half-width values for various combinations of analysis channels are presented in

Table 7.8. Table 7.9 further presents the measurements in each of the 24 individual chan-

nels.
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Figure 7.20: Observed posterior density froms + t-channel single top cross section mea-

surement using boosted decision trees. This is for all 24 channels combined—i.e.,Run IIa

and Run IIb,e+jets andµ+jets, 2-4 jets and 1 or 2 of themb-tagged. The blue lines show

the 1σ (68.3%), 3σ (99.7%) and5σ (99.99994%) confidence bounds.

All systematic uncertainties are taken into account in thismeasurement.
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Observed Cross Section Measurements

1,2tags + 2,3,4jets e,µ + 2,3,4jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets 4 jets channels

Run IIa 2.3+1.7
−1.6 2.7+1.6

−1.5 1.9+1.3
−1.2 3.7+2.6

−2.3 1.2+1.1
−1.0 4.7+3.0

−2.7 5.8+6.7
−4.6 2.50

+1.29
−1.16

Run IIb 6.2+2.2
−1.9 3.9+1.7

−1.5 5.8+1.6
−1.6 3.8+2.5

−2.2 4.3+1.8
−1.5 5.6+2.9

−2.5 9.2+6.8
−5.2 4.92

+1.35
−1.21

Run IIa+b 4.4+1.5
−1.3 3.3+1.2

−1.0 3.8+1.1
−0.9 3.7+1.9

−1.7 2.6+1.1
−1.0 5.2+2.1

−1.8 7.0+5.3
−3.9 3.74

+0.95
−0.79

Table 7.7: Measured single top quark production cross sections for many different combi-

nations of analysis channels. All systematic uncertainties are taken into account in these

measurements.

Observed Posterior Peak Over Half-Width

1,2tags + 2,3,4jets e,µ + 2,3,4jets e,µ + 1,2tags All

e-chan µ-chan 1 tag 2 tags 2 jets 3 jets 4 jets channels

Run IIa 1.4 1.9 1.6 1.6 1.2 1.8 1.3 2.2

Run IIb 3.2 2.6 3.7 1.7 2.8 2.3 1.8 4.1

Run IIa+b 3.6 3.2 4.1 2.2 2.6 2.9 1.8 4.7

Table 7.8: Posterior peak over half-width significance for many different combinations of

analysis channels. The best values from all channels combined are shown in bold type. All

systematic uncertainties are taken into account in these calculations.

7.3 Event Kinematics

Figures 7.21 and 7.22 shows data-background comparisons for various discriminating vari-

ables used by the boosted decision trees after applying different cuts on the decision tree

discriminant. Single top in these plots are normalized to the measured cross section. Event

displays of two of the most signal like events (OBDT > 0.98) are shown in Appendix A.
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Observed Results in Individual Channels

Channel σ ± ∆σ P/HW

e / p17 / 1tag / 2jets 0.91+1.80
−0.91 1.0

e / p17 / 1tag / 3jets 9.03+6.89
−5.41 1.7

e / p17 / 1tag / 4jets 8.15+11.22
−8.15 1.0

e / p17 / 2tags / 2jets 0.00+3.16
−0.00 0.0

e / p17 / 2tags / 3jets 9.27+7.94
−6.31 1.5

e / p17 / 2tags / 4jets 0.00+15.51
−0.00 0.0

e / p20 / 1tag / 2jets 0.00+0.00
−0.00 0.0

e / p20 / 1tag / 3jets 5.65+4.33
−3.57 1.6

e / p20 / 1tag / 4jets 14.15+12.53
−9.67 1.5

e / p20 / 2tags / 2jets 4.24+4.37
−3.62 1.2

e / p20 / 2tags / 3jets 5.04+6.37
−4.87 1.0

e / p20 / 2tags / 4jets 21.37+19.44
−13.66 1.6

µ / p17 / 1tag / 2jets 2.53+1.96
−1.73 1.5

µ / p17 / 1tag / 3jets 0.81+3.42
−0.81 1.0

µ / p17 / 1tag / 4jets 0.00+7.05
−0.00 0.0

µ / p17 / 2tags / 2jets 1.56+3.99
−1.56 1.0

µ / p17 / 2tags / 3jets 1.00+6.35
−1.00 1.0

µ / p17 / 2tags / 4jets 12.65+13.95
−9.16 1.4

µ / p20 / 1tag / 2jets 5.05+2.58
−2.19 2.3

µ / p20 / 1tag / 3jets 5.19+4.50
−3.69 1.4

µ / p20 / 1tag / 4jets 3.62+10.38
−3.62 1.0

µ / p20 / 2tags / 2jets 2.02+4.19
−2.02 1.0

µ / p20 / 2tags / 3jets 4.38+5.17
−4.02 1.1

µ / p20 / 2tags / 4jets 8.68+11.18
−8.05 1.1

Table 7.9: Measured cross sections and peak over

half-width significances, with all systematic uncer-

tainties taken into account, for each of the 24 indi-

vidual analysis channels.
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Figure 7.21: Data-background comparison for various variables after requiringOBDT >

0.8 (left column),OBDT > 0.9 (middle column) andOBDT > 0.96 (right column). All

channels combined.
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Figure 7.22: Data-background comparison for various variables after requiringOBDT >

0.8 (left column),OBDT > 0.9 (middle column) andOBDT > 0.96 (right column). All

channels combined.
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7.4 Signal Significance

The significance of the excess over background is measured using a very large ensemble of

pseudo-datasets generated with background only. Each suchdataset corresponds to 2.3 fb−1

of data without any single top. The single top cross section is measured in each such

pseudo-dataset in exactly the same way as for the real dataset.

From the measured cross sections in the ensemble, the probability for background only

to fluctuate to give a cross section higher than the standard model cross section, or the

measurement in real data, is calculated. This probability is referred to as the “p-value”, and

is widely used to estimate the significance of a measurement.From ap-valueα, the number

of standard deviations equivalenceNσ is calculated using

Nσ =
√

2 · erf−1(1 − 2α) (7.11)

which fulfils
∫ Nσ

−∞

Gauss(x)dx = 1 − α, (7.12)

where the normal distribution Gauss(x) is normalized to unity.

Figure 7.23 presents the expected and observed significances for the signal excess over

background in the boosted decision tree distribution. The expected significance, sometimes

referred to as thesensitivity, is calculated from the fraction of pseudo-datasets measuring

a cross section above the standard model single top cross section of 3.46 pb. 267 pseudo-

datasets out of 34.1 million measure a single top cross above3.46 pb, which corresponds

to an expected 4.3σ excess over background. The observed significance is calculated from

the number of pseudo-datasets that measure a cross section higher than the cross section

measured in real data, and is hence strongly correlated withthe measured cross section.

The observed significance for this analysis is 4.6σ.

7.4.1 Combined Significance

Two other multivariate analyses were performed using the same data and simulated sam-

ples: one based on Bayesian neural networks (BNN) [81, 82], andone using the Matrix
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Figure 7.23: Measured cross sections using the boosted decision tree distributions in a large

ensemble of pseudo-datasets containing no single top. The expected significance (top) is

calculated from the number of pseudo-datasets measuring a cross section higher than the

standard model cross section, and the observed significance(bottom) is derived from the

number of pseudo-datasets with measured cross section above the measurement in real data.
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Element method (ME) [83, 84]. Just as for the boosted decision tree analysis described

in this thesis, these are improved versions of the single topevidence analyses, which are

described in Reference [5].

The single top cross section and the significance are measured individually for each anal-

ysis. These measurements are highly correlated since the same dataset is used. However,

since the analyses use quite different techniques to isolate single top quarks, they are not

fully correlated. The three analyses were therefore combined into a more powerful dis-

criminant using a second Bayesian neural network [85]. The discriminant outputs for the

individual multivariate techniques as well as the BNN combination are presented in Ap-

pendix E.

The sensitivity of the combined measurement is determined using a very large ensemble of

background-only pseudo-datasets, in the same way as for theboosted decision tree analysis

(Section 7.2.3). The distribution of measured cross sections in the background-only ensem-

ble and the expected and observed significances are presented in Figure 7.24. The boosted

decision tree and BNN combination results are summarized in Table 7.10.

The observed significance for the BNN combination exceeds5σ, which corresponds to the

first observation of single top quark production.

Multivariate Analysis Results

Significance Measured

Analysis Expected Observed σs+t [pb]

Boosted decision trees 4.3σ 4.6σ 3.7+1.0
−0.8

BNN combination 4.5σ 5.0σ 3.9+0.9
−0.9

Table 7.10: Expected and observed significances and measured single top cross sections for

the boosted decision tree analysis as well as for the BNN combination. The BNN combi-

nation results in an improved expected significance, and measures an observed significance

of 5.0σ.
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Figure 7.24: The distribution of measured cross section using the BNN combination dis-

criminant in a very large ensemble of pseudo-datasets containing no single top. The

expected (above) and observed (below) significances are calculated from the number of

pseudo-datasets measuring a cross section higher than the expected standard model mea-

surement and the measurement using real data respectively.



CHAPTER 7. ANALYSIS: MEASUREMENTS 136

7.5 Measurement of|Vtb|

As discussed in Section 2.3.3, a measurement of the amplitude of the CKM matrix element

Vtb can be performed from the boosted decision tree discriminant output in much the same

way as the cross section measurement since the single top cross section is directly propor-

tional to |Vtb|2. This measurement makes no assumptions on the number of quark families

or the unitarity of the CKM matrix. However, assumptions are made in the interpretation of

the measurement as well as when generating the Monte Carlo samples, as discussed below.

|Vtb| is assumed to be much larger than|Vtd| + |Vts| such thatB(t → Wb) ≃100%. This

assumption is used in the Monte Carlo generation and is reasonable since measurements of

the quantityR = |Vtb|/(|Vtb|+|Vtd|+|Vts|) are consistent with unity [86]. Single top quarks

are assumed only to be produced via the standard model production modes (Section 2.3.2),

hence no single top production via flavour-changing neutralcurrents or new, heavy charged

bosons (Section 2.3.6) are considered. Finally, theWtb interaction is assumed to be CP-

conserving and of theV –A type, but is allowed to have an anomalous strengthfL. Adding

this factor results in aWtb vertex of the form [4, 87]

Γµ
Wtb = −−igw√

2
fL

1 Vtbū(pb)γ
µPLu(pt) (7.13)

wherePL = (1 − γ5)/2 is the left handed projection operator.

Under these assumptions, the|Vtb| measurement is conducted using the same Bayesian cal-

culations (Section 7.2.1) and the same boosted decision tree histograms as for the cross

Additional systematic uncertainties in percent affectingthe|Vtb| measurement

tb tqb

Top quark mass 5.56 3.48

Factorization scale 3.7 1.74

PDF 3.0 3.0

αs 1.4 0.01

Table 7.11: Systematic uncertainties in percent that need to be considered when measuring

|Vtb| in addition to all uncertainties affecting the cross section measurement (Section 5.8).
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section measurement. A few additional systematic uncertainties need to be considered dur-

ing this measurement. The magnitude and the sources for these systematics are shown in

Table 7.11. Two measurements are performed. The first measurement is “unconstrained”

(uses a flat prior between 0 and 3), and the second measurementis restricted to the[0, 1]

interval. The former can be interpreted as a measurement of|fL
1 Vtb|, while the latter only

considers the region allowed by the standard model (fL
1 = 1), and can hence be interpreted

as a measurement of|Vtb|.

The first measurement yields|Vtbf
L
1 | = 1.05+0.13

−0.12, and the posterior density is presented in

Figure 7.25. The second posterior density peaks at unity andis shown in Figure 7.26. The

corresponding measurement yields|Vtb| = 1.00+0.00
−0.11, or |Vtb| > 0.77 at 95% confidence

level.
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Figure 7.25:|Vtbf
L
1 |2 measurement result using an unconstrained prior. All systematic un-

certainties are taken into account in this measurement, including the additional systematics

listed in Table 7.11. The different coloured regions represent the 68.3%, 95.4% and 99.7%

confidence bounds.
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Summary

This thesis presents a search for single top quark production in 2.3 fb−1 of data collected

in the DØ detector at Fermilab. Selected events are requiredto have an isolated electron or

muon and 2 to 4 jets, of which 1 or 2 must beb tagged. Boosted decision trees are used to

isolate single top signal from background. Using a Bayesian technique, the single top cross

section is measured from the boosted decision tree output distributions to be

σ (pp̄→tb + X, tqb + X) = 3.74+0.95
−0.74 pb.

The measurement has ap-value of2.1 × 10−6, corresponding to a significance of 4.6 stan-

dard deviations.

Using the same dataset, a measurement of the amplitude of theCKM matrix element|Vtb|
is also performed using the boosted decision tree output distributions. This measurement

makes no assumptions on the number of quark families or unitarity of the CKM matrix, and

yields:
|Vtbf

L
1 | = 1.05+0.13

−0.12,

wherefL
1 is a generic left-handedWtb coupling. Constraining the measurement to the

standard model region (i.e., |Vtb| ≤ 1 andfL
1 = 1) gives

|Vtb| = 1.00+0.00
−0.11,

or at 95% confidence level:
0.77 < |Vtb| ≤ 1.

139
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The separation of the single top quark signal from the backgrounds is improved by combin-

ing the boosted decision trees with two other multivariate techniques. A new cross section

measurement is performed, and the significance for the measured excess over the predicted

background exceeds 5 standard deviations and constitutes the first observation of single top

quark production.



Appendix A

Event Displays

This appendix shows event displays of two signal candidate events. The first one is shown

in Figures A.1, A.2, and A.3 and is ane+jets event with three jets, one of themb-tagged.

The second event is shown in Figures A.4, A.5, and A.6 and is aµ+jets event, with three

jets of which two areb-tagged. The boosted decision tree outputs for the two events are

0.984 and 0.991 respectively.

141
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ET scale: 39 GeV

jet
MET

electron

jet

b jet

Run 229388 Evt 13339887 Wed Jan  3 21:05:14 2007

Figure A.1: Transverse-plane view of a singleb-taggede+3 jets signal candidate event. The

positivex-axis points to the right, and they-axis points up. Hits in the inner tracking system

are shown as red dots and blue circles, reconstructed tracksare shown as black lines, and

electromagnetic and hadronic energy deposits in the calorimeter towers are illustrated as

red and blue bars. The yellow bar (top-right) is the reconstructed missing transverse energy

vector,~/ET , and the dark red bar with a matched track to the bottom-rightis the electron.

Other views of the same event can be seen in Figures A.2 and A.3.
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+z

E scale: 36 GeV

b jet

electronjet

jet

Run 229388 Evt 13339887 Wed Jan  3 21:05:14 2007

Figure A.2: Side view of the single-taggede+3 jets signal candidate event show in Fig-

ures A.4 and A.6. Thez-axis points to the right, and the outer, thin lines are linesof

constantη drawn in increments of 0.1. The bars illustrate energy deposits in the electro-

magnetic (red) and hadronic (blue) layers of the calorimeter towers. The upper half of the

plot illustrates the positivey hemisphere(0 < φ < π) and the lower half represents the

negativey hemisphere(π < φ < 2π).
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Figure A.3:(η,φ) “lego plot” of the single-taggede+3 jets signal candidate event shown in

Figures A.1 and A.2. The brown bar at(η, φ) = (0.43, 5.65) is the reconstructed electron

with pT = 37.7 GeV, the yellow bar show the magnitude and theφ-coordinate of the/ET (it

is placed atη = 0 since thez-coordinate is unknown). Again, the red and blue bars show

the electromagnetic and hadronic energy deposits in the calorimeter, respectively.
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Figure A.4: Transverse-plane view of a doubleb-taggedµ+3 jets signal candidate event.

The x-axis is horizontal pointing right and they-axis is vertical pointing up. Hits in the

inner tracking system are shown as red dots and blue circles,reconstructed tracks are shown

as black lines and electromagnetic and hadronic energy deposits in the calorimeter towers

are illustrated as red and blue bars. The yellow bar (bottom)is the reconstructed missing

transverse energy vector,~/ET , the green bar (bottom-right) is a muon. The jet to the right

is a forward jet(η = 2.2) that is notb-tagged, the other two jets are bothb-tagged. Other

views of the same event can be seen in Figures A.5 and A.6.
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Figure A.5: Side view of the doubleb-taggedµ+3 jets signal candidate event show in Fig-

ure A.4. Thez-axis points to the right, and the outer, thin lines are linesof constantη drawn

in increments of 0.1. The bars illustrate energy deposits inthe electromagnetic (red) and

hadronic (blue) layers of the calorimeter towers. The upperhalf of the plot illustrates the

positivey hemisphere(0 < φ < π) and the lower half represents the opposite hemisphere

(π < φ < 2π).
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Figure A.6: (η,φ) “lego plot” of the doubleb-taggedµ+3 jets signal candidate event show

in Figures A.4 and A.5. The green bar illustrates the(η, φ)-coordinates and the momentum

of the muon, the yellow bar shows the magnitude and theφ-coordinate of the/ET (it is

placed atη = 0 since thez-coordinate is unknown). The red and blue bars again show the

electromagnetic and hadronic energy deposits in the calorimeter, respectively.



Appendix B

Systematic Uncertainties

B.1 Systematics Affecting Normalization Only

Tables B.1–B.6 show the systematic uncertainties on the signal and background samples

that affect the normalization only. There are also three systematics sources that affect

the shapes of the distributions: jet energy scale, tag-ratefunctions, andALPGEN W+jets

reweighting factors. These effects are not included in the tables since they are treated dif-

ferently in the calculations, and are discussed separatelyin Section B.2

The tables show the correlations between various background components and analysis

channels for each uncertainty. A systematic uncertainty isassumed to be fully correlated

between all signal or background samples within a given row in each table, and for rows

with the same name in different tables. This does not fully apply to the lepton identification

and trigger uncertainties, which are treated independently for electrons and muons and the

Run IIa and Run IIb run periods.

Since theW+jets and multijets backgrounds are normalized to data before b tagging (Sec-

tion 5.4.6), the simulatedW+jets components are not affected by most of the systematic

uncertainties. However, there are uncertainties on the relative compositions of theW+jets

components, and due to theW+jets and multijets normalization. These uncertainties are

anticorrelated due to the constraint to match data beforeb-tagging, which is indicated by

148



APPENDIX B. SYSTEMATIC UNCERTAINTIES 149

giving one of the values a negative sign. It should also be pointed out that there is a nor-

malization uncertainty due to theb tagging of the simulated samples, which is not shown in

the tables. This uncertainty is roughly 7% and 11% for eventswith one and twob-tagged

jets respectively (see Figures B.1-B.4).
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Single-Tagged Two-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 0.7 — 0.7 0.7

ISR/FSR 3.0 — — — 8.0 8.0 8.0 0.6 — 0.6 0.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −1.5 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 2.3 2.3 2.3 — — — — −42.0 — —

Double-Tagged Two-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 0.7 — 0.7 0.7

ISR/FSR 3.0 — — — 8.0 8.0 8.0 0.6 — 0.6 0.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −1.5 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 2.3 2.3 2.3 — — — — −42.0 — —

Table B.1: Systematic uncertainties for the Run IIa electron channels with two jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).
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Single-Tagged Three-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.1 — — — 4.0 4.0 4.0 3.7 — 3.7 3.7

ISR/FSR 2.8 — — — 8.0 8.0 8.0 5.2 — 5.2 5.2

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Double-Tagged Three-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.1 — — — 4.0 4.0 4.0 3.7 — 3.7 3.7

ISR/FSR 2.8 — — — 8.0 8.0 8.0 5.2 — 5.2 5.2

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Table B.2: Systematic uncertainties for the Run IIa electron channels with three jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).



APPENDIX B. SYSTEMATIC UNCERTAINTIES 152

Single-Tagged Four-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 4.7 — 4.7 4.7

ISR/FSR 0.6 — — — 8.0 8.0 8.0 12.6 — 12.6 12.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.7 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Double-Tagged Four-Jet Electron Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 4.7 — 4.7 4.7

ISR/FSR 0.6 — — — 8.0 8.0 8.0 12.6 — 12.6 12.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.7 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 13.7 13.7 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Table B.3: Systematic uncertainties for the Run IIa electron channels with four jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).
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Single-Tagged Two-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 0.7 — 0.7 0.7

ISR/FSR 3.0 — — — 8.0 8.0 8.0 0.6 — 0.6 0.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −40.0 — —

Double-Tagged Two-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 0.7 — 0.7 0.7

ISR/FSR 3.0 — — — 8.0 8.0 8.0 0.6 — 0.6 0.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −40.0 — —

Table B.4: Systematic uncertainties for the Run IIa muon channels with two jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).
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Single-Tagged Three-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.1 — — — 4.0 4.0 4.0 3.7 — 3.7 3.7

ISR/FSR 2.8 — — — 8.0 8.0 8.0 5.2 — 5.2 5.2

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Double-Tagged Three-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.1 — — — 4.0 4.0 4.0 3.7 — 3.7 3.7

ISR/FSR 2.8 — — — 8.0 8.0 8.0 5.2 — 5.2 5.2

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.8 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Table B.5: Systematic uncertainties for the Run IIa muon channels with three jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).
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Single-Tagged Four-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 4.7 — 4.7 4.7

ISR/FSR 0.6 — — — 8.0 8.0 8.0 12.6 — 12.6 12.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.7 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Double-Tagged Four-Jet Muon Channel Percentage Uncertainties

tt̄ Wbb̄ Wcc̄ Wlp Zbb̄ Zcc̄ Zlp dibosons multijet tb tqb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1

Xsect. 12.7 — — — 5.8 5.8 5.8 5.8 — 11.2 7.4

Branching frac. 1.5 — — — — — — — — 1.5 1.5

PDF — — — — — — — — — 3.0 3.0

Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0

Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Prim. vertex 1.4 — — — 1.4 1.4 1.4 1.4 — 1.4 1.4

Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5

Jet frag. 0.7 — — — 4.0 4.0 4.0 4.7 — 4.7 4.7

ISR/FSR 0.6 — — — 8.0 8.0 8.0 12.6 — 12.6 12.6

b-jet frag. 2.0 — — — 2.0 — — — — 2.0 2.0

Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0

Jet res. 4.0 — — — 4.0 4.0 4.0 4.0 — 4.0 4.0

SW
HF — 13.7 −0.7 13.7 — — — — — — —

Sratio
HF — −5.0 — 5.0 — — — — — — —

SZ
HF — — — — 20.0 20.0 — — — — —

IKS — 1.8 1.8 1.8 — — — — −30.0 — —

Table B.6: Systematic uncertainties for the Run IIa muon channels with four jets. The

shape-shifting systematic uncertainties are not shown in these tables (see Section B.2).
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B.2 Shape-Changing Systematics

To evaluate the uncertainties on the jet energy scale and theb-tagging efficiency, four ad-

ditional sets of simulated samples are produced with these quantities shifted up and down

by one standard deviation of their uncertainty. TheW+jets samples are also re-reproduced

with the all ALPGEN reweightings (Section 5.4.4) shifted up and down by one standard

deviation. The yield subsets (Section 7.1.1) of these six samples are passed through the

final boosted decision trees, and new discriminant output histograms are produced. Some

of these histograms from the 1tag-2jet channels are seen in Figures B.1 and B.2, and from

the 2tag-2jet channels in in Figures B.1 and B.2. The difference between the histogram is

the uncertainty used in the cross section calculation as explained in Section 7.2.2.
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Figure B.1: Shape-shifting systematics for Run IIb,e+jets, 2jets-1tag. The boosted decision

tree distributions are produced from the nominal and shifted samples. We have single top

(left) and all backgrounds combined (right) for jet energy scale (top row),b tagging (middle

row) andALPGEN reweighing forW+jets only (bottom plot).
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Figure B.2: Shape-shifting systematics for Run IIb,µ+jets, 2jets-1tag channel. The boosted

decision tree distributions are produced from the nominal and shifted samples. We have sin-

gle top (left) and all backgrounds combined (right) for jet energy scale (top row),b tagging

(middle row) andALPGEN reweighing forW+jets only (bottom plot).
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Figure B.3: Shape-shifting systematics for Run IIb,e+jets, 2jets-2tag channel. The boosted

decision tree distributions are produced from the nominal and shifted samples. We have sin-

gle top (left) and all backgrounds combined (right) for jet energy scale (top row),b tagging

(middle row) andALPGEN reweighing forW+jets only (bottom plot).
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Figure B.4: Shape-shifting systematics for Run IIb,µ+jets, 2jets-2tag channel. The boosted

decision tree distributions are produced from the nominal and shifted samples. We have sin-

gle top (left) and all backgrounds combined (right) for jet energy scale (top row),b tagging

(middle row) andALPGEN reweighing forW+jets only (bottom plot).



Appendix C

Decision Tree Outputs

This appendix presents the boosted decision tree output distributions for all of the 24 indi-

vidual channels. Each distribution is shown both using linear and log scale of they-axis.
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Figure C.1: Boosted decision tree discriminant output distributions for the six Run IIa

e+jets channels with two (left column), three (middle column) and four (right column) jets

and one and twob-tagged jets (alternating rows) using linear scale (top tworows) and log

scale (bottom two rows). The plot key can be seen in Figure 5.6.
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Figure C.2: Boosted decision tree discriminant output distributions for the six Run IIa

µ+jets channels with two (left column), three (middle column) and four (right column) jets

and one and twob-tagged jets (alternating rows) using linear scale (top tworows) and log

scale (bottom two rows). The plot key can be seen in Figure 5.6.
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Figure C.3: Boosted decision tree discriminant output distributions for the six Run IIb

e+jets channels with two (left column), three (middle column) and four (right column) jets

and one and twob-tagged jets (alternating rows) using linear scale (top tworows) and log

scale (bottom two rows). The plot key can be seen in Figure 5.6.
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Figure C.4: Boosted decision tree discriminant output distributions for the six Run IIb

µ+jets channels with two (left column), three (middle column) and four (right column) jets

and one and twob-tagged jets (alternating rows) using linear scale (top tworows) and log

scale (bottom two rows). The plot key can be seen in Figure 5.6.



Appendix D

Cross Check Samples

This Appendix presents the boosted decision tree output distributions for twoW+jets and

tt̄ cross check samples in Figures D.1 and Figures D.2 respectively. Figure D.3 shows

the boosted decision tree output for the data, signal and background samples before any

b-tagging selection is applied.

TheW+jets andtt̄ cross check samples are defined as follows:

• “W+jets” (2 jets, 1 tag,HT < 175 GeV),

• “ tt̄” (4 jets, 1–2 tags,HT > 300 GeV).
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Figure D.1: Boosted decision tree discriminant output distributions for the “W+jets” sam-

ple for thee+jets (left) andµ+jets (right) and Run IIa (top row) and Run IIb (bottom row)

channels. The plot key can be seen in Figure 5.6.
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Figure D.2: Boosted decision tree discriminant output distributions for the “tt̄” sample for

thee+jets (left) andµ+jets (right) and Run IIa (top row) and Run IIb (bottom row) channels.

The plot key can be seen in Figure 5.6.
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Figure D.3: Boosted decision tree output distributions for the each of the 12 pre-tag chan-

nels, meaning the samples split by run period, jet and tag multiplicity before anyb-tagging

selection is applied. p17 and p20 refers to the Run IIa and Run IIb run periods respectively.

The plot key can be seen in Figure 5.6.



Appendix E

Combined Results

This appendix presents the results from the other multivariate analyses that were conducted

using the same data and simulated samples as the boosted decision tree analysis presented

in this thesis.

The other two individual analyses use Bayesian neural networks (BNN) [81, 82] and the

Matrix Element method (ME) [83, 84] to separate single top from backgrounds. Both of

these analyses are updated versions of the previous analyses [5], which established the first

evidence for single top quark production in 2006.

As discussed in Section 7.4.1, the three individual multivariate outputs were used as input

to a second layer of Bayesian neural network. The resulting super discriminant (BNN com-

bination output) is more powerful than any of the discriminants for the individual analyses.

The discriminant outputs for the individual multivariate techniques, as well as the combina-

tion, are presented in Figure E.1, and the cross section and significance measurements are

shown in Table E.1. The boosted decision tree analysis is more sensitive than the BNN and

ME analyses, but not as sensitive as the BNN combination.

The BNN combination output is also used to derive a cross section measurement yielding:

|fL
1 Vtb| = 1.07 ± 0.12, and|Vtb| > 0.78 at the 95% confidence level.
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Figure E.1: The discriminant output distribution for all channels combined for boosted

decision trees (a), Bayesian neural networks (b), the matrixelement method (c) and the

BNN combination (d). The BDT distribution is the same shown in Figure 7.19, but a

different binning is used.
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Multivariate Analysis Results

Significance Measured

Analysis Expected Observed σs+t [pb]

Boosted decision tree 4.3σ 4.6σ 3.7+1.0
−0.8

Bayesian neural networks 4.1σ 5.2σ 4.7+0.9
−0.9

Matrix elements 4.1σ 5.0σ 4.3+0.9
−0.9

BNN combination 4.5σ 5.0σ 3.9+0.9
−0.9

Table E.1: Expected and observed significances and measuredsingle top cross sections for

the three different multivariate techniques and their combination. The boosted decision tree

analysis is the most sensitive of the ordinary multivariateanalyses with an expected sig-

nificance of4.3σ. This significance improves as the analyses are combined. The observed

significance for the BNN combination is5σ, corresponding to the first observation of single

top quark production.
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