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ABSTRACT

A search was conducted for evidence of large extra dimensions (LED) at Fermi National

Accelerator Laboratory’s Tevatron using the DØ detector. The Tevatron is a pp collider at a

center of mass energy of 1.96 TeV. Events with particles escaping into extra dimensions will

have large missing energy. The search was carried out using data from a total luminosity of

197 ± 13 pb−1 with an observable high transverse momentum photon and a large transverse

missing energy. The 70 observed events are consistent with photons produced by standard

known reactions plus other background processes produced by cosmic muons. The mass

limits on the fundamental mass scale at 95% confidence level for large extra dimensions of

2, 4, 6 and 8 are 500 GeV, 581 GeV, 630 GeV, and 668 GeV respectively.
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CHAPTER 1

Introduction

The need to understand nature around us has led human beings to undertake one of the

greatest journeys in our relatively brief history. To make progress in this journey, we have

constructed theories and models that have shed some light into how the universe works.

Particle Physics, in particular, is concerned with the understanding of matter at the smallest

scales and energy at the largest scales. History records that one of the fundamental ideas

of particles physics, the existence of an indivisible piece of matter, started in ancient times.

Democritus, about 2500 years ago, postulated that matter could not be divided indefinitely

[1]. He referred to these smallest pieces of matter as atoms.

At present times, scientific developments has brought us the Standard Model (SM) of

Particles and Interactions which is a triumph of theoretical thought and experimentation. It

is believed to be a description of the fundamental particles and their interactions and many

of its predictions have been confirmed by experimentation. The SM has unified the strong

and electroweak interactions under the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y at energy

scales of about 102 GeV [3]. To name a few of these experimental successes, the W and Z

bosons were discovered at CERN by the UA1 and UA2 collaborations in 1983 [11, 12], and

the top quark was discovered at Fermilab’s Tevatron by the DØ and CDF collaborations

in 1995 [13, 14]. Despite all of the SM successes, it is not a complete model since gravity

is not included. To date, we do not have a unification of gravity with the other forces at

energies that can be probed with present day accelerators. String theories appear to be a

promising quantum theory of gravity but they require extra space-like dimensions for them

to be mathematically consistent. Superstrings, in particular, requires the existence of 7 extra

dimensions and it unifies gravity with the other forces at the Plank Scale (MP ) which is of

order 1019 GeV. A comprehensive review of the SM is beyond the scope of this dissertation,
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however, an overview is included in section 2.1 which contains references that the reader can

review for a complete discussion.

String theorists have pointed out that explicit calculations in the strong coupling regime

using string duality show that the string scale, MS, receives large corrections and can be

lowered from MP to values comparable with gauge coupling unification [15]. Recently, it

was suggested that MS is not necessarily tied to MP and can be as low as the electroweak

scale in the theories with Large Extra Dimensions (LED) [16]. This is an exciting result to

experimentalists because it suggest that a unification of Gravity with the other forces might

be proved with present day accelerators. The topic of this dissertation is a search for LED

where a proton and an antiproton collide producing a single photon and a massive graviton

which then escapes detection and leads to missing transverse momentum. Data collected by

the DØ collaboration at Fermilab is used.
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CHAPTER 2

Theories

2.1 The Standard Model

The Standard Model (SM) is a Quantum Field theory based on the principle of local

gauge symmetry under transformations of the group SU(3)C ⊗ SU(2)L ⊗ U(1)Y
1 as noted

in the introduction. It collectively incorporates the strong and electroweak interactions

of elementary particles [2]. SU(3)C is the symmetry group of strong interactions known

as Quantum Chromodynamics (QCD). SU(2)L ⊗ U(1)Y represents the symmetry group

describing the unified weak and electromagnetic processes. The model arranges all particles

into two groups:

• Fundamental fermions with intrinsic spin 1
2
.

• Gauge vector bosons with integral spin 1.

Fermions are subdivided into colored quarks2 and non-colored leptons. Tables 2.1 and 2.2

list the names and some properties of quarks and leptons respectively. The SM does not

put a limit on the number of generations of quarks and leptons. However, it does require

that both leptons and quarks appear in left-handed doublets and right-handed singlets for

purposes of electroweak interactions. The fundamental fermions interact by the exchange of

gauge bosons. In total, there are twelve such bosons with the following properties:

• Eight massless, colored gluons3, which mediate the strong interaction, coupling to the

color SU(3)C charge.

1C stands for color, L for weak-isospin, and Y for weak-hypercharge
2Quarks participate in the strong interaction and come in three colors; red, green, and blue (RGB).
3Conventionally named gi, where i = 1...8 and corresponds to the 32− 1 generations of the SU(3)

symmetry group.
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Table 2.1: Quark family in the Standard Model and some individual properties. The quarks
have been divided in terms of their generation with the mass values and ranges obtained
from the Particle Data Book [5].

Particle Symbol Electric Charge Mass(GeV)

Up u +2
3

1.5 ∼ 4× 10−3

Down d −1
3

4 ∼ 8× 10−3

Charm c +2
3

1.35 ∼ 1.5
Strange s −1

3
0.08 ∼ 0.130

Top t +2
3

174.3± 5.1
Bottom b −1

3
4.1 ∼ 4.4

Table 2.2: Lepton family in the Standard Model and some individual properties. The leptons
are divided in terms of their generation. [5].

Particle Symbol Electric Charge Mass(MeV)

Electron e −1 0.511
Electron Neutrino νe 0 < 3× 10−6

Muon µ −1 105.7
Muon Neutrino νµ 0 < 0.19

Tau τ −1 1777
Tau Neutrino ντ 0 < 18.2

• Two W bosons (W±) and a Z0 for weak interactions.

• The massless photon (γ) which carries the electromagnetic force.

The W±, Z0, and the γ mix and form the gauge fields of the SU(2)L ⊗ U(1)Y sector of

the electroweak interactions. Table 2.3 lists the force carriers in terms of their interaction

type and it also contains some of their properties. Hadrons are composite particles made of

quarks and/or gluons. Protons and antiprotons, for example, are hadrons made of u and d

quarks but there are many other possible combinations to make baryons4 and mesons5[6].

Tables 2.4 and 2.5 lists some hadrons of the baryon and meson families respectively.

4Baryons are particles made from a basic structure of three quarks or antiquarks.
5Mesons are color neutral particles with basic structure of one quark and one antiquark
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Table 2.3: Gauge bosons and their basic properties in the SM. The bosons are arranged in
terms of the force they carry. The masses are a world average including direct measurements
[5].

Force Carrier Force Mass (GeV) Electric Charge Spin Color Charge

Gluon (g) Strong 0 0 1 R G B
W+ 80.417± 0.035 1 1
W− Weak 80.417± 0.035 -1 1 Neutral
Z 91.187± 0.007 0 1

Photon (γ) EM 0 0 1 Neutral

Table 2.4: List of a few baryons and some of their properties.

Symbol Name Quark Content Electric Charge Mass (GeV) Spin

p Proton uud 1 0.938 1/2

p Antiproton uud -1 0.938 1/2
n Neutron udd 0 0.940 1/2
Λ Lambda uds 0 1.116 1/2
Ω− Omega sss -1 1.672 3/2

The SM Lagrangian is:

L = qγµ(i∂µ − gsTaG
a
µ)q − 1

4
Ga

µνG
µν
a

+ Lγµ

(
i∂µ −

g

2
τ �Wµ −

g
′

2
BµY

)
L

+ Rγµ

(
i∂µ −

g
′

2
BµY

)
R (2.1)

− 1

4
W a

µνW
aµν − 1

4
BµνB

µν

+

∣∣∣∣(i∂µ −
g

2
τ �Wµ −

g
′

2
BµY

)
φ

∣∣∣∣2 − V (φ)

− Ge(LφR +Rφ†L− h.c.).

which observes the SM gauge symmetries. In Equation 2.1, the first line describes the strong

interaction which has a strong coupling constant gs and involves the gluon gauge field. The

second, third and fourth lines describe the electroweak interaction, which has the coupling
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Table 2.5: List of a few Mesons and some of their properties.

Symbol Name Quark Content Electric Charge Mass (GeV) Spin

π+ Pion ud +1 0.140 0

π0 Pion uu-dd/
√

2 0 0.135 0
π− Pion du -1 0.140 0

K− Kaon sd -1 0.494 0

ρ+ Rho ud +1 0.770 1

constants g and g
′

and involves the electroweak gauge fields W and B. Had the masses

of the particles been zero, the SM could be completely formulated with the first four lines

[3]. However, in order to generate mass, the SM spontaneously breaks its own symmetry

through a mechanism called the Higgs mechanism. A discussion of the Higgs mechanism

is beyond the scope of this dissertation. However, the reader is pointed to reference [4], in

particular, and many other publications for an in depth discussion. The fifth line introduces

two SU(2)L ⊗ U(1)Y gauge invariant terms for a scalar field, with the second term, V (φ),

being the Higgs potential. If the Higgs potential is in the following form:

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.2)

with µ2 < 0 and λ > 0, the W and B field will mix to give rise to three massive gauge

bosons and one massless gauge boson, listed in table 2.3. The sixth line describes the Yukawa

coupling between the fermions and the scalar fields which gives mass to the fermions.

2.2 Motivation for New Physics

The standard model is indeed a great scientific achievement and it is the driving force in

particle physics. As mentioned before, nearly all of its predictions have been experimentally

confirmed to a high degree of precision. However, there are problems that the SM does not

address. A few of these are:

• The hierarchy problem which is discussed below.

• Dark Matter: The motion of stars about the galactic center or that of galaxies in

galaxy clusters can not be explained with observed mass distributions. It seems that
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the observed matter is not enough to account for the observed motion; more mass is

needed. Its properties are not like those of visible matter in that it only manifests itself

gravitationally [7]. Therefore, dark matter is not included or predicted by the SM.

• Dark Energy: In cosmology, dark energy is a hypothetical form of energy which

permeates all of space and has strong negative pressure. According to the theory

of relativity, the effect of such a negative pressure is qualitatively similar to a force

acting in opposition to gravity at large scales. Invoking such an effect is currently the

most popular method for explaining recent observations that the universe is expanding

at an accelerating rate, as well as accounting for a significant portion of the energy

balance of the universe [8].

• Unification of gauge couplings: In the SM, unification of gauge couplings does not

occur. Super Symmetry (SUSY) is an extension of the SM and it contain coupling

unification. However, its predictions have yet to be confirmed by experimentation. For

a complete discussion of SUSY, the reader is pointed to Ref. [9].

• Charge Parity (CP) violation and the observed ratio of matter to antimatter: Without

CP violation, the existence of the universe as we know it would not be possible. For a

complete discussion of CP Violation, see Reference [10].

The hierarchy problem has to do with the difference between the electroweak scale

(MEW ) and the Planck scale (MP ) where gravity is expected to become as strong as gauge

interactions. The smallness and radiative stability of the hierarchy MEW/MP ∼ 10−17 has

relied on low energy supersymmetry or technicolor for possible explanations. Recent work

that utilizes large spatial extra dimensions brings forth a framework for solving the hierarchy

problem. In this framework, MP , MD and the grand unification scale (MGUT ) may be brought

down to the TeV scale. The observed weakness of gravity at long distances is postulated

to be due to its expansion into sub-millimeter extra spatial dimensions. In this picture

the SM fields are localized to a (3+1)-dimensional brane or ‘3-brane’, but the graviton6 is

free to propagate in the extra dimensions, as suggested by Arkani-Hamed, Dimopoulos, and

Dvali[16]. The hierarchy problem can be related to the problem of the largeness of the extra

dimensions.
6The graviton is the particle that carries the gravitational force. It is massless, chargeless and a gauge

boson of spin 2.

7



Table 2.6: Size of the extra dimensions for MD ∼ 1 TeV and different values of n.

n 1 2 3 4
R 1.2× 1012 m 0.48 mm 3.6 nm 9.7× 10−12 m

The relative weakness of gravity with respect to weak forces is related to the size of the

compactified extra dimensions, which maybe large in units of TeV−1. In the 3+1-dimensional

space, Newton’s constant can be expressed as [16, 17]

G−1
N = 8πRnM2+n

D (2.3)

where MD ∼ TeV is the fundamental mass scale, n is the number of extra dimensions, and

R is the radius of the compactified space which is assumed to be a torus. The hierarchy

problem is avoided because there is a single fundamental mass scale MD which is identified

with the MEW . Their relationship is

R =
1

n
√

8πMD

(
MP

MD

)2/n

. (2.4)

Table 2.6 contains the sizes of the extra dimensions as function of the number of extra

dimensions assuming MD ∼ 1 TeV. For n = 1, R is of the size of the solar system which is

very large. This is ruled out by the known inverse square law of the gravitational force at

large distances. For the case when n = 2, the current limit is R < 0.19 mm, as shown in

figure 2.1 [18]. The figure shows the 95% confidence level upper limit on the inverse square

law violating interactions of the general expressions of the Newtonian gravitational potential:

v(r) = −Gm1m2

r
(1 + αe−r/λ). (2.5)

The most simple scenario with two large extra dimensions predicts that λ = R and α = 3

or α = 4 for compactification on a 2-sphere or a 2-torus, respectively[19]. In figure 2.1, the

intersection point of the 2 extra dimensions noted by the double line and the heavy line

labeled Eöt-wash gives us R < 0.19 mm [18]. Therefore, n > 2 is out of the reach of direct

gravitational measurements and the compactification radius drops as a power law.

Observations from the 1987 supernova in the Large Magellanic Cloud placed rather

stringent astrophysical bounds on MD. These bounds come from the requirement that
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Figure 2.1: 95% confidence level upper limits on the inverse square law violating interactions
of the form given by Eq. 2.5

graviton emissions do not rapidly cool the hottest system, such as stars, preventing the

occurrence of the observed neutrino flux. This bound has been estimated to be about

MD & 10
15−4.5n

n+2 TeV [16], so that MD = 30 TeV for n = 2 and 2 TeV for n = 3. Therefore,

this astrophysical constraint excludes observable signals for n = 2, and limits the available

region for n > 2.

By first compactifying the higher-dimensional theory and constructing a 3+1 dimensional

low-energy effective field theory of the graviton Kaluza-Klein (KK) excitations and their

interactions with ordinary matter, the consequences of the supposition that the observed

smallness of Newton’s constant is a consequence of the large compactified volume of the

extra dimensions could be investigated [17][20]. From the 3 + 1 dimensional space time point

of view, a graviton in the extra dimensions is equivalent to a tower of an infinite number

of KK states. These states are with mass splittings MKK = 2π/R, which is Mk = 2πk/R

(k = 0, 1, 2, ...,∞). Each of these KK modes is very weakly coupled (1/MP ), however their

high multiplicity can give a large enhancement to any effect they mediate. The coupling
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becomes proportional to 1/MD rather than 1/MP . The gravitational interaction is as strong

as the electroweak interaction, since MD is in the TeV range. The mass of each KK mode

corresponds to the modulus of its momentum in the direction transverse to the brane. The

scenarios of a massive KK graviton propagating in four dimensions and of a massless graviton

propagating in D = 4+n dimensions are equivalent. Note that a massive spin 2 particle has

5 degrees of freedom [17].

2.3 Graviton Production at Collider Experiments

The different excitations of graviton KK modes have mass splittings [17]

∆m ∼ 1

R
= MD

(
MD

MP

)2/n

∼
(
MD

TeV

)n+2
2

10
12n−31

n eV, (2.6)

where MP is the reduced Planck mass, MP = MP/
√

8π. With MD = 1 TeV and n = 4,

6, 8, ∆m = 20 keV, 7 MeV, and 0.1 GeV, respectively. The mass splitting only becomes

comparable with the experimental energy resolution for a large number of extra dimensions,

but then only a small number of KK modes can be produced and the total cross section is

very small and unobservable. When the number of extra dimensions is not too large, less

than 10, the enormous number of accessible KK modes can compensate the 1/M
2

P factor in

the scattering amplitude which is the case of interest.

For experimental applications, it is convenient to describe the relevant observables for

graviton production in terms of the inclusive cross sections. For not too large n, ∆m is

small enough that the sum over the different KK states can be replaced by a continuous

integration. The differential cross section of inclusive graviton production is[17]:

d2σ

dtdm
= Sn−1

M
2

P

M2+n
D

mn−1dσm

dt
, (2.7)

where Sn−1 is the surface of a unit-radius sphere in n dimensions,

Sn−1 =
2πn/2

Γ(n/2)
, (2.8)

and dσm/dt is the differential cross section for producing a single KK graviton of mass m.

From the point of view of the D-dimensional theory, the cross section for an initial brane

state |p1, p2〉 to go in a final brane state |f〉 plus a bulk graviton |G〉 is then

dσ =
Sn−1m

n−1dm

M2+n
D

|〈f,G|T µνhµν |p1, p2〉|2(2π)4δ4(Pi − Pf )
dΦf

F (p1, p2)
(2.9)
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where T µν is the energy-momentum tensor, dΦf is the brane final state phase space, and

F (p1, p2) is the usual flux factor for two particle collision. This equation agrees with Equation

2.7 [17]. The cleanest process for graviton production comes from events with a photon and

/ET in the final state. This production arises from the sub-process qq → γG, pictured in

Figure 2.2. The differential cross-section for producing a Kaluza-Klein graviton of mass m

Figure 2.2: Single Vector boson production at hadron or e+e− colliders. Here, f(f̄) can be
a quark(anti-quark) or a lepton(anti-lepton).

and a photon in a fermion-antifermion collision is

dσm

dt
(ff → γG) =

αQ2
f

16Nf

1

sM
2

P

F1(t/s,m
2/s). (2.10)

Here Qf and Nf are the electric charge and number of colors of the fermion f , and F1 is:

F1(x, y) =
1

x(y − 1− x)
[−4x(1 + x)(1 + 2x+ 2x2) (2.11)

+ y(1 + 6x+ 18x2 + 16x3)− 6y2x(1 + 2x) + y3(1 + 4x)],
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For the real graviton emission, the production cross section ranges from 102 pb to 101 pb for

different values of n and MD, which will be shown in Section 5.3 for the chosen kinematic

region. In the Figure 2.3, the total cross section for pp → γ + /ET at
√
s = 2 TeV as a

function of Emin
T,γ with MD = 1.0 TeV fixed, and |ηd| < 3 is shown7. The dotted line labeled

Figure 2.3: Total γ + /ET cross-section versus Emin
Tγ for n = 4, 6 and the SM background.

‘SM Background’ marks the expected total standard model background for the single photon

and /ET signal. The other two lines labeled n = 4, 6 show what the Large Extra Dimensions

signal would look like for 4 and 6 extra dimensions. Based on what is shown, the transverse

momentum cut will be > 55 GeV/c to minimize SM background contribution and maximize

LED signal/background ratio.

Gravitons couple to matter only gravitationally, but the 1/M
2

P suppression present in

7Here, |ηd| is the detector pseudorapidity which is defined in Section 3.1.1.
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their production cross section can be compensated by the large multiplicity of the KK modes

or, in other words, by the D-dimensional phase-space factor. On the other hand, the 1/M
2

P

suppression in the graviton decay rate into ordinary matter is not compensated by the phase

space and thus its lifetime is τG ∼M
2

P/m
3 (TeV/m)×103 seconds with graviton mass m[17].

The 1/M
2

P suppression factor can also be interpreted as the small probability that a graviton

propagating in the D-dimensional space crosses the three-dimensional brane.

For experimental purposes, this means that the KK graviton behaves like a massive, non-

interacting, stable particle and its collider signature is an imbalance in final state momenta

and missing mass. The graviton has a continuous distribution in mass described by Equation

2.7. This mass distribution corresponds to the probability of emitting gravitons of different

momenta into the extra dimensions. This is a specific feature of the graviton signal relative to

any other new processes. Also, for graviton production in the perturbative regime, each extra

particle in the final state is associated with an extra suppression factor, so the missing energy

signal is unlikely accompanied by a variety of leptons and hadronic activity coming from the

decay of heavier particles. The emission of a single graviton into the extra dimensions violates

momentum conservation along the directions transverse to the brane since translational

invariance in the D-dimensional space is broken by the presence of the brane. From a four-

dimensional point of view, energy and momentum are conserved, but the KK gravitons can

have any arbitrary mass smaller than about MD[17]. In the ADD formalism, MD can have

any value. However, it is noteworthy to point out that the smaller the value of MD, the

larger the size of the extra dimensions and vice versa. The main purpose of this study is

to set better limits from those already published for MD in this particular channel since a

discovery of LED is unlikely.

Since the graviton escapes into extra dimensions, this would result in a large missing

transverse energy (/ET ) signature at DØ along with a photon with large transverse energy

ET , so the search signature is an event with large ET photon and high /ET . This signal

contains only one irreducible physics background, which is qq̄ → Zγ → νν̄γ. Additional

backgrounds are instrumental backgrounds from photon mis-measurement, direct photon,

cosmic rays, etc. All of which will be discussed in coming chapters.
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CHAPTER 3

Experimental Apparatus

This chapter describes the Fermilab Tevatron pp accelerator complex and the DØ detector

during its second operating period, known as Run II. Both the accelerator and the DØ de-

tector have completed a major upgrade in preparation for an extended run that began in

early March, 2001. Emphasis is placed here on these upgraded components.

3.1 Definitions and Conventions

A few definitions and conventions used in the experiment are given below. Unless otherwise

specified, these definitions will be assumed for the remainder of the dissertation.

3.1.1 Coordinate Systems

A right-handed cylindrical coordinate system (r, φ, z) is the convention used to describe

interactions occurring at DØ . The origin is taken at the nominal detector center: (x, y, z) =

(0, 0, 0,). The direction of the antiproton (p) beam defines the polar axis (i.e., the z-axis, θ =

0) with the positive y-axis pointing vertically up. In certain instances, spherical coordinates

(r, φ, θ) are used. The angle θ defines the polar angle relative to the beam direction, and

φ defines the azimuth about the beam direction with respect to the positive x-axis. The

rapidity, y, is defined as:

y =
1

2
ln

(
E + pz

E − pz

)
(3.1)

and the pseudo-rapidity, η, is defined as:

η = −ln(tan

(
θ

2

)
). (3.2)
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where m is the invariant mass m2 = E2 − p2 1; in the limit m � E, η ≈ y. Consequently,

the rapidity variable y (or η) is often used in place of the polar angle, θ, because it contains

convenient transformation properties under Lorentz boost along the beam direction. Thus,

the spatial vectors of detector elements are usually denoted by (r, φ, η).

Additionally, in pp collisions, the momenta near the beam direction of the constituents

are not known since many of the collision products may escape detection down the beam

pipe. As a result, another physically important quantity, which is also proportional to the

“intensity” of the interactions, is the transverse momentum, pT , of the secondary particles

and is defined as the momentum vector projected onto a plane perpendicular to the beam

axis. pT is effectively conserved because particles in the beam pipe have very small pT .

Therefore, in reconstructing events it becomes convenient to use:

pT = p× sinθ (3.3)

and similarly, a transverse energy, ET , whose direction is taken to be the same as the pT

vector:

ET = E × sinθ (3.4)

3.1.2 Luminosities and Cross Sections

Any measurement of the reaction rate is often expressed in terms of a cross section, σ, the

interaction probability per unit flux. The particle flux is known as the luminosity, L; for

colliding-beam machines, it is proportional to the product of the number of particles passing

through a unit area per unit time in each direction. Luminosities are typically given in units

of cm−2s−1, whereas cross sections are often expressed in barns, where 1 barn = 10−24 cm2.

The product of the luminosity and cross section subsequently yields the reaction rate, R,

expressed in units of hertz:

R = σL (3.5)

A luminosity of about 0.4× 1031 cm−2s−1 is expected at the Tevatron during Run II. In

the first part of the 2006 running period, an instantaneous luminosity of 15.9× 1031cm2s−1

1In high energy particle physics, the natural units system is used. In this system, the speed of light (c)
and Planck’s constant divided by 2π (~) are set to 1, i.e c = ~ = 1.
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had been achieved [21]. Further, in order to prevent saturation2, the rate for an experiment

is often limited to a specified bandwidth and is established by event filters or triggers (See

Sec. 3.4) made possible through a combination of detector and software selection algorithms

characterizing a desired physics signature. Within any interval of time during which an

experiment operates, the number of expected events, N , of a specific type is determined by

integrating the rate with respect to time:

N = σ

∫
Ldt (3.6)

The quantity
∫
Ldt is referred to as the integrated luminosity (Lint). A goal of 2 fb−1

of total Lint is expected for Run IIa, at which time additional upgrades to the accelerator

and to portions of the DØ detector will extend the run to 8 fb−1 and beyond. This latter

operating period has been classified as Run IIb. As of mid 2006, the delivered Lint stands

at 1.41 fb−1 of which DØ has recorded 1.19 fb−1.

3.2 The Tevatron

The Tevatron, is located at the Fermi National Accelerator Laboratory near Chicago, Illinois.

It is currently the worlds most energetic accelerator, with a center of mass energy of 1.96 TeV.

A general layout of the accelerator complex is shown in Fig. 3.1. The Tevaton serves as a

storage ring in which protons and antiprotons circulate in opposite directions and are brought

into collisions at two points, the B0 and D0 beam crossing areas. It is at these areas where

the two main experiments at the Tevatron are located, CDF and DØ respectively. Between

1989-1996, collisions took place at a center-of-mass (CMS) energy of 1.8 TeV. The subsequent

analysis of this data led to the discovery of the top-quark by the two collaborations[13, 14].

The Tevatron primarily consists of two basic components: superconducting magnets and

radio frequency (RF) cavities. Protons and antiprotons complete many cycles in opposing

directions around the accelerator ring, each time being appropriately bent into a circular

orbit by the magnets and receiving a small boost of energy at a RF cavity. The final beams

are made to interact, colliding at the two experimental areas. However, the overall process

leading to collisions at each of these two points is much more complicated, requiring detailed

2Since data can be written to tape at a rate of less than 100 events per second and the events rate is
over 10,000 events per second, a sophisticated selection is required. This is called the trigger system and it
requires both hardware and software.
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Figure 3.1: Schematic of the Run II Fermilab accelerator complex.

considerations and demanding that a number of performance specifications be met. A general

outline of the collision process is given here, but the reader is directed to consult additional

references ([22]) for a more technical overview. The process does require completing several

accelerations stages, which can be separated into eight basic components:

• Pre-accelerator: A Cockroft-Walton

• Linear Accelerator: The Linac

• The Booster synchrotron

• The Main Injector

• The p Source: production and extraction
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• The Debuncher and Accumulator

• The Recycler

• The Tevatron Ring synchrotron

All of these stages must be integrated to yield the desired beam energies and/or luminosities

and thereby, provide the signals for physics studies.

The beam originates with H− ions formed with an ‘ion source’ and injected into an

electrostatic Cockroft-Walton accelerator. There, the H− ions are accelerated by an electric

field to 750 keV. After leaving the Cockroft-Walton, the ions are injected into the 500-foot-

long Linac where oscillating electric fields boost the negative hydrogen ions to 400 MeV.

The ions subsequently pass through a carbon foil, which strips both electrons from each ion,

leaving only protons. The extracted protons are then steered into the Booster which is a

1570-foot circumference fast-cycling synchrotron ring. Here, the protons are constrained to

a closed circular orbit by a series of bending magnets with quadrupole focusing fields that

prevent the beam from diverging. At each revolution around the ring, the energy of the

particles steadily increases by acceleration through a set of RF cavities. As the particle’s

momentum increases, the magnetic field must increase in a synchronous manner in order to

confine the particles to the same orbit. The protons travel around the Booster about 20,000

times until they reach an energy of 8 GeV. A pulse train of approximately 5 to 7 bunches,

each containing 5-6 ×1010 protons are subsequently delivered from the Booster to the next

stage of acceleration: the Main Injector.

The Main Injector consists of a 120 GeV synchrotron ring, located tangentially next to

the Tevatron ring at the F0 straight section (see Fig. 3.1). It was constructed for the Run II

upgrade at the Fermilab facility and significantly enhances the Tevatrons collider program.

In Run II, the Main Injector replaces the Main Ring, which operated during the accelerator’s

first running period (Run I). In general, the Main Injector has been built to perform, with

improved capabilities, all the duties that were available with the Main Ring. With the

removal of the Main Ring from the Tevatron enclosure, beam halos and backgrounds seen in

the colliding detectors, such as DØ , during Run I are reduced. The primary function of the

Main Injector is to coalesce proton bunches exiting the Booster into a single high intensity

bunch of approximately 5 ×1012 protons. The bunch size depends largely on the nominal
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performance of the Booster and the Main Injector. After reaching an energy of 150 GeV in

the Main Injector, the protons are transferred to the Tevatron.

The Main Injector also extracts proton bunches at 120 GeV and allows these to impact

on an external nickel/copper target for a p production cycle at a rate of once every 1.5 s.

These secondary ps are produced with a range of momenta and production angles and are

focused through a lithium collector lens, which carries a large pulsed current (peak at 670

kA) flowing in the direction of the beam. The emerging ps are collected into the first of two

p storage rings.

The first ring is the Debuncher, which applies complex computer-controlled RF techniques

to contract the p beam into as compact a phase space as possible (i.e., a continuous band

with a very narrow momentum spread). The ps are further stochastically cooled in order

to restrict their transverse oscillations. This is done by applying correction signals to

the particles to minimize their deviation from an ideal orbit. Once a coherent beam is

achieved, the 8 GeV antiprotons are transfered to the Accumulator ring where they are

further cooled. In the Accumulator, stored p bunches are produced with stacking rates of up

to 1012 antiprotons/hour. The Debuncher and Accumulator are in the same tunnel, which

is roughly 520 meters in circumference. The beam from the Accumulator is transferred to

the 8 GeV Recycler ring, which is located in a tunnel shared with the Main Injector.

The Recycler is a 8 GeV permanent magnet storage ring utilizing stochastic cooling

systems. It is capable of delivering more antiprotons to the Tevatron, compared to Run

I, and thereby, proportionally increasing the beam luminosity. The main function of the

Recycler is to operate as a recovery channel, or post-Accumulator, for antiprotons left at

the end of a previous collider store. The Recycler accumulates and re-cools diluted 1-6×1011

antiprotons, every 0.5 to 3 hrs., up to a total stack of about 3×1012 antiprotons. Once the

accumulated p beam reaches 8 GeV, it can be extracted into the Main Injector, where the

energy of the antiprotons is raised to 150 GeV.

The 150 GeV proton-p bunch from the Main Injector are delivered in opposing directions

into the Tevatron collider. Here, the final phase of acceleration is accomplished. The plan in

Run II is to deliver 36× 36 pp bunches with a 396 ns bunch spacing. Within the Tevatron’s

approximate 6.4 km circumference tunnel, superconducting magnets operating with cold

compressors and upgrades to cryogenic controls, produce fields of 4 Tesla, allowing the beams

to reach the maximum energy of 1 TeV each. Once accelerated to this energy, the beams
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are squeezed to small transverse dimensions through the use of quadrupole magnets at the

interaction points, initiating collisions at DØ and CDF. The Tevatron normally operates with

an expected mean lifetime of about 72 hours between intermittent failures that frequently

arise by the random loss of stores. However, this rate depends largely on the day-to-day

performance of all stages and components in the collider facility.

3.3 The DØ Detector

The DØ detector is a general purpose detector, designed and constructed to study interac-

tions originating from pp collisions at a center of mass energy of 2.0 TeV in the Tevatron

collider (most of the information on the DØ detector that will be given in the following

sections can be found in the Ref. [23]). The detector has been optimized to measure final

states that contain electrons, photons, muons, jets and missing energy from a number of key

processes occurring during these collisions. It is particularly suited for the study of high

mass states and large transverse momenta, high-pT , phenomena. Commensurate with the

improvements to the Tevatron, DØ has completed a major upgrade program. The new Run

II detector aims to extend the physics reach to lower-pT final states. The detector is shown

in Fig. 3.2 and consists of three main components:

• Inner Tracking System: The innermost system at DØ provides enhanced particle

trajectory and tracking measurements over a broad range in pseudo-rapidity. The

system is composed of four tracking sub-detectors. Immediately surrounding the

Tevatron beam pipe is a Silicon Microstrip Tracker (SMT), designed to reconstruct

both primary and secondary vertices. This is radially followed by a finely segmented

Scintillating Fiber Tracker (CFT), which provides efficient tracking in the central

pseudo-rapidity region and, jointly with the SMT, provides track reconstruction and

momentum measurements for all charged particles. Both the SMT and CFT are

enclosed within a central magnetic field provided by a 2.73 m-long, and 1.42 m in

diameter, 2 Tesla superconducting solenoidal magnet. Directly outside of the solenoid,

and within the inner bore existing in the DØ central calorimeter, a Central Preshower

system aids in electron and photon identification as well as samples energy of particles

traversing the solenoid coil. Similarly, a Forward Preshower (FPS), covers the forward

pseudo-rapidity region.
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Figure 3.2: Two-dimensional view of the Run II DØ detector, showing the three integral
systems outlined in the text.

• Calorimeter: Three finely segmented (i.e. one Central and two Forward) sampling

calorimeters surround the tracking volume, providing accurate measurements of the

energy of electrons, photons, and hadronic jets. Together, they enable the measurement

of the total missing transverse momentum of non-interacting particles, known as

missing transverse energy (/ET ). Thought a measurement of the energy cluster’s centroid

(within any particular calorimeter cell(s)), the calorimeter provides an additional tool

in determining the positions of electrons and/or photons and thereby, enhance particle

identification in the DØ detector.

• The Muon System: Immediately surrounding the calorimeter, an iron toroid spectrome-

ter combined with central (forward) proportional (mini) drift chambers and scintillation

counters provide muon identification and additional muon tracking information.

Although the detector is highly compact, the full assembly is large and the hardware

associated with the different subsystems is quite complex. The entire assembly approximates

to about 13 m-hight × 12 m-wide × 20 m-long and weights roughly 5500 tons. The inner
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tracking system alone consists of approximately 1 million channels, distributed among its

individual sub-detectors. Many of these channels are read out via customized electronics

located in rack spaces below the detector’s support platform, see Fig. 3.2. The detector

and its platform are mounted on mechanical rollers that allow the detector to move from

the assembly area (i.e. detector construction and installation stage) to the collision hall (i.e.

detector operation and data acquisition stage).

The following sections provide a brief overview of each of the elements in the Run II

DØ detector. For a much more complete treatment, the reader is referred to the many

existing write-ups, design reports, and publications on the individual systems (see Ref. [24]).

3.3.1 The Silicon Microstrip Tracker

The innermost tracking subsystem and the component closest to the Tevatron’s beryllium

beam pipe is the Silicon Microstrip Tracker (SMT)(see Ref. [25]), illustrated in Fig. 3.3. The

primary function of the SMT is to provide precision tracking and vertex information from the

interaction point (IP) in pp collisions as well as to identify and reconstruct vertices displaced

from the primary interaction (Fig. 3.4). Secondary vertices are characteristic signatures of

relatively long-lived decaying particles containing b and c quarks.

The tracker consists of two parts symmetric with respect to z = 0: the north-SMT

(z > 0) and the south-SMT (z < 0). The primary vertices are distributed along z over

an extended interaction region which is approximately distributed according to a Gaussian

centered at z = 0 with σz = 25 cm. This defines the length of the SMT detector and

motivates a hybrid design of interspersed disk and barrel modules, as shown in Fig. 3.3.

In this configuration, the barrel detectors measure primarily the r − φ coordinate while the

disk assemblies provide r − z as well as r − φ track information. Consequently, the SMT is

capable of three-dimensional track reconstruction allowing particles at small (high) values

of η to be identified in the barrels (disks). Additionally, the detector must be capable of

providing z-vertex and transverse impact parameter resolutions to better than 30 µm and,

concurrently, be radiation hard to operate efficiently in the high luminosity environment of

Run II3.

3The silicon detector described here is expected to survive ∼ 2 fb−1 and operate in Run IIa. For extended
operation in Run IIb, a new layer 0 will be added next to the beam pipe. This dissertation was written
during RunIIa
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Figure 3.3: Three-dimensional view of the DØ silicon microstrip tracker.

The main volume of the SMT is formed by six barrel units 12.4 cm-long in z, consisting

of four concentric layers of silicon ladder detectors each. The layers extend radially from

2.7 to 9.4 cm. A ladder consist of two 300 µm-thick wafers at 6.0 × 2.1 cm, positioned

end-to-end, with electrical micro-wire bond contacts. All barrel modules have double-sided

small-angle (2o) stereo detectors in Layers 2 and 4. The central four barrels at low |z| have

double-sided large-angle (90o) stereo in Layers 1 and 3. Interspersed within the barrels are

twelve 8 mm-thick disks (i.e. six disks symmetrically located on each side of z = 0, known

as F-Disks), each consisting of overlapping r−φ wedges to help improve tracking up to large

η. The wedges of these central disks are double-sided with ±15o stereo strips. Additionally,

in the forward region (at high |η|), four H-Disk assemblies (i.e. two symmetrically located

on each side of z = 0) extend tracking about to |η| = 3. These forward disks have back-

to-back single-sided wedge detectors with an effective ±7.5o stereo strips. Signals from the

detector are read out by radiation-hard custom integrated circuits, called SVXIIe chips,

which perform signal pipelining and digitization. The chips are optimized for the Run II

bunch crossing intervals.
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Figure 3.4: Schematic of an observed displaced vertex originating form b or c quarks in a
silicon microstrip detector.

3.3.2 The Central Fiber Tracker

The Central Fiber Tracker (CFT) is the next detector that charged particles encounter as

they move away from the interaction point. It surrounds the SMT [26] and it complements

the SMT in track reconstruction. The CFT is enclosed within the 2 T solenoid magnet,

therefore it also measures the transverse momentum of charged particles. Simulations done

before Run II showed that a CFT momentum resolution, δpT/pT ' 8%, can be obtained

for normally incident electrons of relatively high-pT (' 50 GeV), as shown in Fig. 3.5.

Such resolutions can be of importance during E/p calibrations between the tracker and

calorimeter as well as allowing CFT information to be used in situations that require charged

sign determinations. Furthermore, the CFT is an integral element of the DØ trigger system

which will be discussed in a later section. The signal collection time from the CFT during

an interaction is within the Run II bunch crossing interval. The CFT can thus, effectively
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Figure 3.5: Simulation results for the momentum resolution with the Fiber Tracker as a
function of pseudo-rapidity for three different pT values.

coordinate with other subsystems to form first-level electron and muon triggers with minimal

dead time. Figure 3.6 is an schematic cross section view of the CFT. The detector is made of

closely packed ribbon layers of scintillation fibers mounted on eight concentric carbon-fiber

support cylinders extending radially from 20 to 51 cm and providing full coverage in the

central region up to |η| < 1.7. The inner two cylinders are 1.7 m long. The outer six are 2.5

m long in order to accommodate the silicon H-disk detectors at high-η. A barrel supports

alternate scintillating-fiber doublet layers, these are two rows of interlocking fibers, as shown

from the r − φ end-views in Figs. 3.6 and 3.7. The fist layer of doublet fibers are parallel

to the beam line while the second layer is at a constant pitch of ±3o stereo. Each fiber is

835 µm in diameter and of Kuraray multi-clad S-type comprised of a polystyrene core doped

with 1% by weight of paraterphenyl (pT) and 1500 ppm 3HF [27]. The CFT has 76,800

channels. The fibers from a ribbon are routed to optical connectors that transfer light from

the scintillating fiber into 8 to 11 m-long clear fibers. The clear fibers are grouped into

256-channel light guides and transport the optical signal to highly sensitive arsenic-doped

silicon avalanche photo-diodes, known as visible light photon counters (VLPC). Here, the
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Figure 3.6: Quarter r − z view of the CFT detector at DØ , Shown is a) the nested eight
barrel configuration, b) a magnified r − φ end-view of the two ribbon doublet layers per
barrel.

signal is converted into electrical charge and pipelined to an SVX-He chip for digitization.

The front-end electronics of the VLPCs are all situated below the DØ detector, on the

readout platform. Test done with the CFT read out through VLPCs and SVX-II chips have

measured doublet light yields of about 14 photoelectrons for a minimum ionizing particle

(MIP) traversing the detector. These responses are more (∼ × 3-4 higher) than that needed

for efficient tracking[27].

3.3.3 The Preshower Detector

The preshower detector is divided onto two parts, the Central Preshower (CPS) and

the Forward Preshower (FPS). Their main purpose is to enhance electron and photon

identification, but it will also be used to improve the calorimeter measurements. This will be

done by sampling the shower multiplicity after the material of the solenoid, tracking system

and the support structure. The CPS covers an area of |η| < 1.3 and the FPS covers 1.5

< |η| < 2.5. Both detectors are made of layers of triangular shaped scintillators. Wavelength

shifting fibers embedded in the center of the triangles pass the signals to VLPCs, following
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Figure 3.7: a) Distributions for the position resolution measured in the Fiber Tracker for
single muons traversing an interlocking ribbon doublet configuration. The fiber ribbons are
pictured in b).

the same readout chain as in the CFT. Figure 3.8 shows a cross section schematic of the

PS detectors along with their coverage and structure. The CPS consists of three layers of

scintillators: an inner axial layer and two layers at a stereo angle of ±22.5o. The FPS has

two stereo layers over the full coverage and an additional inner doublet layer following a 2

radiation length (X0) lead absorber for |η| > 1.65 [28]. The the stereo layers labeled asµ

and ν layers have an angle of 22.5o. The inner layer acts as a detector for MIPs (minimum

ionizing particle). Due to the triangular shape of the fibers, the distance traversed in a strip

has a linear dependence to the incident position. This is convenient for the calculation of the

cluster position using a charge weighted mean of the strip centers. The position resolution

of a doublet (two layers are a hit) for MIP particles has been measured in a cosmic ray setup

to be 550 µm [29].
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Figure 3.8: a) The location of the preshower detectors CPS and FPS with their coverage in
η in r − z view. b) An r − φ view of the CPS with a close-up showing the three layers of
triangular shaped scintillating fibers.

3.3.4 The DØ Calorimeter

The DØ calorimeter is a sampling detector that uses liquid argon as the active medium and

depleted uranium as the absorber with a thickness of 3-4 mm per layer. This thickness gives

the calorimeter a total of 20 X0 to the Electromagnetic (EM) part. It has hermetic coverage

up to |η| < 4. It consists of three cryostats of nearly equal size, the central calorimeter (CC)

and the two endcap calorimeter (EC). The EM part is made up of the innermost layers of

the calorimeter. The following layers form the Fine Hadronic (FH) calorimeter. It is made

of three layer of depleted uranium in the central cryostat and four in the endcaps. The

outermost layers form the Coarse Hadronic (CH) calorimeter, which uses stainless steel and

copper as the absorber. The CC has only one CH layer while there are up to three layers

in the EC. Figure 3.9 depicts the layer structure of the calorimeter. The material of the
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Figure 3.9: A cut-away view of the DØ calorimeter.

calorimeter corresponds to 2 nuclear interaction lengths (λ) in the FH section, and 5-7 λ for

the CH part. The segmentation into single readout cells is shown in Figs. 3.10 and 3.11.

The resolution that can be achieved with the calorimeter depends on the size of the cells.

Most layers are segmented into readout cells of 0.1 in η and φ. The third EM layer has a

segmentation four times as fine as the other layers (0.05 × 0.05 in η × φ) and it is located

where the shower maximum for electrons and photons is expected. Cells for |η| > 2.7 have

a size of 0.1×0.1 and it increases to 0.2×0.2 for all layers that |η| > 3.2.

3.3.5 The Calorimeter Readout

The main components in the calorimeter readout chain are depicted in Figure 3.12 The

readout contains 55,296 calorimeter electronic channels to be read out; 47,032 correspond to
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Figure 3.10: Schematic view of a portion of the DØ calorimeters showing the transverse and
longitudinal segmentation pattern. The shading pattern indicates groups of cells ganged
together for signal readout, called a tower readout. The rays indicate η intervals from the
center of the detector.

channels connected to physical readout modules in the cryostats. The remaining electronics

channels are not connected to the detector. The readout is made in three principal stages:

• First, signals from the detector are transported to charge preamplifiers located on the

cryostats via low impedance coaxial cables.

• Second, signals from the preamplifiers are transported on twisted-pair cables to the

analog signal shaping and storage circuits on baseline subtracter (BLS) boards.

• Finally, the precision signals from the BLSs are transmitted on an analog bus and

driven by analog drivers over 130 m of twisted-pair cables to ADCs.
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Figure 3.11: Calorimeter channel configuration in terms of depth and η.

These signals are then sent to the data acquisition system for the Level 3 trigger decision

and storage to tape. The preamplifiers and BLSs are completely new for Run II, and were

necessary to accommodate the significant reduction in the Tevatron’s bunch spacing [27].

3.3.6 The Inter-Cryostat Detector

The regions in between the CC and EC, from 1.1 < |η| < 1.4 in Figure 3.10, contain a large

amount of uninstrumented material, such as the cryostat walls and support structures. This

is a dead region with minimal energy sampling capability. An Inner-Cryostat Detector (ICD)

is mounted on each face of an end-cryostat wall. The detector is made of scintillating tiles

that measure the hadronic jet energy and allows for the sampling of particles exiting the

solenoid and CC cryostats walls. The IDC is also used to calculate the missing transverse
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Figure 3.12: Readout chain of the calorimeter in Run II indicating the three major
components: preamplifiers, baseline subtracter and storage circuitry (BLS), and the ADCs.

energy (/ET ). Each ICD, north and south, is made of 16 trapezoidal-wedges4, 22.5o in φ. A

groove within a scintillating tile carries a wavelength shifting (WLS) fiber, which transmits

light via optical connectors to clear fibers exiting the outer edge of a tile module. These

clear fiber ribbons transport the light to photomultiplier tubes (PMT) that are read out

from crates mounted outside the endcap calorimeter walls. The readout electronics for the

ICD is done is a similar way to the DØ calorimeter.

3.3.7 The Muon System

Muons are observable particles produced in collisions at DØ . They can penetrate several

layers of matter, depositing only ionization energy in the process. Therefore, identifying a

muon and measuring its momentum can be made by matching a CFT tracks with a separate

tracks in the muon system. The muon detector is situated furthest from the DØ interaction

region and, therefore, is the largest physical sub-detector. The following will be a brief

description of the muon detector and only the major components will be highlighted. The

reader is referred to [27, 30] for a thorough description. The DØ muon system is composed

of the central and forward sub-detectors. Figure 3.13 depicts a cross section schematic of

4The solenoid magnet requires truncation of the ICD array to only 15 φ-wedges on the south-EC for
mechanical clearance.
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half of the system and Figures 3.14 and 3.15 depict the wire drift chambers and scintillators,

respectively, in more detail.

The sub-detectors are separated into three detection layers, increasing radially outward

and labeled A, B, and C. A-layer is separated from the B- and C-layers by a 2 T toroidal

iron magnet which is divided into three magnetized regions: a central iron (CF) magnet

covering the regions from |η| < 1, and two end-iron (EF) magnets covering the region from

|η| = 1 to about |η| = 2.5. The magnetic field generated by the toroid causes deflections in

the r − z plane which is used to determine the muons trajectory and momentum. This is

done by measuring how much a B- and C-layer’s track bends with respect to the matching

A-layer track. The resolution of the muon system is improved through a global fit of the

A-layer track and a matching track in the CFT and preshowers. An associated MIP track

in the calorimeter may be used for muon confirmation.

The central muon region consists of the three layers (A, B, and C) that make up the

Wide Angle MUon System (WAMUS) and cosmic ray scintillation counters implemented for

timing. The WAMUS includes the proportional drift tube (PDT) chambers and it covers

|η| < 1 of the central region. The WAMUS PDTs, which are filled with a 80% Argon, 10%

CF4, and 10% CH4 gas mixture, provide a coordinate determination by producing, for each

hit, the:

• Drift time perpendicular to the anode sensing wire.

• Difference in the arrival time of the hit at the two ends of the sensing wire approxi-

mating the distance along the wire.

• Charge deposition on the chevron shaped vernier pads for a more accurate measurement

of the distance along the wire in combination with the coarse measurements from

timing.

The cosmic ray scintillating counters, known as the “Cosmic Cap”, are mounted outside of

the WAMUS C-layer PDTs as shown in Figure 3.15. The Cosmic Cap is extended to the

underside of the DØ detector to assist in trigger and track matching with the CFT which

will be discussed in Sec. 3.4. For each PDT chamber in the Cosmic Caps, eight counters,

each composed of scintillators sheets with embedded WLS fibers, are read out by two 1.5

inch-diameter photo-tubes [30]. In order to find a match with the central tracking system in
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Figure 3.13: r − z half-view of the Muon System. Components of both the Forward and
Central systems are shown.
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Figure 3.14: Exploded view of the muon wire chambers.

φ, a layer of “A-φ” scintillation counters are placed between the CC outer wall and WAMUS

central A-layer PDT. The counters are also used to reject out-of-time backgrounds at the

calorimeter’s exit. The counters use scintillator and PMT technology [27, 30].

The forward muon system extends the detection coverage from 1.0 < |η| < 2.0. Rather

them using PDTs, the forward muon system uses Iarocci mini-drift tube chambers that

are arranged in three planes, labeled A, B, and C. Each plane has 4, 3, 3, layers of tubes

respectively. The tubes are oriented in a r − φ geometry and contain square 1 cm-wide

(internal) cross-sectional cells, as shown in Fig. 3.16. A 50 µm anode wire is strung at the

center of each cell to provide coordinate information of forward muons using drift times.

There are three layers of scintillator counters, which are in a r − φ geometry, that make up

the pixelation. They are segmented in ∆η ×∆φ = 0.1× 0.0785 and reinstalled to optimize
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Figure 3.15: Exploded view of the muon scintillation detectors.

tracking. It is also optimized to detect low-pT muons, ' 3 GeV, which is characteristic of a

number of physics signals. The arrangement is shown in Fig. 3.17. Each counter provides a

coincident hit in all three pixel layers in conjunction with a CFT/FPS forward trigger-track

match.

The muon system also contains a series of iron and polyethylene shielding, each 50 and

15 cm-thick respectively, with a lead skin, 5 cm-thick, that surround the accelerator beam

pipe in the forward direction, as shown in Fig. 3.13. The shield reduces background fluxes

interaction in the quads and beam pipe and from beam halo by a factor of 2 to 4 [30].

The muon momentum is measured by reconstructing the particles trajectory before and

after it passes the iron toroid. The hit information in the A-layer, before the magnet, is

matched to tracks in the inner tracking volume and to MIP traces in the calorimeter in

order to help improve the measurements. The momentum resolution depends on the quality
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Figure 3.16: Illustration view of one r − φ plane in the muon mini-drift tube. The insert
shows the cross section of a single Iarocci tube, which consists of eight 1× 1 cm2 cells.

of information available from the inner tracker as well as on the position resolution of the

muon system and multiple scattering in the toroid. These latter effects limit the resolution

to 18% of the momentum. In general, the resolution is parameterized in terms of the inverse

momentum, k = 1/P , and is about [30]:

σ

(
1

P

)
= 0.18(P − 2GeV/c)/P 2 ⊕ 0.005. (3.7)

3.4 The DØ Trigger System

Run II requires an advance data acquisition system to cope with the high luminosity and

high bunch crossing rate. The expected maximum luminosity is; L = 2 × 1032 cm−2s−1.

It is impossible to record every event from every crossing, so only the events that show
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Figure 3.17: r − φ segmentation of the muon scintillator pixel counters.

signs of interesting physics are selected for storage. A trigger system has been designed

and implemented to make decisions as to which events are save and which are discarded.

Figure 3.18 depicts the trigger system which is implemented as a hierarchy of three selection

stages referenced to simply as Level 1 (L1), Level 2 (L2), and Level 3 (L3). In levels L1

and L2, a decision is made with hardware instrumentation and simple algorithms in Field

Programmable Gate Arrays (FPGAs), while L3 uses software filtering algorithms running on

a set of high performance commercial processors. A Level 0 (L0) trigger is also implemented

and it detects interactions from colliding beam crossings. L0 monitors the small angle
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Figure 3.18: Summary of the three-level DØ Trigger System for Run II with the decision
time and bandwidth allocated to each level.

inelastic collision rate that also monitors luminosity. This particular measurement is available

from two Luminosity Monitor (LM) counters that are composed of plastic scintillator WLS

fiber array that is read out by PMTs. The counters are mounted in between the beam pipe

and the FPS detector covering an area of size 2.7 < |η| < 4.4 [31]. See Figure 3.6 for L0

placement. Measurements of time-of-flight of charged particles particle incident on the LM

is also used to determine the primary vertex z position for crossings containing a single pp

interaction. The single trigger term is passed to L1 from LM.
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Figure 3.19: L1 and L2 trigger data pathway. The arrow indicates the direction of data flow.
Multiple arrows from a particular subsystem are present for a parallel processing information
thus permitting fast trigger decisions and sophisticated physics filters.

3.4.1 The Level 1 Trigger

The L1 trigger is a hardware system that compiles a list of candidate events using information

from the CFT, preshower detectors, calorimeters, and muon scintillator counters. Figure

3.19 shows the information pathway for the L1 and L2 triggers. The CFT, preshowers and

calorimeters provide electron identification and triggering for |η| < 2.5. Muon triggering is

done by matching tracks from the CFT axial layers and muon chambers within a fiducial |η| <
2.0 volume. The L1 processors examine information from its corresponding sub-detector on

the basis of trigger terms. For a W → eν event, for example, the detector-specific triggers
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include the following:

• Trigger tower ET above a preset threshold, total energy, and /ET in the calorimeter.

• Hit pattern consistent with track momentum above a threshold, charge, and azimuth

in the last axial layer for the CFT.

• Energy deposition above threshold, track isolation and match using the forward and

central preshowers.

Each term indicates a specific condition has been met for the given event. The L1 decisions

are sent to a L1 Framework (L1FW) capable of supporting 128 unique L1 triggers. The

L1FW is programmed to require a specific combination of trigger terms in order to form

global L1 decisions. The list of terms collected from each L1 trigger subsystem is processed

through a series of FPGAs located on VME cards to determine if a specific L1 bit has been

satisfied. A L1FW logical “accept” digitizes the event and the trigger is pipelined to 16 event

buffers for temporary storage to reduce dead-time arising form pileup. The L1 provides a

trigger decision in 3.5 µs or less with an accept rate of 5-10 kHz [27].

3.4.2 The Level 2 Trigger

The L2 trigger correlates the information from different sub-detectors as shown in Figure

3.20. It creates physics object candidates such as muons and electrons. There are two stages

at L2: the preprocessor and the global processor (see Fig 3.20). At the preprocessor stage,

each subsystem uses correlation algorithms to build a list of trigger objects available from

the L1 trigger. Correlations include the energy of clusters in the calorimeter or the azimuth

or rapidity of an electron or muon candidate in the central tracker. The time allotted for the

decision making for preprocessor objects is less than 50 µs and is limited to a few hundred

to a thousand bytes of information for each trigger type. The list is then fed to the global

processor via a serial data highways of 128-bit wide data buses, known as “Magical bus or

MBus”, located on the backplane of the L2 VME crate [32]. The data is transmitted with

a nominal input/output of 320 Mbytes/s in order to make a global processor decision. The

total combined allotted time for both, the preprocessor and the global processor, is 75 µs.

The output from the global processor is feed to a L2 Framework (L2FW) which coordinates

trigger decisions to L3. The L2FW uses a similar FPGA logic as discussed for the L1FW.
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Figure 3.20: Configuration of L2 trigger components.

The overall L2 system is designed to operate with minimal dead-time (< 1%), providing a

rejection factor of 10. It is required to make a trigger decision in 100 µs at an accept rate of

1 kHz [27].

3.4.3 The Level 3 Trigger and the Data Acquisition System

The L3 trigger and the data acquisition (DAQ) system uses a cluster of high-performance

processors operating under a joint Windows NT/Linux environment. Each processor runs

event filtering software using physics tools that search for physical objects such as electrons,

muons, and jet candidates. It also searches for relations between them such as event

topologies or the invariant or transverse mass distribution. The system relies on a number of

parallel processors in order to manage the high event rate as well as to provide a high degree

of reliability. Figure 3.21 depicts the DAQ pathway. The pathway consists of a number of

parallel paths that use VME buffer drivers to feed the L2 data via high-speed data cables

to an Event Tag Generator (ETG) where a link is made between the lower level trigger, the

DAQ, and L3 nodes. The ETG routes the data on the basis of a specific event class and

assigns the data block to an available L3 processor node for single event reconstruction. Each

L3 node output goes to another VBD and data cable system consisting of a host interface

node that transfers the data to data-logging and monitoring cluster nodes using standard
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Figure 3.21: L3 trigger framework. Data flow is indicated by the direction of the arrow.

Ethernet connections. The filtered events passed by L3 are stored to tape which is accessible

for offline event reconstruction and data analysis. L3 makes a decision in 100 ms with an

accept rate of 50 Hz [27].

43



CHAPTER 4

Event Reconstruction

What follows is an overview of the software used at DØ to reconstruct physics objects from

raw data. The topic of event reconstruction is a complex one and can be a lengthy one if

described in detail. Therefore, only the parts relevant to the analysis in this dissertation

are summarized here. However, references containing full descriptions are cited throught

this chapter for the interested reader. In particular, the production version 14 of the

reconstruction (DØ RECO) software is described.

4.1 Electromagnetic Object Reconstruction

The primary mechanisms that causes photons and electrons to create electromagnetic

showers are e+e− pair production and bremsstrahlung respectively. Therefore, photons

and electrons that enter the calorimeter create showers of electromagnetic particles. These

showers terminate when the final particles that are produced no longer have enough energy

to continue showering. The depth of the EM part of the calorimeter was designed so that

almost all of the EM showers will be completely contained with in, see Section 3.3.4. Hadronic

showers, however, in general will deposit energy in both, the EM and Hadronic, parts of the

calorimeter with most of its energy deposited in the Hadronic part. Hadronic showers are also

wider then EM showers, as shown is Figure 4.1. The latter is true unless the Hadronic shower

develops early into multiple π0 → γγ which would give rise to a stronger electromagnetic

signature. However, this signal would have a wider shower shape due to multiple photons.

4.1.1 Simple Cone Algorithm

Electromagnetic objects are identified by first considering quantities within the EM layers

of the calorimeter, i.e. EM showers should be tightly clustered. The simple cone (Scone)
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Figure 4.1: Shower shape for electrons, muons, jets and neutrinos in the Calorimeter.

algorithm receives a list of all the EM towers of non-zero energy, which are ordered in

decreasing energy. Then a search of towers above the threshold of 500 MeV is done on the

list. If a tower containing a cell in the Coarse Hadronic (CH) layer of the calorimeter is

found, the cell’s energy is discarded and the tower energy recomputed1[34]. This was done

because of noise in the CH. When a tower above threshold is identified, the Scone algorithm

does the following:

• A cone is drawn of dR = 0.5 about the seed2 tower in η − φ space, where:

dR =
√
dη2 + dφ2 (4.1)

• Other towers within the cone are then looped over.

1Most of the information being presented in this section can be found in Reference [33]. However, some
was found by reading the algorithms code and from the reconstruction parameters.

2The seed tower is the energy tower with the highest energy content.
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• If another tower is found within the cone, the tower is added to the cluster and the

η − φ position is recalculated.

• The dR = 0.4 circle is redrawn around the new position and the remaining towers are

looped over.

• The process in the latter continues until all possible towers have been added.

• Completed clusters are required to have at least two good towers and a total ET greater

than 1 GeV.

• The list of ‘simple cone’ clusters is then sent for processing to the electromagnetic

reconstruction program.

More stringent requirements are made on the new list of of EM clusters, which are:

• The minimum energy within the cluster must be 1.5 GeV.

• The ratio of energy deposited in the EM part of the calorimeter to the total cluster

energy must be at least 0.9. This is called the EM fraction.

• Then a large window, 4 calorimeter towers in radius, about the highest energy tower

is taken. Figure 4.2 shows an example of what a tower looks like.

Then a new list of towers is made. The total energy in the towers in the large window is

first computed. Then the sum of just the EM energy deposited in a cone of ∆R = 0.2 is

computed. From these two energy measurements, the isolation is calculated which is define

as:

isolation =
ETOTAL(0.4)− EEM(0.2)

EEM(0.2)
(4.2)

where ETOTAL(0.4) is the total energy, including hadronic, in a cone of radius 0.4 and EEM

is the total EM energy in a cone of radius 0.2. Figure 4.3 shows a graphical representation

of the EM isolation. In order to tightly constrain the width of the cluster, the isolation

must be small. For the candidate cluster to be selected as an electromagnetic object by

the reconstruction algorithm, the isolation must be less than 0.2. This helps discriminate

between clusters which are formed by hadronic showers and clusters which originate from

single photons or electrons[34].
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Figure 4.2: A circle of towers in η − φ space.

4.1.2 Electromagnetic Energy Scale

For the EM part of the calorimeter, the energy scale is refined using data from reconstructed

Z → ee events, where Z is the neutral intermediate vector boson (see Section 2.1). Individual

layer weights for the EM calorimeter are developed using DØ GEANT Monte Carlo events

by minimizing the following χ2 equation:

χ2 =
∑

events

(Etrue −
4∑

i=1

aiLi)
2 (4.3)

where Li is the energy deposited in the liquid argon in layer i, and ai is the sampling weight

for that layer. The absolute scale for the calorimeter is set using the known mass of Z → ee

in data. Figure 4.4 shows the Z → ee invariant mass distribution in data events. The

resolution for the EM calorimeter has been parametrized from the width and position of the

peak in Figure 4.4. For the data being used in this analysis, the CPS and FPS detectors are

not integrated into this energy measurement. They are used in data reconstructed in later
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Figure 4.3: Schematic of Isolation for the Scone algorithm.

releases. The exclusion of the preshower detectors results in a larger weight for the first layer

of the EM calorimeter. The weight is due to the fact that EM showers will begin earlier

with respect to the first calorimeter layer because of the additional material of the tracker,

solenoid, and lead of the preshower.

4.1.3 Electromagnetic Identification Quantities

The decay of mesons like the π0, or π± that undergo charge exchange, can fake the calorimeter

signal of electrons and photons. Several quantities are used to discriminate between signal

and background. The isolation and EM fraction, as described in section 4.1.1, are two of

the quantities used. Additional variables that make requirements on the shower shape also

provide background discrimination. The width of an electromagnetic shower in φ is defined

as:

φrφ =
N∑

i=0

Ei ×R2 × sin2(φC − φi)

EC

(4.4)
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Figure 4.4: Invariant mass for Z → ee from calorimeter.

where EC is the clusters energy, R is the clusters radius, Ei and φi are individual cell

quantities. φC is the energy weight of the cluster which is defined as:

φC =

N∑
i=0

Eiφi

N∑
i=0

Ei

(4.5)

where the sum is over the cells in the cluster. A similar quantity is available for the width

in z. The φ-width is shown to be modeled well in Monte Carlo (MC) comparisons to data

for electrons while the z-width is not well modeled[34].

The HMatrix χ2 is an additional variable that is very useful. It is a discriminant variable

based on the electron’s shower profile in MC events. Eight variable are used to construct a

covariance matrix in a large energy range. First the covariant matrix is constructed in the
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following way:

Mij =
1

N

N∑
n=1

(xn
i − xi)(x

n
j − xj) (4.6)

where N is the sum over the reference MC electrons, xi is the value of variable x, and xi

is the mean of the xi variables. The χ2 of the HMatrix is then constructed in the following

way:

χ2
HM =

8∑
i,j=1

(x
′

i − xi)Hij(x
′

j − xj) (4.7)

where x
′
i is the data value of variable xi, xi is the mean of the variable xi from MC, and the

matrix H is the inverse of the covariant matrix Mij as defined in equation 4.6. A shower

that closely resembles one of the electromagnetic showers from MC events will have a low

χ2. The eight correlated observables used for shower shape analysis are [35, 34]:

• The four energy fractions deposited in each of the layers of the EM part of the

calorimeter.

• The logarithm of the total EM energy.

• The primary z vertex position distribution.

• The energy weighted transverse shower width in z and φ.

The HMatrix is constructed using MC electrons so it is not used for photon selection. The

φ-width of the cluster at the third layer which is more finely segmented than the other EM

layers of the calorimeter, as define in Equation 4.4, is used because it shows both, the best

agreement with MC in data and the most discrimination between photons and background.

Track match is a very useful variable for identifying electrons and photons. For electrons,

the better the match of a single track to the electromagnetic cluster, the less likely the EM

object is to have originated from a QCD jet, since jets commonly have many tracks associated

with them. For photons, in contrast, isolation of the EM clusters from surrounding tracks

deceases the probability that the object originated from either QCD or electrons.

There are two different χ2 match probabilities for track matching to electrons:

• The fist one takes into account the position of a track with respect to the cluster in

the calorimeter. Because no comparison is made between the momentum of the track
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and the energy in the calorimeter, this method locks a substantial mis-association rate

but it has a high efficiency.

• The second combines the non-gaussian energy to momentum ratio (E/p) with the

spatial match of the track-cluster pair for the match χ2. This yields a substantial

lower fake rate, but is also substantially lower in efficiency due to both, bremsstrahlung

photons3, and tracker resolution.

A track isolation is constructed for photons by requiring the sum of the momentum of

tracks in a “hollow cone” of dR(0.05-0.4) to be smaller than a certain threshold. This

allows discrimination between jets and photons, but allows for the possibility that photon

conversion might provide tracks in the center of the cone.

4.2 Jet Reconstruction

4.2.1 Run II Cone Algorithm

The cone reconstruction algorithm for jets used at DØ is similar to the simple cone algorithm

described in Section 4.1.1. All electromagnetic showers share some similar characteristics,

but there are several differences that need to be noted. The transverse development of an

EM shower from electrons or photons, for example, scales with the Moliere Radius defined

as [5]:

RM = X0 × ES

EC

(4.8)

where χ0 is the radiation length of the material, ES is the energy scale, which is of order 21

MeV, and EC is the critical energy, which depends on the atomic number of the material.

About 99% of the energy in an EM shower is contained within 3.5 RM [5]. There is no

such restriction on jets, however, because the width of the shower will strongly depend on

how the quarks hadronize. In order to deal with these differences, and still find stable jets,

additional support in the algorithm is needed. Reference [36] contains a detailed discussion

of such support.

The cone algorithm is designed to find jets that can be compared with what is predicted

from theoretical models, i.e. reconstructed jets consisting of many constituent particles that

3For Bremsstrahlung photons, the energy of the cluster would be correctly measured as the photon would
likely be included by the Scone algorithm. However, the momentum of the electron track would be different
from the energy of the colorimeter cluster.
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should possess the same energy as the initially produced quarks. The algorithm begins with

a cone of radius 0.5. A list of seed towers, with minimum energy of XXX GeV, in the

calorimeter is used to limit the amount of processing time spent on the reconstruction. A

‘proto-jet’ is created for each seed tower in the list. This is done using an iterative algorithm

about the tower. If the final stable cone from this iteration is not already reconstructed,

then this cluster is sent on to determine if it is part of another, larger jet, or is already too

large and must be split into two jets. The ‘split-merge’ algorithm, as is called, is used in the

case where ‘proto-jets’ share towers. An ET ordered list is made of the cone jets found in

the clustering, then the algorithm works down the list. If a ‘proto-jet’ shares no towers with

any other cluster, then it becomes a jet. If the candidate does share towers with other jets,

then each is considered separately. The two jets are merged if the energy shared with the

lower ET jet is greater than half the energy of the other jet. The algorithm assumes that

the two ‘proto-jets’ are made of energy originating from a single real jet. If the energy if

less than half, however, the jets are split apart with the shared cells being assigned to the

nearest jet. In this case the algorithm assumes that there were initially two real jets nearby.

Then the energy of the two jets is recalculated and the list of jets is remade. This is done

because the ET ordering may have changed. This process continues until no further towers

are shared [36, 34].

4.2.2 Jet Energy Scale

The jet energy scale (JES) calibrates the reconstructed energy of the jets to the energy of

the jets at the particle or hadron level, which is, the energy of the produced particles before

they enter the detector. The subject is lengthy and complex which is beyond the scope of

this dissertation. The interested reader is pointed to Reference [37] for a complete discussion

the Run II JES algorithms.

Depending on the jet pT and jet η, the JES applies a calibration factor to obtain the

particle level jet energy (Eparticle
jet ) from the measured jet energy (Ecalorimeter

jet ) according to

the following expression:

Eparticle
jet =

Ecalorimeter
jet − Eoffset

Rjet ·Rcone

(4.9)

where Eoffset is the offset energy within a jet, Rjet is the jet response correction, and

Rcone is the out of cone showering correction. The terms in italic font are defined as:
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• Offset Energy: Energy contributions that are not related to the physics processes

that create a jet are subtracted from the measured jet energy. These contributions

come from multiple interactions, underlying event energy, electronic noise, uranium

noise, and pileup from previous bunch crossings.

• Jet Response: The energy deposited in the calorimeter is not equal to the measured

energy. This is due to the fact that the calorimeter is not completely compensating,

there is dead material in from of, and within the calorimeter, there are respose

fluctuations between calorimeter modules, etc.

• Out of Cone Showering: This parameter corrects for energy losses or gains due to

calorimeter showering effects from particles located inside or outside of the particle jet.

Figure 4.5 shows what the energy scale correction factors look like as a function of uncorrected

jet energy and as function of η [37]. The bump in the offset energy density data comes from

large weighting factors used for the inter-cryostat detector and coarse hadronic layers.

4.2.3 Jet Identification Quantities

The following quantities are used to separate real quarks and gluon jets from noise:

• JetEMF: The fraction of energy within the jet which is deposited in the EM part of

the calorimeter.

• JetCHF: The fraction of energy within the jet which is deposited in the coarse

hadronic layer of the calorimeter.

• JetHOTF: The ratio of the highest ET cell in the jet to the second highest ET cell in

the jet.

• Jetn90: The number of towers which contain 90% of the jets’s energy.

• Jetf90: The fraction of the number of towers containing 90% of the energy in the jet

to the total number of towers in the jet.

Requirements are made on these variables so that the jet reconstruction algorithm will

not re-find objects that were selected by the electromagnetic reconstruction. They are also

used to limit the number of false jets. The latter are caused by cells with large pedestal

variations, drift of pedestals, and mis-calibrations [34].
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Figure 4.5: Data JES correction as a function of jet uncorrected energy (top) and pseudo-
rapidity (bottom). Results are shown for R = 0.5 cone jet in events with one reconstructed
primary vertex and T42 algorithm is applied (see [37] for T42 details). The jet η and physics
η are set to the same value.
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4.3 Muon Reconstruction

There are three detector components used for muon reconstruction:

• The muon system which reconstructs local muon tracks.

• The central tracker which measures the muon track parameters more precisely.

• The calorimeter where the muon deposits energy consistent with a minimum ionizing

particle (MIP).

The hybrid system of proportional drift tubes and scintillators serves a dual purpose.

• To ensure the proper measurement of the position of the particle before and after the

toroid.

• To ensure that the particle is ‘in time’ with the beam crossing. This helps to

discriminate muon signals from real muon noise (descrived bellow), detector noise,

or cosmic backgrounds.

Local muons are reconstructed from hits in the muon chambers. The muon reconstruction

algorithms have to deal with backgrounds arising from physics processes and instrumen-

tation. Real muon noise can originate from the scattering of protons in the beam pipe

or magnets further down the particle beam, i.e. they are not coming from the detectors

interaction region. The calorimeter is made of depleted uranium, which is decaying and

giving off secondary particles that give rise to a background in the innermost chambers

resulting in detector noise. Also, the ceiling of the collision hall has been exposed to beam

losses from the Tevatron and has become radioactive. This results in additional detector

noise in the outer chambers. The timing information from the scintillators reduces both of

these backgrounds by a large fraction.

Hits in the muon system that occur within the crossing time of the beam are first

associated into what are called “segments” at each layer. What follows is a brief discussion

on how muon segments are formed since a full description is beyond the scope of this thesis.

However, the interested reader is pointed to Reference [38] for a complete description. Muon

segments are first constructed by considering hits in each plane of the wire chambers. Each

hit in a proportional drift tube is effectively a circle, since the actual particle track may have
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Figure 4.6: Example of Segment construction from Drift Tube Hits.

passed anywhere in the plane about the hit with the proper time. The latter is depicted in

Figure 4.6. In the figure, the black lines are the wire planes and the wires are depicted by

the black crosses, they are running perpendicular to the plane of the picture. The particle

track is represented by the blue (diagonal) line, and the red circles are the drift circles. In

reality, the equi-drift time lines of the drift tubes are not circles but look more like ovals.

Each segment hit is placed on top or on the bottom of each of these circles. The hits are

transformed into a local Cartesian coordinate system in which the wire direction lies along

the z-axis, with the plane in which the wires are located is parallel to the y-axis. This is

done so that the same algorithm can be used regardless of the orientation in the global

coordinate system. At this point, the hits are grouped by wire chamber and their location

on the detector is shown in Figure 3.14. Then the following criteria is used to construct local
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segments from two hit connections.

• Ensure that the separation between both hits in the y-direction is not be more than

20 cm.

• The two hits must not be on the same drift circle, they must be two separate hits.

• The two hits are not on the same plane unless they come from two neighboring hits.

In this case, one must be at the top of a drift circle and the other at the bottom.

Once the hit combinations have been made, the local segments are looped over and combined

with other local segments to create new segments with three or more hits. Each set of hits is

fitted to a line in the x-y dimensions after all possible segments are matched. The χ2 of this

fit, along with the number of hits, is used to filter down to the four best segments. Here,

the better segment is the one with more hits, or if two segments have the same number of

hits, the one with the smaller χ2 is chosen. Then scintillator hits are associated with the

constructed segments and a new fit is calculated. The new segments are then looped over

in a list and the best matches between segments at the A-layer, and segments in the B- or

C-layers are re-fitted into tracks. See Reference [39] for complete details of the muon track

matching algorithms. These tracks give a measurement of the pT of the muon.

4.3.1 Muon Track Association

The next step is to associate tracks from the CFT with the muon tracks reconstructed with

the muon system. If the muon system fails to reconstructs a complete track, the CFT can

also be matched to muon segments. Depending on the quality of the muon in the muon

system, tracks may be associated in one of two ways.

Muon to Central Matching

The Muon-to-Central, or ‘Saclay’, match is done if two or more segments have been

successfully fitted to a muon track. This means that the fit to segments inside and outside

of the toroid has converged. Using the position, momentum, and associated errors on each,

the error matrix for the measured muon track may be calculated as follows:

E6x6 =

 EPP
3x3 EPX

3x3

EXP
3x3 EXX

3x3

 . (4.10)
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Table 4.1: Muon quality definitions for data reconstructed with production release p14.

Muon Quality tight medium loose
A-layer wire hits ≥ 2 ≥ 2 ≥ 2

BC layer wire hits ≥ 3 ≥ 2 ≥ 2
A layer scintillator hits ≥ 1 ≥ 1 ≥ 1

BC layer scintillator hits ≥ 1 ≥ 1 ≥ 1
Local track fit Two of the above, A-layer

converged conditions treated as one

Here EPP is the error matrix for the momentum defined as:

EPP =< δpT (δp) > (4.11)

where δp stands for the difference with respect to the mean value defined as:

δp = p− < p > . (4.12)

The final combined muon-to-central tracker parameters and errors may be found by using

the errors from the muon system track and the like errors from the CFT parameters.

Central to Muon Matching

Tracks from the CFT are propagated to the A-layer of the muon system if the muon

reconstruction program fails to produce a converged fit to the track. Only tracks with

momentum greater than 2 GeV are used in this propagation. All tracks within ∆φ < 1 and

∆θ < 1 are associated with the muon, but only the closest is selected as the proper track for

association. Using the same method used for Muon-to-Central matching, the parameters are

propagated to the A-layer of the muon system. However, beginning with the central track

instead of from the muon. Here, no attempt is made to merge the local track fit from the

central track, and thus the central tracker momentum is used.

4.3.2 Muon Candidates

To define muon candidates, information from all parts of muon reconstruction is used.

Additionally, isolation variables are calculated using the multiplicity and transverse momenta

of tracks as well as the calorimetric energy in cones around the muon’s direction. There are

58



three muon types that are defined based upon the local muon information [40] which are

shown is Table 4.1. As additional requirements, muons failing timing cuts on the scintillator

hits are rejected. The time window to reject a muon candidate as a cosmic muon is ± 10 ns

for A-layer scintillator hits, and -15 to 10 ns for the outer layers.

4.4 Track Reconstruction

There are two algorithms used to reconstruct tracks in the DØ detector. They are called

Alternative Algorithm (AA) and Histograming Track Finder (HTF). These will be briefly

discussed here but the interested reader is pointed to the listed references for a full discussion

and description of both of the track reconstruction algorithms [41].

The scheme used to reconstruct tracks with the AA Tracking algorithms is as follows

[42]:

• Track Hypothesis: Construct all possible track hypotheses by first considering as

many parameters as possible. Then all of the constructed hypotheses are saved in a

list called ‘Pool of track hypotheses’. This pool is saved for further consideration but

no decisions are made at this stage.

• Filter: The filter selects the final tracks from the pool of tracks. First it orders them

according to a predetermine criteria. It starts the selection process form the ‘best’

hypothesis.

• Final Tracks: The filter eliminates all overlapping hypotheses and it continues

through this cycle until no more tracks remain in the pool. The hypothesis is declared

the AATrack if it satisfies the ‘Number of Shared Hits’ criteria.

This method starts from any combination of tree hits in the SMT barrels or disks. Then

it extrapolates the sequence of hits to the next SMT or CFT layer, this in done by moving

out-wards from the interaction region. For every track found, a χ2, of the track fit, test is

performed to ensure that the track is below a certain χ2 value. If hits are not found, a miss

is recorded. A track candidate is completed when the last layer of the CFT is fitted, or when

three misses are recorded.

The HTF algorithm is based on the Hough transform mechanism and is described in

full in Ref. [43]. This algorithm only uses r − φ information. A pair of x − y coordinates
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corresponds to a line or a region in the ρ, φ plane, where ρ is defined as

ρ =
qB

pT

, (4.13)

where q is the particle charge and B is magnetic field. The content of a bin of a 2D histogram

in the ρ − φ plane is incremented for each pair of hits. Furthermore, the incrementation is

done if the histogram contents intersect the region corresponding to a pair of hits. Bins

corresponding to a track will have n(n− 1)/2 entries, where n is the number of hits on the

track. Combinations of hits from two different tracks contribute to a randomly distributed

background. After the histogram is filled, cells with too few hits are discarded. If two cells

share all their entries, the candidate with the lower number of entries is disregarded. The

remaining cells form a track template that is subjected to Kalman[46] filtering, where the

three parameters of the r−φ trajectory are fitted and the material effects are properly taken

into account. Another histogram in the parameter space zo − C plane if filled in order to

use the z information, where C = dr/dz. The r − z measurements of the hits is used and,

once again, all hits combinations are considered. Then, a Kalman filtering step removes fake

templates, wrong hits and determines the track parameters accurately. This method is valid

with the condition that only tracks with modest impact parameters are considered. The

algorithm uses two strategies that complement each other, these are:

• To find track templates with SMT hits only and extrapolate the tracks to the CFT.

• to find tracks using CFT hits and extrapolate them into the SMT.

Finally, tracks found by both algorithms are combined.

4.5 Vertex Reconstruction

To properly calculate the transverse momentum of particles in the calorimeter and the event’s

/ET , the vertex position along the z-axis must be accurately reconstructed. The vertex is

computed in a ‘two pass’ method which is described in full detail in Reference [45]. What

follows is an overview.

The first pass loops over all tracks with pT > 0.5 GeV in the event and it groups them in

a list of candidate. The coordinates of the track parameters for each of the associated tracks

are used in a fit to better determine the vertex position. The goal is to calculate the vertex
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position vector, x = (x, y, z), by using the group of tracks, and to make a better calculation

of their momentum by constraining them to this vertex. The fitting is done by using a

modified Kalman Filter algorithm, similar to the ones used in earlier tracking algorithms

[46], which relies on a least squares fit approach. The following variable are used for the

fitting algorithm:

dm =

 m1

m2

 (4.14)

where mk is the vector of track parameters4,

V =

 V1 0

0 V2

 (4.15)

which is the covariance matrix,

W =

 W1 0

0 W2

 (4.16)

which is the weight matrix where Wi = V −1
i , and

qm =


x

q1

q2

 (4.17)

which is the vector of vertex parameters and momentum tracks associated with the vertex.

Then the χ2 fit is done and minimized. The χ2 equation is constructed as follows:

χ2 = (dm − d(q)TW (dm − d(q)). (4.18)

The interested reader is pointed to Ref. [45] for full details on the minimization of equation

4.18. Candidate tracks must pass a loose selection cut of dca
σ

< 100 5 with respect to

the detector in x − y in order to be associated with the vertices. In the second pass, the

requirements on the selected tracks for vertexing is tightened to dca
σ
< 3. Here, the position

of the beam spot, found in the first pass, is used.

4Tracks are given as a function of five parameters: z, φ, tan(λ), distance of closest approach to the origin,
and the curvature, q

pT
.

5 Here, σ is the error on the position. Also, dca
σ is sometimes called the DCA significance
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This two-pass method gives a clean list of candidate vertices for each event. However,

some of these vertices will not point back to the vertex that caused a particular trigger to

fire. Vertices from additional interactions in the crossing may also be reconstructed, this

are called minimum bias (MB)6 interactions. For every selected vertex, nearby tracks are

used to compute the probability that the vertex does not come from a MB interaction.

This probability is based on the assumption that tracks coming from MB interaction will

have a smaller transverse momentum compared to tracks from coming from hard scatting.

Finally, the vertex with the smallest MB probability is chosen as the primary vertex of the

interaction.

4.6 /ET Computation

The transverse momentum (pT ) at the interaction point is zero, which implies that the

transverse momentum of the particles produced in an interaction must sum to zero. This

is from conservation of momentum. The magnitude of the vector sum of the x and y

components from the measured energy can be calculated with the following equations:

ETx =
Ncells∑

i=0

Ei × cosθi (4.19)

and

ETy =
Ncells∑

i=0

Ei × sinθi (4.20)

where θ is the polar angle and it is calculated with respect to the primary vertex for each

cell individually. The sum includes all of the calorimeter cells above threshold, excluding the

coarse hadronic section. The coarse hadronic is not used due to a distortion effect caused

by noise from this region [47]. By definition, the transverse energy calculations are balanced

by the missing transverse energy ( /ET ), as shown in the following equations:

/ET x = −ETx (4.21)

and

/ET y = −ETy. (4.22)

6For every event, hits may be required in the luminosity system, which requires there to have been at
least some activity in the interaction region, without biasing the event by requiring other detector quantities.
These are known as minimum bias events.
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Table 4.2: Luminosity block selection cuts.

Cut Value

< /ET > < 4 GeV
RMS

/ET
< 22 GeV

Scalar ET > 80 GeV
Events > 500 GeV

The /ET is calculated with:

/ET =
√
/ET

2
x + /ET

2
y. (4.23)

Due to momentum errors from the various detector components, the missing energy is rarely

zero. However, most events that do not include non-interacting particles have a small

quantity of /ET . The /ET is computed by first considering the energy depositions in the

calorimeter on a cell by cell basis, with respect to the primary vertex. The momentum of

any muons that are matched to central tracks is subtracted from the /ET calculation, giving

the final quantity used in analysis.

The /ET distribution in minimum bias events is used as a check on the functionality of the

calorimeter. If the distribution in a given run shows an excess of high /ET events, this may

be an indication that either the calorimeter is not correctly reading out, or some problem

in the electronics is present. Problems such as a ‘hot’ cell, or a ‘warm region’ that would

indicate pedestal drift. These problems are assessed on a ‘luminosity block’ 7 basis. If the

distribution is shifted, or widened by an increase of high /ET events, then the block will

be marked bad and the integrated luminosity from that data is excluded from analysis[34].

Table 4.2 summarizes the cuts used for marking a luminosity block bad. These cuts eliminate

approximately 5% of recorded luminosity.

7A luminosity block is a unit of time used by the luminosity system to measure the number of interactions
that have occurred. It corresponds to approximately one minute of data taking. Since luminosity blocks are
used to calculate the integrated luminosity, they correspond to the smallest amount of data one may exclude
and still have a sample that may be properly normalized.
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CHAPTER 5

The Analysis

This chapter describes the data selection and analysis for the search for large extra dimensions

(LED). It details the data set used and the requirements imposed in order to obtain as pure

a sample as possible of events containing a single photon and a large imbalance in transverse

energy.

5.1 Data and Event Selection

For this analysis, the data used was collected by the DØ detector in the 2002-2003 running

period (runs 152148-180956). We used the sample containing one electromagnetic (EM)

object of loose1 quality selected by the DØ Common Sample group (CS) [49]. This data

skim is called 1EMloose by the CS group. To avoid unnecessary reduction in statistics, only

runs marked as ‘bad’ by the calorimeter group have been excluded.

5.1.1 The Triggers

The triggering at DØ is a multi-stage system as described in Section 3.4. Trigger selection

was done with two unprescaled single EM object triggers. The trigger definitions are as

follows:

• E1 SH30: This trigger is from trigger list v12. At L1, it requires one calorimeter EM

object with pT > 11 GeV/c and NOT Calorimeter unsuppressed readout. At L3, it

requires one electron, or photon, with loose shower shape requirements with pT > 30

GeV/c. The luminosity collected with this trigger is 44 pb−1.

1A loose EM object is one that passes the selection criteria listed in Sect. 4.1.3
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• EM MX: This trigger is from trigger lists v8-11. At L1, it requires NOT Cal

unsuppressed readout and one EM trigger tower having pT > 15 GeV/c. At L3, it

sets the trigger bit true if an EM object with |η| < 3 and with pT > 30 GeV/c meeting

loose criteria is found. The luminosity collected with this trigger is 153 pb−1.

The data collected with the mentioned triggers sums to 197 ± 13 pb−1, as computed by

the DØ Luminosity group. Both triggers have been measured to be fully efficient for EM

objects in the central region for pT > 40 GeV/c [48]. The above sample is processed by the

application of the photon event selection criteria to the 1EMloose skim.

5.1.2 Event Selection Requirements

The goal of the event selection requirements is to select as many signal events as possible

while rejecting as much background as possible. The 1EMloose sample is enormous and has

about 10 × 106 events. To focus on extra dimensions, we required the events to have 2 or

less jets, and /ET > 12.5 GeV. With this requirements, the data set was reduced to 807,118

events. The thumbnail2 root-trees3 were made with d0correct version 64.

First we applied the DØ standard photon ID requirements as described is Section 4.1.3.

These are:

• In CC: Events must be in the central region of the calorimeter, i.e. |η| < 1.1.

• No additional jets: Make sure that the event does not have any additional jets other

than the photon.

• Scone algorithm: Make sure that the photon candidate passes the simple cone

algorithm with R = 0.5.

• EM object type 10 and 11: The difference between types 10 and 11 is a track match,

which is applied to type 11. This is a loose track match, meaning that a track is

projected to be near the EM candidate.

2A thumbnail is the format in which the data is arranged after reconstruction by the DØ Reco program,
i.e. this is the Reco output format.

3Root-trees, or TMBTrees, is the format in which analysis is done.
4The d0correct algorithm is a program that applies correction factors to the thumbnails while making

root-trees.
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• EM Fraction > 0.90: Make sure that at least 90% of the energy has been deposited in

the EM part of the calorimeter.

• EM Isolation < 0.15: Make sure that the EM energy tower is isolated from other

towers, as described in Section 4.1.1.

• EM candidate is in fiducial: Make sure that the EM object is within the η− φ fiducial

to avoid cracks in the detector.

• Track match requirement: Make sure that the probability that a track is matched to

the EM object is less then 0.001. That cut ensures that the object is not an electron.

• Shower shape requirement: To discriminate between real photons and energy deposi-

tions in the EMCal that fake photons, the variable HMx7, as described in Reference

[51] and presented in Section 4.1.3, was used. The cut is HMx7 < 15.

The efficiency of the above requirements was measured for all the requirements together,

rather than individually (see Section 22).

To further reduce backgrounds and to get rid of events that should not be part of the

single photon and /ET data, such as events with muons, the following additional requirements

were made:

• pγ
T ≥ 55 GeV/c: This cut is used because this value maximizes the signal to background

ratio, see Section 2.3 and Figure 2.3.

• Muon veto: Events with reconstructed muons of any quality, as described in Section

4.3, are rejected.

• Isolated tracks veto: An isolated track is defined as any track with pT > 10 GeV/c,

pT sum of tracks in dR < 0.4 (see Equation 4.1 for dR definition) about the candidate

track to be < 2 GeV, and dzdca < 1.0 cm 5.

• /ET > 45 GeV: This cut is used to minimize the QCD and electroweak background

contribution.

5dzdca is the distance of closest approach to the z coordinate of the primary vertex.
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Figure 5.1: On the left is the pT distribution for events that pass all the EM ID requirements
including HMx7. On the right is the distribution after making the muon veto.

• Veto on cosmic bremsstrahlung events. See Appendix A for the details of cosmic

bremsstrahlung event identification and removal.

• Primary vertex requirement: The event’s primary vertex is required to have at least

three tracks. This is required to make sure that the event is the result of a pp collision.

This cut removes events with leftover energy from a previous crossing or from a cosmic

event.

• Preshower requirement: To use only those events that contain central preshower

information.

The primary vertex and preshower requirements are made to ensure that the event is the

product of a pp̄ interaction and that there is enough information in the events to correctly

reconstruct the energies, respectively. To determine the number of signal events that would

be removed by the vertex and preshower requirements, a sample of W → eν events in data

was used which is the same data sample used to study the bremsstrahlung veto. The details

of the data selection are presented in Appendix A. The study showed that the combined

requirements remove 3% of W → eν signal events. Figures 5.1 to 5.4 contains the pT

distribution for the events remaining after every requirement. The left histogram in Figure

5.1 contains all the events with photon ID requirements including the HMx7 cut and the

histogram on the right is for events that pass the Muon veto. Figure 5.2 shows the remaining
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Figure 5.2: pT distributions for events passing the following additional requirements: No
isolated tracks (left) and the /ET requirement (right).

Figure 5.3: pT distributions for events passing the following additional requirements: Veto
on bremsstrahlung events (left) and the vertex requirement (right).

events after the isolated track veto (left) and the /ET requirement (right). Figure 5.3 shows

the remaining events after the bremsstrahlung veto (left) and the vertex requirement (right).

Figure 5.4 contains the remaining events after requiring that the events contain preshower

information (left) and the figure on the right shows the last 70 events superimposed with

the events that pass the photon ID cuts. Table 5.1 contains the event count after every

requirement or veto. The cosmic muon background is enormous. Even after all the cuts,

still some will pass and cause the background events.
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Figure 5.4: pT distributions for events passing the vertex requirement (left) and the final
70 events (right) superimposed on the pT distribution of the events passing the photon ID
requirements.

Table 5.1: Event count after every cut. The photon ID contains all of the cuts as described
in the first set of bullets in Section 5.1.2

Requirement or Veto Events remaining
Photon ID cuts 1768

Muon Veto 868
Isolated Track veto 789

Missing ET 777
Bremsstrahlung veto 245

Primary Vertex requirement 123
Preshower requirement 70

Photon ID Requirements Efficiency

The estimation of the EM ID requirements efficiency has to be done with MC events since

there is no clean resonance in data to yield a source of photons in the appropriate energy

range. Therefore, there are a few options for gaining an understanding on photons directly

from the data. In the case of electrons, the resonance peak for Z → ee can be used employing

the tag and probe method.

For the efficiency calculation, a sample of Zγ → ννγ MC events was used, see Section

5.2.2 for the event generation details. The calculations procedure is as follows:

69



• Identify the generated photons using PDGID = 226 that does not have a parent7.

• Require the generated photon to be in |η| < 1.1.

• Match the generated photon to a calorimeter cluster.

• The next step is to identify the photon using the reconstructed EM cluster as done for

data events, see Section 5.1.2 above.

• Require the reconstructed photon to be isolated from any other particles.

• Calculate the efficiency.

The efficiency is simply the number of photons passing all of the reconstruction requirements

divided by the number of generated photons that satisfy the photon ID requirements. The

EMID efficiency was measured to be 83.0 ± 2.5 (stat)%. Figure 5.5 show the efficiency as

function of pT and Figure 5.6 shows it as function of ηdetector.

Several attempts to further identify and reduce the number of background events were

made. In particular, a tool called photon pointing was used. This tool uses EMCal tower

information to extrapolate the photon’s point of origin, or the event’s primary vertex. The

pointing extrapolations turned out to be inconclusive for the data set used for this analysis.

Figure 5.7 shows the difference between the z-coordinate of the primary vertex and z-

coordinate from the pointing extrapolation for W events. For the pointing study, W → eν

events in data were used to determine the pointing shape for signal events. To generate

the plot in Figure 5.7 the track attached to the electron candidate was removed and the

event revertexed. The absence of the track gives us an EM object that passes all of the

photon ID requirements. The fit in the plot is a triple Gaussian function which was needed

because there are three distinct shapes in the distribution. A sample of events that have

been identified with muons undergoing bremsstrahlung in the EMCal was used to determine

what the shape of this particular background was. Figure 5.8 shows the distribution for the

bremsstrahlung sample. As shown with the Gaussian fit, the distribution is not significantly

different to be useful as a background discriminant. Figure 5.9 shows the distribution in

6PDGID is the Particle Data Group Identification numbering convention. This convention is used by the
PYTHIA event generation to number the generated particles.

7A parent particle is the particle that decayed to create a photon plus other particles. Here, the interest
is in photons coming from initial state radiation
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Figure 5.5: EM ID requirements for efficiency as function of the pT for central photons.

data fitted with the combination of the fits for the W and the bremsstrahlung samples. It

was decided that the pointing program did not produced a usable discriminant.

5.2 Backgrounds

There are three types of backgrounds to the LED signature, these are:

• Events with /ET due to one or more neutrinos being produced.

• Events with /ET from purely instrumental effects.

• Cosmic muons that undergo bremsstrahlung in the EMCal.

This section describes the backgrounds present in the single photon and /ET data set. The

methods used to estimate the different background are also presented.
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Figure 5.6: EM ID requirements for efficiency as function of the detector η for central
photons.

5.2.1 Sources of backgrounds

All major sources of background to LED signal are considered in this section. After applying

the selection cuts, most had negligible contribution. The background processes are now

discussed:

• W → eν production: When the electron is misidentified as a photon. The Feynman

diagrams for the production and decay of this process are shown in Fig. 5.10.

• Wγ → l±νγ production: Where the lepton is lost (see Fig. 5.11 for an example).

• Prompt γγ production: Where one of the photons is lost (see Fig. 5.12 for an example).

• Dijet production: Where one of the jets is lost and the other is misidentified as a

photon (see Fig. 5.13 for an example).
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Figure 5.7: Distribution of the difference between the z-coordinate from the primary vertex
and z-coordinate returned by the pointing program. The data plotted is for W → eν events
in data. The triple Gaussian fit was needed because there are three distinct shapes in the
distribution.

• γ+ jet events: Where the jet is lost (see Fig. 5.14 for an example).

• qq → Zγ → ννγ: This is the only irreducible physics background in this particular

channel (see Fig. 5.15).

• Cosmic events: When a cosmic muon traverses the detector and deposits energy,

through bremsstrahlung, faking a photon coming from the interaction region.
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Figure 5.8: Distribution of the difference between the z-coordinate from the primary vertex
and z-coordinate returned by the pointing program for a sample of bremsstrahlung events.
The fitting function is a single Gaussian.

5.2.2 Estimation of backgrounds

With the exception of the W (jet) → eν(jet) and the cosmic backgrounds, all of the

backgrounds were studied with MC events. The samples were normalized to data using

the cross sections (σ), the acceptance (A), and the integrated luminosity (Lint),

N = Lint × σ × A. (5.1)
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Figure 5.9: Distribution of the difference between the z-coordinate from the primary vertex
and z-coordinate returned by the pointing program for the data events. The fitting function
is a combination of the fit functions used to fit the bremsstrahlung and W samples.

This equation agrees with equation 3.6. The published cross sections were used in this study.

The results are summarized in Table 5.2 at the end of this section.

Estimating the Electroweak Background

The first two items in the list of backgrounds, W → eν and Wγ → l±νγ, are the

electroweak instrumental background contribution to the signal. The process W → eν
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Figure 5.10: Feynman Diagrams for qq → W± → e±ν.

was calculated from the 1EMloose sample by relating photons to electrons via Tracking

Efficiency. Derivation of the final expression is as follows: The number of electrons faking a

photon in events coming from W → eν is given by

NW (e) = σ(pp→ W +X)×Br(W → eν)×Lint×A× ε(trigger)× ε(EM)× (1− ε(track)),
(5.2)

where σ(pp → W + X) is the production cross-section, Br(W → eν) is the electron ν

branching fraction, Lint is the integrated luminosity, A is the combined geometric and

kinematic acceptance, ε(trigger) is the trigger efficiency [48], ε(EM) is the EM object

identification efficiency, and ε(track) is the tracking efficiency. The tracking efficiency has

been measured, in Reference [50], to be 72.7 ± 0.9(stat) ± 2.0(syst)%. A subset of the

tracking efficiency is the track matching efficiency which has been calculated and presented

in Appendix B.

The contribution from the Wγ → eνγ is suppressed by the explicit requirement, in

data, that the events must have one EM object and nothing else. This would be events for

which the lepton has failed detection due to cracks in the detector, or the lepton traversed

to a region of the detector not used in this analysis. For events that pass all the EM ID

requirements, this background is further suppressed by requiring the /ET > 45 GeV. The

background from this process is 1.2 ± 1.1 events.

The contribution from W (γ) → µν(γ) was studied using Monte Carlo (MC) events. The

sample was generated with PYTHIA v6.202 [52] using the CTEQ4L parton distribution

functions (PDF) table. The event simulation was ran through the standard DØ detector
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Figure 5.11: Feynman Diagrams for qq → W±γ production.

Figure 5.12: Feynman Diagrams for direct γγ production.
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Figure 5.13: Examples of dijet production Feynman Diagrams.

simulation and reconstruction (Reco) software. The sample of 10,000 events was requested

by the New Phenomena (NP) group [53] (request # 8306) and reconstructed with DØ Reco

release p14.02.00, as described in Chapter 4. This background becomes statistically

small, but non-zero, after making the explicit requirement for the events not to have any

reconstructed muons of any quality, as defined in Section 4.3.

Estimating the QCD Background

The QCD backgrounds relevant to this analysis are the direct photon events (γ+ jet), prompt

γγ production, and dijet production. Figures 5.12 to 5.14 depict the Feynman diagrams of

these processes. The requirements that the event must have only one EM object reduces

the γγ contribution to a negligible level. The additional requirement that the EM energy

tower must contain at least 90% of the energy in the calorimeter also reduces the dijet

contribution to a negligible level and was ignored. These requirements also reduce the direct

photon contribution to a very small, but nonzero, number. This is due to the size of the

direct photon cross section. All of the above contributions to the background were studied

with MC data. The details are as follows:

• The direct photon sample was generated with PYTHIA v6.202 [52] using the CTEQ5L

PDF table. The simulation was ran through the standard DØ simulation and Reco
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Figure 5.14: Example of Gamma+Jet production Feynman Diagram.

Figure 5.15: Feynman Diagram of the electroweak process Zγ → ννγ. This is the only
irreducible background of the single photon and /ET data set.

software. The sample of 300,000 events was requested by the NP group in three

different requests (request numbers 11638-11640). Each request generated 100,000

events in photon pT bins 40-80 GeV, 80-160 GeV, and 160-320 GeV respectively. They

were reconstructed with DØ Reco release p14.05.01, as described in Chapter 4.

• The γγ sample was generated with PYTHIA v6.202 using the CTEQ5L PDF table.

The simulation was ran through the standard DØ simulation and Reco software. The

sample of 56,500 events was requested by the NP group (request number 11253). It
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was reconstructed with DØ Reco release p14.05.02.

Estimating the Zγ → ννγ Background

The electroweak process Zγ → ννγ is the only background that has identical signal as the

single photon and /ET data set, also referred to as the irreducible background. Figure 5.15

shows the Feynman diagram of this process. It was studied using MC data generated with

PYTHIA v6.202 using the CTEQ5L PDF table. A sample of 9,250 events was generated and

ran through the standard DØ simulation and Reco software. The data was reconstructed with

release p16.04.00. This release was chosen because it contained updated detector correction

factors for the EM part of the calorimeter in the calculation of the EM energy scale and /ET ,

as described in Sections 4.1.2 and 4.6 respectively. The contribution of these events to the

background is 10 ± 1.0 events.

The Cosmic Ray Background

Most cosmic events are identified and tagged by the muon reconstruction (MuReco) algo-

rithms, as outlined in Section 4.3. Cosmic muons that do not traverse through the interaction

region of the detector are much harder to identify and the MuReco algorithms do not ‘catch’

them. Such events often leave a trace, or track, through the muon system which can be

used in their identification and removal. These cosmic muons are not worrisome unless they

deposit energy in the EM part of the calorimeter through bremsstrahlung. It turns out that

this is a significant background in events with single photon and /ET . To identify and remove

them, an algorithm was developed that uses the muons path and matches it to the location

of the photon candidate in the EM part of the calorimeter. If the muons path interpolates to

the photon, the event is tagged as a cosmic event and removed. Appendix A has a detailed

presentation of the algorithm and the removal efficiency.

5.3 Signal Analysis

5.3.1 Signal Monte Carlo

For the simulation for the LED in the single photon and /ET channel, the PYTHIA v6.2

generator was used. It was modified by Dr. Alexander Belyaev [54] to include this particular

process. We generated 1000 events for each number of extra dimensions (n) ranging from 2 to
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Table 5.2: Background estimates for the single photon and /ET data sample corresponding
to the 196 pb−1 dataset.

Background N σ (pb)

W (jet) → eν(jet) 1.2 ± 1.1 1943 ± 39
Wγ → µνγ 0.7 ± 0.15 15.03 ± 1.94
γ + jet 2 ± 0.2 970 ± 14

Prompt γγ 0 6.8 ×105± 125
Zγ → ννγ 10 ± 1.0 2 ± 0.4

Total 14 ± 1.5

8. The fundamental mass scale (MD) was varied from 200 to 1400 GeV in intervals of 100 GeV

for cross section calculations, and from 600 GeV to 800 GeV for signal studies. The dataset

used is not sensitive to signal events for MD > 800 GeV and the case for MD < 600 GeV has

been previusly studied. The number of expected signal events was calculated with Equation

5.1 using the cross section predicted by the MC program. To add the detector simulation to

the signal MC samples, the PMCS (Parametrization Monte Carlo Simulation)[55] fast MC

was used. PMCS is a Monte Carlo software package that parametrizes detector effects to

the MC generated events. The resolution of the subdetectors is parametrized from data.

The resolution functions of the calorimeter are functions of ET and pT of the measurements

respectively. As mentioned, these parameters are determined from data, so each has an

associated error which contributes to the uncertainty in the acceptance. Each parameter

in the simulation is varied by one sigma from its central value to gauge the effects of these

uncertainties and the acceptance is recalculated.

The energy from the parametrization for the calorimeter smearing is given by:

Esmeared = E ′ + x ∗ σE, (5.3)

where

E ′ = A+B × Egenerated (5.4)

is due to the uncertainty in the energy scale. In Equation 5.4, A is an offset parameter and

B is a scale factor. In Equation 5.3, x is a Gaussian distributed random number and σE is
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the energy resolution defined as: (σE

E

)2

= C2 +
S2

E
+
N2

E2
, (5.5)

where C represents calibration errors8, S represents the sampling fluctuations9, and N

represents the ‘noise’10. From Z → ee events in the central region, the constant term

(C) was determined to be 3.73± 0.28%. The sampling term (S) is taken to be the same as

from Run I which was determined to be 0.15 GeV1/2. The noise term is also taken to be the

same as in Run I, since the physical construction of the calorimeter has not changed, and it

was determined to be 0.29 GeV. The scale factor (B) was determined to be 1.0060± 0.0017.

The offset (A) was determined to be 0.095± 0.079 GeV. All of the valued quoted above are

for the central region of the calorimeter. A detail discussion on the determination of all the

terms can be found in reference [56].

PMCS Acceptance for the Signal MC

The acceptance of the DØ detector for single photons and /ET events may be roughly divided

into two separate parts, geometric and kinematic. Geometric acceptance is defined as the

fraction of the events accepted by the various fiducial cuts. Kinematic acceptance is the

efficiency with which these events will be reconstructed with the proper kinematic properties,

such as photon ET and pT . The kinematic acceptance also takes into account photons which

were produced with lower ET , but due to finite resolution effects were reconstructed with

high enough ET to pass the selection criteria. These efficiencies are correlated through the

transverse momentum of the system, therefore they are calculated together. As mentioned in

various previous sections, this analysis uses the central region of the detector (detector |η| <
1.1). This area contains the best tracking efficiency, and so the best photon reconstruction.

The photon is required to be reconstructed within the calorimeter module boundaries, so the

energy of the photon may be determined with the best resolution. The governing equation

is as follows:

A =
N(|ηγCAL| < 1.1;φfiducial; pTγS

> 55GeV )

N(pTγG
> 55GeV )

(5.6)

8Meaning the amount to which any given energy measurement is wrong due to pedestals, gains, non-
linearity, etc.

9Meaning the error due to the amount of shower sampled.
10This noise in mainly due to the natural radioactivity of the uranium which contributes energy to the

calorimeter.
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Table 5.3: Results of acceptance calculation for signal events processed with PMCS for
different values of MD and number of extra dimensions.

MD (GeV) No. of extra dimensions (n) Accp. (%) Stat. Err (%) Syst Err (%)

600 2 86.2 ± 0.7 ± 0.9
600 3 88.2 ± 0.8 ± 0.9
600 4 86.2 ± 0.7 ± 0.8
600 5 86.1 ± 0.7 ± 0.8
600 6 84.2 ± 0.7 ± 0.8
600 7 86.2 ± 0.7 ± 0.8
600 8 86.3 ± 0.7 ± 0.8
700 2 88.7 ± 0.8 ± 0.9
700 3 88.2 ± 0.8 ± 0.9
700 4 86.2 ± 0.7 ± 0.8
700 5 86.1 ± 0.7 ± 0.8
700 6 84.2 ± 0.7 ± 0.8
700 7 86.2 ± 0.7 ± 0.8
700 8 86.3 ± 0.7 ± 0.8
800 2 88.7 ± 0.8 ± 0.9
800 3 88.2 ± 0.8 ± 0.9
800 4 86.2 ± 0.7 ± 0.8
800 5 86.1 ± 0.7 ± 0.8
800 6 84.2 ± 0.7 ± 0.8
800 7 86.2 ± 0.7 ± 0.8
800 8 86.3 ± 0.7 ± 0.8

where the numerator contains the number (N) of events within the η range in the EM part

of the calorimeter (EM Cal), the φ fiducial in the EM Cal, and the pT cut for the smeared

photons (pTγS
). The denominator has the number of generated events that pass the pT cut

for the photon (pTγG
).

The acceptance ranges from about 84% to about 88% depending on the parameters

number of extra dimensions and the fundamental mass scale of the generated events. Table

5.3 contain the calculated acceptance for the different parameter values. Every parameter

in PMCS has an error associated with them which quantifies exactly how certain one can

be of the detectors performance. One can get a handle of the systematic error by varying

these parameters within these errors. There are three parameters that matter most for the
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acceptance in single photon events. These parameters are: N (the noise), C (the constant)

and B (the scale factor) as listed in Section 5.3.1. They were varied by the maximum of the

error and the simulation was done once again. The difference between the two results was

taken to be the systematic error which are listed in Table 5.3.

5.3.2 Calculation of the Limits

With the excess of events over the Standard Model assumed to be backgrounds, the lower

limits on the number of extra dimensions (n) and MD for the production of LED are

calculated from the predicted cross sections. After imposing all of the data selection, photon

ID, and data quality cuts to the data set, a final sample of 70 events remain. Out of the

70 events, about 21% are identifiable background events. The rest are most likely cosmic

background and instrumental background events that can not be further reduced. To make

a conservative estimate on MD mass limits for various number of extra dimensions, we treat

these remaining events as signal. Since the remaining events are relatively large, we are using

a Gaussian distribution in the estimation of mass limits. What follows is a brief discussion

of Gaussian distributed measurements. However, the reader is pointed to many publication

on the subject, in particular Reference [5].

The governing equation is

1− α =
1

σ
√

2π

∫ µ+δ

µ−δ

e−(x−µ)2/2σ2

dx, (5.7)

is the probability that the measured value, in this case x, will fall within ±δ of the true

value µ. It can also be interpreted as the probability for the interval x ± δ to include µ.

Figure 5.16 shows a δ = 1.64σ confidence interval unshaded. One can set a one-sided (upper

or lower) limit by excluding above x + δ (or below x − δ). Values of α for frequently used

choices of δ are given in Table 5.4.

Figure 5.17 is a graph of the total cross section as function of MD for the number of

extra dimensions being studied. The black line marks the cross section for the central value

of events (56 events) and the red line marks the 95% confidence level (CL). Figure 5.18 is

the same plot as in Figure 5.17 but zoomed in the area where the limits are being set. The

largest contribution on the systematic error comes from the uncertainty in the Lint. The

other error contributions that have been accounted for come from the uncertainties in the:
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Figure 5.16: Illustration of a symmetric 90% condidence interval (unshaded) for a measure-
ment of a single quantity with Gaussian errors. Integrated probabilities, defined by α, are
shown.

Table 5.4: Area of the tails α outside ±δ from the mean of a Gaussian distribution

α (%) δ α (%) δ

31.73 1σ 20 1.28σ
4.55 2σ 10 1.64σ
0.27 3σ 5 1.96σ

6.3× 10−3 4σ 1 2.58σ
5.7× 10−5 5σ 0.1 3.29σ
2.0× 10−7 6σ 0.01 3.89σ
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Figure 5.17: Cross section as function of MD for n=2,3,4,5,6,7,8. The black line marks the
central value based on the assumption of 56 signal events and the red line marks the 95%
CL.
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Figure 5.18: Cross section as function of MD for n=2,3,4,5,6,7,8. The black horizontal line
marks the central value and the red horizontal line marks the 95% CL. The vertical lines
point down to the lower limit of the MD.
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• Trigger efficiency: εtrigger = (97 ± 2.0)%.

• Photon ID efficiency: εγID = (83.0 ± 2.5(stat) ± 2.0(syst))%.

• The efficiency of the vertex requirement and requiring that each event to have preshower

information which is (94.5 ± 1.1)%.

• Total efficiencies: εTotal = (76 ± 6)%.

The systematic error in the photon ID efficiency was taken from the results that have been

certified by the photon ID group at DØ , see Reference [58].

Visible Bremsstrahlung Events

As mentioned in Section 5.3.2 above, most of the final 70 events being used to set the limits

are expected to be bremsstrahlung background events that can not be identified analytically.

By visually examining the event displays of a sample of 40 events from the 70 remaining

events, it was determined that an additional 40% were in fact bremsstrahlung events. These

events are not selected by the bremsstrahlung veto because they simply do not have enough

information in the muon system to be identified. As an exercise, an additional 28 events

were subtracted from the data set to calculate the limits that the reduced number of events

would set. Figure 5.19 shows the cross section as function of the MD for the different number

of extra dimensions. The limits in the distribution of Figure 5.19 are not used in the final

results because these were not calculated using an analytical method. The limits that would

be set by the 28 events are listed in Table 5.5.
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Figure 5.19: Cross section as function of MD for n=2,3,4,5,6,7,8 after an additional removal
of bremsstrahlung events. The black line marks the central value based on the assumption
of 28 signal events and the red line marks the 95% CL.
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Table 5.5: Lower limits of MD for n = 2,3,4,5,6,7, and 8 assuming 28 signal events. Presented
are both, the central value and the 95% CL.

Number of extra dimensions (n) Central value of MD (GeV) 95% CL (GeV)

2 626+30
−36 580

3 661+27
−32 619

4 671+28
−30 632

5 685+25
−20 648

6 700+16
−13 678

7 707+12
−10 690

8 712+10
−9 700
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CHAPTER 6

The Results and Conclusion

The 95% confidence level MD exclusion limits and maximum sensitivities are determined

by interpolating from the points just above the exclusion contour and the points just below

the exclusion contour as shown in Figures 5.17 and 5.18. Table 6.1 contains the limits as

read from Figure 5.18 for events in the central region (|η| < 1.1) of the DØ detector. The

previously published results by the CDF collaboration at 95% CL are: MD ≥ 549, 581, 602

GeV for n = 4, 6, and 8 (see Reference [57]) for studies in the single photon and /ET channel.

The errors cited in Table 6.1 are statistical and the systematic errors combined.

The DØ collaboration conducted a search for LEDs in the monojet and /ET channel for

Run I data. Their results at 95% CL are: MD ≥ 730, 680, 640, 630, and 620 for n = 3, 4, 5, 6,

and 7 respectively [59]. The higher value of their limits is due to the number of subprocesses

that can produce a monojet and graviton final state. This means that a smaller cross section

Table 6.1: Lower limits of MD for n = 2, 3, 4, 5, 6, 7, and 8. Presented are both the
central value and the 95% CL. The errors noted in the central values are the statistical
and systematic errors combined. The largest contribution to the errors comes from the
uncertainty of the Lint.

Number of extra dimensions (n) Central value of MD (GeV) 95% CL (GeV)

2 528+25
−20 500

3 585+17
−16 558

4 600+18
−14 581

5 618+15
−12 602

6 650+17
−17 630

7 665+12
−13 648

8 680+11
−7 668
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Table 6.2: Lower limits of MD (GeV) for n = 3, 4, 5, 6, 7, and 8. Presented are: The
central value and the 95% CL for data, 95% CL for the reduced data, 95% for the CDF Run
I results, and the 95% CL for the Run I DØ Monojet search.

Data Data Reduced data CDF Run I Monojet
n central 95% CL 95% CL 95% CL 95% CL
3 585+17

−16 580 619 730
4 600+18

−14 581 632 549 680
5 618+15

−12 602 648 640
6 650+17

−17 630 678 581 630
7 665+12

−13 648 690 620
8 680+11

−7 668 700 602

can be probed.

As noted in Subsection 5.3.2, the dataset still contains cosmic ray muon background

which was not identified analytically. There are at least 28 events that can be visually

identified as cosmic ray muons undergoing bremsstrahlung in the EMCal by use of event

displays. This is a problem that future analysis in this particular channel will have to deal

with. Table 6.2 contains a summary of the limits from the cited published searches, as well

as the results from this study including the reduced bremsstrahlung dataset.

As noted in Section 5.1.1, this study uses 197 pb−1 of data which is about 17% of the

data presently available at DØ for physics analysis. If we were to use the entire data set

imposing the same requirements and without reducing the bremsstrahlung background, the

95% CL level curve in Figure 5.18 would be lowerd toward the central limit curve, assuming

no signal events. This would result in higher limits for MD ranging from about 20 GeV for

the lower values of n to a few GeV for h igher values.
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APPENDIX A

Cosmic Bremsstrahlung Events

Cosmic muons can produce photons or fake jets (plus /ET ) final states in two ways: through

photon radiation, and minimum ionization in the calorimeter cells. In the first case, a cosmic

muon radiates a high energy photon, through bremsstrahlung, resulting in a single high ET

photon. The second case can arise when a cosmic muon travels roughly parallel to the beam

line, traversing a longer distance in a given cell than a collision produced muon. The case

in which jets are produced has been studied and the details can be found in Reference [60].

Analyses searching for single photon events are vulnerable to backgrounds from cosmic

ray muons which undergo bremsstrahlung in the detector. Since these photons are not

associated with a real event, an energy imbalance is also created. This combination can

result in substantial number of fake events that have been selected using a single photon

and missing energy ET (/ET ). Muons that undergo bremsstrahlung create a photon that

travels essentially in the direction of the original muon. A method that uses fragments of

muons information identified in the muon chambers and project these to the EMCAL was

developed. If the EMCAL in these locations has a substantial amount of energy, these events

are tagged as possible bremsstrahlung.

This study deals with the case in which photons are produced. To identify those events,

we rely on muon information being present in at least two layers of the muon detector.

A.1 Data and EM Object Selection

For this study, the data set described in Section 5.1.2, was used. For completeness, the data

selection cuts and requirements are briefly reviewed here.

The cuts are as follows:

• Events are required to have only one jet.
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• Events must be in the central region of the calorimeter, i.e. |η| < 1.1.

• Use Scone algorithm for EM reconstruction.

• Require EM object ID 10 and 11.

• At least 90% of the energy has been deposited in the EM part of the calorimeter, i.e.

EMFract > 0.90.

• Require that the EM cluster is isolated, i.e. EMIso < 0.15.

• EM candidate must be within φ fiducial.

Two different data sets were selected from the 1EMloose skim, a sample of W → eν events

and a sample of single photons plus /ET candidates. To discriminate between them, we used

the spatial track match χ2 probability. The cuts were: less than 0.001 for photon candidates,

and greater than 0.001 for electrons. Furthermore, we reconstructed the W transverse mass

peak and required the electron to be within 60 GeV and 90 GeV of the transverse mass

distribution. The W sample was used to study the efficiency of the bremsstrahlung veto.

The following additional requirements were made to increase the purity of the samples:

• HMx7 < 15.

• Muon veto: Events with reconstructed muons of any quality were removed, i.e. muons

of loose, medium, tight, cosmic and cosmicT quality as described in in Section 4.3.2.

• For photons, we also vetoed on events with isolated tracks1 and required /ET > 45 GeV

and pT > 55 GeV.

• For the W → eν sample, we required /ET > 20 GeV and pT > 25 GeV.

Table A.1 contains the event count for the single photon plus /ET . Table A.2 contains the

event count for the W → eν sample.

1 An isolated track is defined as having: has pT > 10 GeV, pT sum of tracks in dR < 0.4 (where
dR =

√
dη2 + dφ2 ) about the candidate track to be < 2 GeV, and dzdca < 1.0 cm
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Table A.1: Summary of event count for single photon and /ET sample.

EM object ID 1781
Muon veto 789

Isolated Track veto 781
/ET requirement 769

Bremsstrahlung veto 242

Table A.2: Summary of event count for W → eν sample.

EM object ID 44712
Muon veto 41670

/ET requirement 41670
Bremsstrahlung veto 40467

A.2 Bremsstrahlung Event Identification

The bremsstrahlung events were found while doing a data analysis in the single photon and

/ET channel. After all the data selection and quality cuts were made, a random sample of 50

candidate events was picked to make event displays. The goal was to see what these events

looked like. Surprisingly, about 80% of the events apeared to have a muon traversing the

detector and the path pointing, or going through, the photon candidate. Figures A.1 and A.2

are two views of an event display of one of these events. Figure A.1 explicitly shows a cosmic

muon traversing the detector interacting with the BC-segment, A-segment, EM calorimeter,

and the A-segment at the other side of the detector. Figure A.2 is a representation of the

energy deposition in φ and the calculated /ET .

By viewing the displays, a simple strategy was devised: calculate the vectors from all of

the muon A-segments hits to the location of the EM energy tower. Then calculate the angle

between the vectors, this angle was referred to as χ. To do this, the methods xA(), yA()

and zA() of the TMBMuon class were used. They return the coordinates of the A-segment

hits and the projection of BC-layer hits to the A-segment. Figure A.3 is a typical event

with the vectors and the angle. There are muon hits in two sides of the muon system, i.e.

A-segment hits in the two sides. Figure A.4 shows the cos(χ) distribution. Events that have
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at least one |cos(χ)| greater than 0.9 entry are vetoed. Figure A.4 also shows that most of

the bremsstrahlung events do have hits in opposite sides of the muon system as would be

expected from a muon that traverses the entire detector. The cut of |cos(χ)| greater than

0.9 was chosen to allow for the bending of the muons track due to the muon magnetic field

and for trajectory change after the photon emission from bremsstrahlung.

A.3 Efficiencies

The W → eν sample, as described in Section A.1, was used to calculate the number of

signal events that would be lost by the bremsstrahlung veto. The idea was to find out how

often muon noise, or random muon hits in the muon system, would ‘fake’ a muon path that

matches to the EM cluster location. The W → eν sample from data is the best sample

to used for this purpose. Figure A.5 shows the cosine of χ distribution for the W → eν

sample. The peak at cos(χ) greater than 0.95 is from real electrons that happen to line up

with muon A-segment or BC-segments hits. It is also possible that some of the W events

are in coincidence with the muon undergoing bremsstrahlung. Figure A.6 show the ratio

of the calorimeter energy (E)divided by the matched track momentum (P ) which leads to

the conclusion that these are electrons that are coming from the W → eν decay. It is also

possible that these are real cosmic events that happen to have a high pT track matched to

the EM cluster. However, this is highly unlikely in this data sample since only events in a

narrow range of the transverse mass of the W distribution was used. From Table A.2 it can

be determined that 97% of the W → eν events pass the bremsstrahlung veto. Therefore,

the method removes 3.0 ± 0.1(stat) % signal events. Note that the bremsstrahlung veto

is being applied after the removal of all reconstructed muons from the W sample. This is

done because the bremsstrahlung veto is designed to remove muons that traverse the entire

detector which is not the case for real muons events originating from the interaction region.

If the muon veto is removed, the bremsstrahlung veto removes an additional 1% of the W

events. Both vetoes combined remove 9.5% of the W events.

A.4 Conclusion

It was determined that using muon segment information at the TMBTree level is a useful way

to reduce the number of single photon events produced by cosmic bremsstrahlung events.
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For the event selection of high pT photons (pT greater than 55 GeV) and /ET (/ET greater than

45 GeV), about 50% of the final sample are muons that undergo bremsstrahlung and the

selection removed less then 3% of real photons. This is particularly important for studies

using single photons and /ET events.

A.5 The Code

Below is the code of the function that returns the angle between the vectors from muon

A-segment hits and the EM object. The method takes in three pointers of TMBObject type,

one for the EM candidate and two for the muon hits. This method should be called after all

the EM ID requirements have been made on the candidate EM object. First, open the muon

array and set the first pointer. Then, open a second loop over the muon array and set the

second pointer ensuring that the pointer is for an other muon object. Here is an example:

// Open the first muon loop and set the first pointer

for( Int_t jmuon=0; jmuon<fMuon->GetLast()+1; jmuon++ ) {

Muon = ( TMBMuon* ) fMuon->At(jmuon);

// Open the second muon loop and set the second pointer

// Ensure that it points to a different muon object

for( Int_t kmuon=jmuon+1; kmuon<fMuon->GetLast()+1; kmuon++) {

Muon1 = ( TMBMuon* ) fMuon->At(kmuon);

// Call the fucntion and get chi

chi = get_AngleChi(Emcl,Muon,Muon1);

// fill the histogram

Cosine_of_chi->Fill(cos(chi));

}// Muon1 //////////////////

}// Muon //////////////////

The code for the get AngleChi() function is as follows:

Float_t classname::get_AngleChi(TMBEmcl* Emcl,TMBMuon* Muon,TMBMuon* Muon1){
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// Declare the vectors

TVector3 Vem; TVector3 Vmu1; TVector3 Vmu2;

TVector3 Vme1; TVector3 Vme2;

// Get the EM candidates coordinates

Float_t Emcl_x = *(Emcl->floorX(3));

Float_t Emcl_y = *(Emcl->floorY(3));

Float_t Emcl_z = *(Emcl->floorZ(3));

// Make the vector from the detector’s origen to the EM cluster

Vem.SetX( Emcl_x );

Vem.SetY( Emcl_y );

Vem.SetZ( Emcl_z );

// Get the coordinates of the muon A-segment hits and make the vector.

// This vector is from (0,0,0) to the muon hit location.

Vmu1.SetX( Muon->xA() );

Vmu1.SetY( Muon->yA() );

Vmu1.SetZ( Muon->zA() );

// Make vector from the Muon hit location the the EM cluster.

Vme1 = Vem - Vmu1;

// Make the second muon vector

Vmu2.SetX( Muon1->xA() );

Vmu2.SetY( Muon1->yA() );

Vmu2.SetZ( Muon1->zA() );

// Make the second vector from the Muon hit location to the EM cluster.

Vme2 = Vem - Vmu2;

// return the angle.

return Vme1.Angle(Vme2);

}
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Figure A.1: z − y view of a cosmic bremsstrahlung event
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Figure A.2: φ view of a cosmic bremsstrahlung event
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Figure A.3: The red and green lines depict the vectors from the muon hits, A-segments in
this case, to the EM candidate. As this display shows, it is possible to have more than one
χ calculation per event.
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Figure A.4: Cosine of χ distribution for a single photon and /ET data sample passing all of
the photon ID requirements including muon veto, isolated track veto, and /ET requirement.
The red lines mark the values where the cut was made, which is |cos(χ)| > 0.9.
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Figure A.5: Cosine of χ distribution for a data sample of W → eν events passing all of the
photon ID requirements including muon veto and /ET requirement.
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Figure A.6: ECal/PTrack distribution for events in cos(χ) > 0.9. This distribution indicates
that these events are electrons from W → eν events that happen to line up with muon
segments hits.
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APPENDIX B

Track Match Efficiency Calculation

As described in Section 4.4, tracks, once found, are matched to calorimeter or muon clusters

as part of particle reconstruction. This note answers the following question: Given a track,

what is the matching efficiency in the case for electrons?

B.1 Data Selection

For this study, diEMloose skim data set was used as defined by the common sample (CS)

group [49]. From the skim, the Z → ee peak was reconstructed and selected only those

events within the range 20 < Zmass(GeV ) < 200. The electron candidates in each diEM

event were required to pass all of the EM ID criteria, as defined in Section 4.1.3 including

the shower shape requirement. For completeness, the requirements are outlined here:

• In CC (|η| < 1.0).

• Use Scone algorithm for EM reconstruction.

• EM object ID 10 and 11.

• EMFract > 0.95.

• EMIso < 0.1.

• EM candidate must be within the η − φ fiducial.

• HMx7 < 15.

The Z peak for events that pass these requirements is shown in Figure B.1.
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Figure B.1: Z → ee peak for diEM events after the certified EM ID requirements as defined
in Section 4.1.3. Since these events do not have track match requirements, they includes
events in which both EM objects have matched track, 1 EM object has a track match and
neither EM objects has a matched track.

This data set was divided into two sets: one set with one EM object matched to a track,

and one in which both EM objects had matched tracks. The fitted Z peak distributions for

the two sets are shown in Figures B.2 and B.3.

B.2 The Efficiency Equation

The tracking efficiency equation was derived in the following way: Let N2 be the number of

events with two matched tracks, N1 be the number of events with one matched track, N0

the number of events with zero tracks and εtrk be the tracking efficiency. Table B.1 shows
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Figure B.2: Z → ee peak for events with one electron having a track match

what the efficiency per track in each event is. Base on Table B.1 the following equations can

be written.

N2 = NZε
2
trk, (B.1)

N1 = 2NZεtrk(1− εtrk) (B.2)

and

N0 = NZ(1− εtrk)
2. (B.3)

Solving Equations B.1 and B.2 for εtrk yields

εtrk =
2N2

2N2 +N1

. (B.4)
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Figure B.3: Z → ee peak for events with two electrons having a track match

Table B.1: Presented is the estimation of the tracking efficiency, εtrk, for each combination.

Trk1 Trk2
N2 εtrk εtrk

N1 εtrk 1 - εtrk

N1 1 - εtrk εtrk

N0 1 - εtrk 1 - εtrk
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B.3 Error Calculation

In this case, the error propagation equation is as follows [61]:

σ2
X =

∑ (
∂X

∂ai

)2

σ2
ai

(B.5)

For simplicity, let the track match efficiency equation be:

X =
a

a+ b
. (B.6)

After differentiating with respect to a, we get:

∂X

∂a
=

1

a+ b
− a

(a+ b)2
. (B.7)

Differentiating with respect to b, we get:

∂X

∂b
= − a

(a+ b)2
. (B.8)

Substituting Equations B.7 and B.8 into Equation B.5, we get:

σ2
X =

(
1

a+ b
− a

(a+ b)2

)2

σ2
a +

a2

(a+ b)4
σ2

b (B.9)

After dividing Equation B.9 by X2 and some algebra, it becomes:

σ2
X

X2
=

b2

(a+ b)2

(
σ2

a

a2
+
σ2

b

b2

)
. (B.10)

Multiplying by X2, some algebra and taking the square root, we get:

σX = X(1−X)

√
σ2

a

a2
+
σ2

b

b2
(B.11)

After substituting the original values for a and b, we get:

σεtrk
= εtrk(1− εtrk)

√
σ2

2N2

2N2
2

+
σ2

N1

N2
1

(B.12)

B.4 Results

With this method, the track matching efficiency was measured to be εtrk = 94.7 ± .3(stat)

%.
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