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ABSTRACT OF THE DISSERTATION

Search for t-Channel Single Top Quark Production in pp̄ Collisions at 1.96 TeV

by

Philip Michael Perea

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2006

Dr. Ann Heinson, Co-Chairperson
Dr. John Ellison, Co-Chairperson

I have performed a search for t-channel single top quark production in pp̄ collisions at

1.96 TeV on a 366 pb−1 dataset collected with the DØ detector from 2002–2005. The

analysis is restricted to the leptonic decay of the W boson from the top quark to an

electron or muon, tqb̄ → lνlb qb̄ (l = e, µ). A powerful b-quark tagging algorithm derived

from neural networks is used to identify b jets and significantly reduce background. I

further use neural networks to discriminate signal from background, and apply a binned

likelihood calculation to the neural network output distributions to derive the final

limits. No direct observation of single top quark production has been made, and I

report expected/measured 95% confidence level limits of 3.5/8.0 pb.
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Chapter 1

What is Single Top and Why is it

Interesting?

1.1 Introduction

A lone neon sign, glowing and flickering, beckons all with its incentive of “Ice Cold Beer.”

And while considering the tempting offer, I ponder how odd a place for the remnants of

man’s first particle accelerator to reside. These tubes, once called Geissler tubes after

their inventor, Heinrich Geissler, consisted of a partially evacuated glass tube, neon gas,

and an electrode at either end. With the application of a voltage across the electrodes,

a current of electrons was accelerated from one end of the tube to the other, and in

the process radiated that soft glow that calls us to our neighborhood bar. From these

humble beginnings more rooted in entertainment and dazzling illumination, accelerators

were designed (this time intentionally) to probe the very fabric of the universe. While

man has always pondered the fundamental nature of matter, only in the last 150 years

has technology evolved to the challenge - bringing forth the birth of particle physics.

Even with those same early tubes that Geissler had come up with, the first funda-

mental unit of matter had been discovered - the electron [1]. Today, such tubes are
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but a speck in comparison to modern day accelerators and particle detectors. The field

has grown immensely, and with each new energy regime provided by an accelerator, a

new batch of particles has been discovered. Still, we toy with the same questions that

have always intrigued us — what, how and why? What is the universe really made of,

how do its fundamental units interact, and how does this influence the evolution of the

universe? (The “Why’s” are usually more philosophical, and tend to evade scientific

evaluation, while still providing engaging conversation topics). Ceaselessly seeking these

answers, a large variety of experiments have sprung up around the world, each working

day and night to collect enough data to prove or disprove our most imaginative theories.

They are being run by international collaborations, and are working with one another

to develop and test the current theory of particle physics - the Standard Model. The

latter half of the 20th century witnessed the creation of these super experiments, and

notable ones that made significant discoveries include the Stanford Linear Accelerator

(SLAC) [2, 3], the Brookhaven Alternating Gradient Synchrotron (AGS) [4, 5, 6], and

the European Center for Nuclear Research’s Super Proton Synchrotron (SPS) [7, 8], and

later its Large Electron-Positron collider (LEP) [9, 10, 11]. Each of these experiements

has yielded a new piece of the puzzle, and the current piece is being forged by the

world’s leading high energy physics collider: the Tevatron at Fermi National Accelerator

Laboratory (Fermilab).

In this dissertation, a description will be given of an analysis at the DØ experiment

at Fermilab. A full description of a search for single top quarks has been completed with

a dataset spanning 2002–2005. We begin with the fundamental theory that has led us

to take on this endeavor, how and why a search for single top quarks should be pursued,

and then give a detailed description of the analysis in the following chapters.
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1.2 Standard Model

The Standard Model of particle physics describes our current understanding of matter

and provides a mathematical framework for particle interactions, creation, decay, and

annihilation. It is the work of many scientists spanning approximately the last 100

years. From J.J. Thompson’s discovery of the electron (1897), to the accelerator “particle

explosion” (1950’s), and evidence for proton structure (1960’s), experimentalists have

uncovered the fundamental building blocks of the universe. Working in parallel, many

theorists have guided this quest for understanding, accurately describing equations for

antiparticles, creating gauge theories such as the beautifully accurate theory of charged

interactions (Quantum Electrodynamics), and predicting the massive mediators of the

weak force. From the work of many, a brief review of the Standard Model is given here.

1.2.1 The Particle Zoo

All matter consists of three groups of particles: quarks, leptons, and force carriers, and

their antiparticles. There are six quarks, named up, down, charm, strange, top, and

bottom, arranged in three generations of weak isospin doublets, (u,d), (c,s), (t,b). They

are spin 1/2 fermions and the up-type quarks carry a charge of 2/3e and the down-type

quarks a charge of −1/3e. The mass varies greatly from about 4 MeV for an up quark

to 175 GeV for a top quark (Table 1.1). The leptons — electrons, muons, taus, and

their neutrinos — are also arranged in three generations of doublets, (e, νe), (µ, νµ),

(τ , ντ ). They are spin 1/2 fermions and each electron-type lepton carries a charge of

1e and is partnered with a chargeless neutrino of corresponding flavor. Neutrinos are

nearly massless1 and the other leptons range from 0.5 MeV to 1.8 GeV.

1Recent evidence from neutrino oscillation measurements show that at least two of the neutrinos
must have mass to account for observed neutrino mixing [12, 13]
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Generation Flavor Charge Spin Colors Mass
1 u +2/3 1/2 Yes(3) few MeV

d −1/3 1/2 Yes(3) few MeV md > mu

e− −1 1/2 No 0.511 MeV
νe 0 1/2 No nearly massless

2 c +2/3 1/2 Yes(3) ∼ 1 GeV
s −1/3 1/2 Yes(3) ∼ 0.1 GeV

µ− −1 1/2 No 0.1057 GeV
νµ 0 1/2 No nearly massless

3 t +2/3 1/2 Yes(3) ∼ 175 GeV
b −1/3 1/2 Yes(3) ∼ 4 GeV

τ− −1 1/2 No 1.776 GeV
ντ 0 1/2 No nearly massless

Table 1.1: The fundamental particles and their basic properties (This table is a replication from [14],

with updated Particle Data Group values [48]).

1.2.2 The Forces

The Standard Model further describes four forces which allow our zoo of particles to

interact and evolve into the complex universe that we observe today (Table 1.2). The

carriers of these forces are spin 1 bosons. The first force, gravity, is the familiar attractive

force between all particles with mass or energy. It is mediated by the graviton, and

while dominating at large distances, it is dwarfed by the other forces at short or nuclear

ranges. The electromagnetic force occurs between all particles with electric charge, and

is mediated by the massless photon. The strong force is mediated by gluons and allows

color-charged particles to interact with one another. At short range it is the dominant

force and is responsible for holding together atomic nuclei. Finally, the weak force is

mediated by the charged W± bosons and the chargeless Z0 boson. The weak force allows

interactions amongst all the particles except gluons. It is short ranged, but allows for

many otherwise forbidden decays to occur.
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Force Mediator Interact By Charge Spin Mass
gravity graviton mass 0 1 Massless

electromagnetic γ (photon) charge 0 1 Massless
weak W± — ±1 1 ∼ 80 GeV
weak Z0 — 0 1 ∼ 91 GeV
strong g (gluon) color 0 1 Massless

Table 1.2: The force mediators and their properties.

1.2.3 Gauge Theories

Gauge theories describe physical systems based on the idea that there is a symmetry

governing their actions, and that transformations by this symmetry can be performed

both locally and globally. These symmetries, such as charge, parity, or time, in com-

bination with quantization of a theory, have led to the development of quantum field

theories.

In the late 1940’s the first field theory, Quantum Electrodynamics (QED), was being

developed by Richard P. Feynman, Julian S. Schwinger, and Tomonaga Shin’ichiro. One

of the most elegant and precise theories to date (corrrectly predicting the anomalous

magnetic moment of the electron to more than 10 decimal places [15]), it describes the

interactions of all particles with electric charge. With this triumph, the theory was

further extended by Sheldon Glashow, Abdus Salam, and Steven Weinberg in the 1960’s

and the electromagnetic and weak forces were united into one force, the electroweak

force.

The electroweak gauge theory is described by a SU(2)L ⊗U(1)Y group2; it predicted

four force mediators, two charged, and two neutral. With the weak force being exper-

imentally short ranged, it became necessary for some of these mediators to gain mass.

This process, known as “spontaneous symmetry breaking,” correctly predicted the mas-

sive W± and Z0 bosons, kept the massless photon, and retained normalizability of the

2SU(2)L refers to left-handed doublets, while U(1)Y refers to the weak hypercharge, Y weak =
2(Q − Iweak

3 ), where Q is the electric charge, and Iweak
3 the weak isospin
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theory. With such success, the model for strong interactions was based on the QED and

electroweak theories, and the theory of Quantum Chromodynamics (QCD) was created.

QCD aims to describe the interactions of quarks and to explain the observed structure

of all the mesons and baryons. As the electric charge is the fundamental parameter of

QED, a “color” charge was created for QCD. This charge comes in three flavors, red (r),

green (g), and blue (b), and their anticolors. The theory requires all unbound strongly

interacting particles to exist in colorless states, which is possible only by combining all

colors, rbg, all anticolors, rbg, or a color and it’s anti-color, e.g. gḡ. Quarks possess a

single color, and the theory requires eight gluons, each possessing a color and a differing

anticolor. These guidelines explain why all mesons are made of two quarks, like the

π+(ubd̄b̄), and all baryons are made up of three quarks, like the proton (urugdb )3.

QCD also consists of two peculiar properties: asymptotic freedom and confinement.

Both deal with the nature of the strong force at varying distances. At short, or nuclear

distances, the interaction between quarks and gluons diminishes and they behave as

free, noninteracting particles. This feature has allowed high energy physics to flourish,

yielding accurate models of hadrons and thus, accurate predictions of scattering cross

sections. While quarks are free at short distances, the strength of the strong force

increases with distance indefinitely. Only an infinite amount of energy would allow

quarks to roam free, so they remain bound. If there is enough potential energy in the

field between two quarks, another pair of quarks may appear to relieve the tension,

creating two separate, colorless hadrons.

The group that describes QCD is SU(3)C and together with the electroweak theory,

the Standard Model is described by the group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . A final note

should be made concerning the origin of mass. The same mechanism that gave the

electroweak mediators their mass, spontaneous symmetry breaking, requires a new field

3evidence for “pentaquarks” has been recently submitted, a bound state of five quarks, for example
urugdbdbs̄b̄, that could still feasibly be colorless [16, 17]
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to account for the process, and this field is the Higgs field. The boson associated with

this field not only gives mass to the mediators, but to all fermions. It is an essential

piece of the Standard Model, and is being actively sought today.

1.3 The Top Quark

1.3.1 Discovery

The first evidence for a third generation of quarks came with the discovery4 of the b

quark in 1977. In order to fit into the current theory of particle physics, the down-

type “bottom” or “beauty” quark was expected to have an up-type isospin partner, and

the “top” or “truth” quark was postulated to exist. Nearly 20 years later, a particle

accelerator finally generated enough center of mass energy to produce the top quark,

and it was observed at Fermilab by the DØ and CDF collaborations in 1995 [19, 20].

1.3.2 Properties

The top quark exhibits all the natural properties of an up-type quark, being a spin 1/2

fermion, having a charge of +2/3e, and interacting via the strong and weak forces. It also

exhibits several unusual properties, the most notable being its large mass: 178.0 ± 4.3

GeV/c2 [25]. The top quark is much more massive than its isospin partner or any other

mediator or quark discovered thus far. This mass is close to the electroweak symmetry

breaking scale (vacuum expectation value = 246 GeV), and makes the top quark a good

place to look for deviations from the Standard Model [80]. This large mass further leads

to an expected decay width Γt/|Vtb|2 = 1.39 GeV, or a lifetime ∼ 0.4 × 10−24s [23, 24].

Considering strong interactions take place on the order of ∼ 3.0 × 10−24s (1/ΛQCD),

the top quark decays before hadronization, and its polarization is cleanly transmitted

4via the Υ (bb̄) decay seen by E288 at Fermilab [18]
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to its decay products. As data samples grow, top quark polarization can be tested for

anomalous couplings. The top quark couples to both the strong and weak fields and

allows study via two production modes: pair production (Section 1.3.3) and single top

quark production (Section 1.4).

1.3.3 Pair Production

The top quark was first observed at Fermilab through pair production via the strong force

[19, 20]. At a pp̄ collider, both the proton valence quarks, and the gluons and quarks

from the parton sea can contribute to the production. At a center-of-mass energy of

1.96 TeV, about 85% of production comes from the quark process qq̄ → tt̄, and 15%

from the gluon process gg → tt̄ (Figure 1.1) [21, 22]. Using the Standard Model with

a top quark mass equal to 175 GeV, the NLLO (Next-to-Leading Logarithmic Order) tt̄

cross section has been calculated as 6.77 ± 0.42 pb [22]. With a branching fraction of

nearly 100% for t → Wb, the pair production decay channels are defined by the decay of

the W bosons. These channels include tt̄→ alljets (B=36/81), lepton+jets (B=36/81),

and dileptons (B=4/81), where the branching fractions come from all available fermion

final states (Table 1.3). Since the heavier τ further decays, it is not considered part of

the dilepton channel, and makes up the remaining 5/81 of the branching fraction. The

dilepton channel consists of ee+jets, eµ+jets, or µµ+jets, and suffers from a problem

in reconstructing the W bosons. There are two neutrinos in the event, but they can

only be reconstructed as one object in the detector, missing transverse energy, thus

making reconstruction of both W bosons and a measurement in this channel difficult.

The alljets channel consists of two b-quark jets from the top quark decays, and four

or more light-quark jets from the decay of the W bosons. This channel is hindered by

the combinatorics of correctly identifying the jets from each decayed top quark. The

lepton+jets channel is the “golden channel” for tt̄ measurements, yielding one clean W
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Figure 1.1: The production modes for tt̄ pair production. The left figure is mediated by two incoming

quarks, while the center and right figures show initial state gluons producing the reaction. The right

figure has an additional diagram with the incoming gluons crossed, but it is not shown.

boson from the lepton and E/T , and greatly reducing the combinatorics from the other

jets. Cross section measurements and mass measurements have been made in all of these

channels, and results are shown in Table 1.4.

Top Pair Production Decay
Modes of the W boson

e+ µ+ τ+ u/d c/s
e− 1 1 1 3 3
µ− 1 1 1 3 3
τ− 1 1 1 3 3
ū/c̄ 3 3 3 9 9
d̄/s̄ 3 3 3 9 9

Table 1.3: The available decay modes of each W boson from the decays of the top quarks in pair

production. The number of final states from the W+ (top row) and the W−(left most column) decays

are given. Factors of three arise from the color charge of the quarks.

Top Quark Precision Measurements
Top Quark Mass Mt = 172.5 ± 1.3(stat) ± 1.9(sys) ± 2.3(tot) GeV/c2

tt̄ Cross Section (DØ Best) σ(tt̄) = 8.1+1.3
−1.2(stat+sys) ± 0.6 (lumi) pb

tt̄ Cross Section (CDF Best) σ(tt̄) = 8.2 ± 0.6(stat) ± 1.0(sys) pb

Table 1.4: A large number of precision top quark measurements are being pursued by the DØ and

CDF experiments. The latest world average for the top quark mass is given [25], as well as the most

precise tt̄ production cross section measurement to date for both DØ [26] and CDF [27]. Both cross

section measurments take place in the lepton + jets decay channel.
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1.4 Single Top

1.4.1 Introduction

Single top quark production occurs via the weak interaction and provides an exciting

new perspective with which to study the top quark. Single top processes have been

the subject of many previous studies [34]–[47]. At hadron colliders, there are three

production modes that contribute and each is defined by the virtuality (Q2
W ), or four-

momentum squared, of the W boson mediating the production. Each process is described

below for top quark production, and all conjugate (t̄) processes can be easily deduced.

The leading order Feynman diagrams are illustrated in Figure 1.2 (higher order diagrams

are shown in Figures 1.6 and 1.7).

• t- or u-channel (Q2
W

< 0) The t-channel is mediated by a spacelike W boson and

is the dominant production mode at the Tevatron. There are two constructively

interfering diagrams that contribute, a 2 → 2 and a 2 → 3 process. The 2 →

2 process involves a u valence quark from the proton and a b quark from the

antiproton sea. The 2 → 3 process differs by requiring a gluon from the antiproton

sea to pair produce instead of an incoming b quark. Both the 2 → 2 and 2 → 3

processes produce a high momentum liqht quark and a top quark, but the 2 →

3 process produces an additional soft b̄ antiquark. The 2 → 3 process is also

responsible for the t-channel’s alias“W-gluon fusion”, and may also be referred to

as tqb.

• s-channel (Q2
W

> 0) The s-channel is mediated by a timelike W boson and

only includes a 2 → 2 process at leading order. The process involves two incoming

quark isospin partners, generally a valence u quark from the proton and a valence

d̄ quark from the antiproton. The process produces a top quark and a hard b̄

antiquark, and may also be referred to as the W ∗ or tb mode.
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Figure 1.2: Leading order single top quark production modes.

• tW (Q2
W

= 0) The tW process involves an on-shell W boson and is the smallest

process at our collider. This process involves an incoming b quark from either the

proton or antiproton sea, and a gluon from the other sea. The products are a real

W boson and a top quark. While this is a unique signature to search for in the

detector, the low cross section leaves the tW channel out of reach at this time, and

so it is ignored for the duration of this thesis. Further discussion can be found at

[64].

1.4.2 What Can Single Top Teach Us?

The wide scope of single top processes allows for verification of the standard model and

a chance to possibly observe new physics. The weak coupling of the top quark can be

measured, while looking for new fields that couple to the top quark, and studying the

top quark polarization. Each of these inquiries can yield interesting results, and each is

discussed below in detail.

1.4.2.1 Standard Model Electroweak Coupling

The electroweak coupling is mediated by the W and Z bosons; it allows for weak isospin

partners to interact and for quarks and leptons to interact. The coupling is
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V –A (vector – axial vector), or left-handed in nature, and a charged current interaction

is described by

− g

2
√

2
[W−

µ Ψγµ(1 − γ5)Φ + W+
µ Φγµ(1 − γ5)Ψ] (1.1)

where g is the weak coupling constant (g = e/ sin θW ), W± represent the W boson

field, Ψ and Φ the wave functions of the interacting particles, and γµ(1 − γ5) the V –A

coupling (there will be an additional constant for quark interactions to account for QCD

corrrections) [48]. In addition to describing the interactions of weak isospin partners,

the electroweak theory describes mixing between up- and down-type quarks via the

Cabbibo-Kobayashi-Maskawa (CKM) matrix. In the standard model with three quark

generations, the CKM matrix takes on the form


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






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(1.2)

with each up(down)-type quark actually being a linear combination of all three up(down)-

type quarks. The Vqq′ terms represent the strength of mixing from any up-type quark

to any down-type quark. If there are only three quark generations, then unitarity of the

CKM matrix and current measurements of several elements in the matrix tightly restrict

the range of values for the remaining elements, including Vtb, as shown in Equation 1.3

[48].















0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045

0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044

0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992















(1.3)

If we relax the assumption of three generations, then the values of the remaining ma-
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trix elements become virtually unconstrained. In Equation 1.3, the values for the three

generation CKM matrix are shown and the value of Vtb is relatively fixed, ranging from

0.9990 − 0.9992. Comparing this range with that allowed by an unconstrained matrix

(Equation 1.4), one sees that a measurement of the Vtb element could shed light on the

total number of quark generations. This is accomplished through a single top cross sec-

tion measurement, given that the cross section is directly related to the matrix element,

which is related to the Vtb element: σ ∝ |M|2 ∝ |Vtb|2.























0.9730 to 0.9746 0.2174 to 0.2241 0.0030 to 0.0044 . . .

0.213 to 0.226 0.968 to 0.975 0.039 to 0.044 . . .

0 to 0.08 0 to 0.11 0.07 to 0.9993 . . .

...
...

...
. . .























(1.4)

A useful example of possible observable deviations calculated by Tait and Yuan

[58] considers changes in the Vts and Vtb elements. In the three generation model, the

maximum value of Vts (0.043) would contribute < 1% of the total t-channel single top

quark cross section. If we allow this Vts element to be maximized in the range of an

unconstrained CKM matrix to 0.11 5, and the Vtb element to saturate the unitarity

requirement for any number of quark generations, the standard model t-channel cross

section nearly doubles. This dramatic increase is due to the larger parton density of the

s quark compared to the b quark. Such an increase would be easily detected in a cross

section measurement and possibly point to an extra generation of quarks. In the same

circumstances, the s-channel would drop to 70% of its standard model value, and the

tW mode would also nearly double.

5Tait and Yuan used the 2000 Particle Data Group upper value for the unconstrained CKM matrix,
Vts = 0.55
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Figure 1.3: The polarization of the top quark and its decay products for various scenarios. The larger

arrow above each particle represents the preferred direction of the polarization, and the skinnier arrows

represent the preferred direction of the momentum in the top quark rest frame. For the t ((a) and (b))

and t̄ ((c) and (d)) quark decay, the case of a longitudnally ((a) and (c)) and a left-handed ((b) and (d))

W boson are pictured. For t (t̄) decays, the e+ (e−) prefers to travel along (against) the polarization

of the t (t̄) quark. In all cases, the lepton polarization tends to align with the top quark polarization.

(Diagram courtesy of [58])

1.4.2.2 Non-Standard Model Electroweak Coupling

While a measurement of single top quark production could allow us to confirm the V –A

nature of the electroweak force, studies of single top quark kinematics could allow us

to probe a V +A or other nonstandard coupling. This new coupling would most easily

be recognized through deviations in the expected top quark polarization and can be

easily studied in single top quark production via the final decay products. As discussed,

the top quark decays before hadronization and cleanly transmits its polarization to the

resulting W boson and b quark. This polarization is again translated in the left-handed

decay of a W boson to its decay products, leaving all the necessary information to

reconstruct the original polarization. Before discussing the observable effects of any

additional couplings, it is important to describe the top quark bases that could give us

the power probe such effects: the “helicity basis” and the “optimal basis” [56, 57, 58].
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The helicity basis measures the component of the top quark’s spin along its axis

of motion in the center-of-mass frame. The optimal basis takes advantage of standard

model dynamics and finds an increased top quark polarization along the axis of the

incoming protons or outgoing spectator quarks. To understand why these bases are ad-

vantageous, it helps to look at several cases of top quark decay and how the polarization

is transmitted (Figure 1.3).

In the top quark rest frame, the left-handed nature of the weak interaction leaves

a left-handed b quark and either a longitudinally polarized W boson, or a left-handed

W boson. In the longitudinal case (Figure 1.3(a)), the W ’s momentum is preferentially

aligned with the top polarization. The leptonic decay products tend to align with the W

polarization direction, but inheriting its momentum, they are also aligned with the top

polarization. In the left-handed case (Figure 1.3(b)), the b quark is forced to travel along

the direction of the top polarization, and the W thus recoils in the opposite direction.

In the ensuing W leptonic decay, the charged lepton is forced to be right-handed and

thus prefers to travel in a direction opposite to the W parent. The cases for an antitop

quark follow similar arguments and are illustrated in Figures 1.3(c) and (d).

The four previously discussed decay scenarios can be studied by measuring the angle

between the top quark polarization and the lepton momentum [58, 56, 57, 47]. This

distribution is modeled by

1

Γ

dΓ

dcos θ
=

1

2
(1 + cos θ) (1.5)

where θ is the angle between the top polarization and the lepton momentum in the top

quark rest frame, and Γ is the partial width for a semileptonic top quark decay in the

Standard Model [59]. In practice, one could measure the top polarization along a given

axis, and fit a distriubtion of the form

F (cos θ) =
A

2
(1 + cos θ) +

1 − A

2
(1 − cos θ) (1.6)
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where A is the degree of polarization along the chosen axis [58].

For t-channel single top, the basis of choice is the “optimal” basis. While the helicity

basis would prove strong for a 2 → 2 process, yielding 100% left-handed top quarks,

the 2 → 3 process muddies this polarization by a varying amount depending on the

model and parameters used in the calculation. The optimal basis takes advantage of the

fact that the top quark polarization is always along the axis of the incoming antiquark

spectator in the reaction. The result of this basis is a top quark that is about 96%

polarized along the direction of the spectator quark [58].

Similar studies have been made for the s-channel, and the helicity basis results in

about 75% of the top quarks being left-handed, while the optimized basis results in

about 97% of the top quarks being aligned with the incoming antiquark momentum.

Overall, measurements of the top quark polarization can help to validate the Stan-

dard Model, or could allow us to observe new terms in the top quark couplings. By

studying top polarization in both bases, one could pin down the nature of any new

couplings and define their strengths.

1.4.2.3 New Fields, Mediators and Particles

A final avenue that can be explored through single top quark production is the possibility

of new fields and particles that only begin to noticeably couple to heavier fermions

such as the top quark. As previously discussed, extra generations of standard model

quarks could alter the measured single top quark production cross sections, but new

extensions to the Standard Model involving extra gauge bosons, or new models such as

supersymmetry (SUSY), could have noticable effects also. Each of these possibilites will

be discussed.

The much anticipated Higgs boson has yet to be found and both the Standard Model’s

neutral Higgs and the minimal SUSY charged Higgs could play a role in altering single

top quark production rates [58, 45, 62]. The standard model neutral Higgs could produce

16



W+

Ho

u

d̄

W+

b

b̄

H+

f

f̄

t

b̄

Figure 1.4: Higgs boson processes that mimic the single top quark signal. A standard model neutral

higgs boson is shown (left) and a nonstandard model charged higgs boson (right).

Z

c

f

t

f ′

Z

f ′

f

t

c

Figure 1.5: Possible flavor-changing neutral current processes involving Zqq′ vertices. Both a t-channel

(left) and s-channel (right) process are shown.

the same decay signature as s-channel single top, Wbb, while a SUSY charged Higgs could

produce the exact same final state, tb̄ (Figure 1.4). The t-channel could also be mimiced

by this process if a b-quark is mis-reconstructed as a light quark. In parallel with other

observations, an excess in single top quark production due to the indistinguishable Higgs

processes could finally prove that the Higgs exists.

Flavor-changing neutral currents (FCNC) would also have a noticeable effect through

single top quark production [58]. An additional term in the Standard Model interactions,

or a completely new field could create neutral currents such as those illustrated in Figure

1.5. Such an interaction would have varying effects on the different single top processes,

and by measuring each of these individual cross sections, one could compare the relative

changes to provide evidence for this new physics. A scenario involving a Ztc vertex is

used to illustrate how this study could be done in practice.

A FCNC could have dramatic effects on the t-channel process. Since the single top
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process and the FCNC process have a completely different set of incoming quarks, there

would be no interference between the two reactions, and a cross section measurement

would simply involve the addition of the two individual processes. Although one may

expect the strength of the FCNC to be small, the incoming vertex does not necessitate

a b quark like the single top vertex, and therefore has a much larger incoming parton

density. This would translate to a larger production cross section, and thus a much more

visible effect on t-channel production.

The s-channel process follows a similar train of reasoning to the t-channel, but owing

to its already small cross section, and the notorious difficulty in isolating this channel,

it is nearly impossible to measure a FCNC effect. The channel would be swamped by tt̄

and t-channel single top backgrounds, and a useful measurement would require correctly

identifying the b quark from the Wtb production vertex and the additional b quark from

the top quark decay vertex.

The tW channel acts as a sort of control channel, being unaffected by the addition

of a FCNC. Since the tW channel produces a final state top and W boson, it can only

show effects relating to the Wtb vertex. The FCNC process additionally has a different

final state and would have no consequence for tW . By combining the information gained

from a t and tW channel single top cross section measurement, one could find evidence

for FCNCs.

1.4.3 Single Top Quark Modeling and Calculation

The next-to-leading order (NLO) cross sections for pp̄ collisions at 1.96 TeV are shown

in Table 1.5 [63, 64]. Many considerations have been taken into account with these

calculations and are explained in the literature, but the most notable are correctly

summing all NLO diagrams (illustrated in Figures 1.6 and 1.7), and dealing with the

interference terms and double counting in the 2 → 3 t-channel process. In W -gluon
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fusion, the incoming gluon pair-produces before the weak interaction vertex occurs.

This gluon may produce a tt̄ or bb̄ pair and thus the final outgoing top quark is strongly

produced in one process, and weakly produced in the other. The destructive interference

between these two terms and its effect on the cross section are shown as a function of the

top quark mass in Figure 1.8. Double counting becomes an issue in the calculation of

t-channel production when considering the origin of the incoming b quark. In the 2 → 2

process, the b quark comes from the parton sea, which really involves a g → bb̄ splitting

that is accounted for in the proton’s parton distribution function. The 2 → 3 process

explicitly includes this g → bb̄ splitting in the initial state and so one must be careful

not to effectively calculate the same diagram twice. For the numerical calculation of

these cross sections, values for the factorization (µF ) and renormalization (µR) scales

must be selected. For the s-channel, a good choice is µ2 = M2
tb (the invariant mass of

the tb system) and for the t-channel, µ2 = Q2
W for the Wud vertex, and Q2

W + M2
t for

the Wtb vertex. A top quark mass of 175 GeV is used for the values given in Table 1.5.

Name Cross Section (pb)
t-channel 1.98 ± 0.08
s-channel 0.88 ± 0.05

tW 0.09 ± 0.024

Table 1.5: The NLO single top quark cross sections at 1.96 TeV in a pp̄ collider, assuming a top quark

mass Mt = 175 GeV. Errors reflect the uncertainty in the choice of scales (µF ,µR).

1.4.4 Decay Modes

There are several final decay modes for single top quark events and each will be discussed.

In the t-channel, there is a final state top quark and a light quark. In the s-channel we

find a top quark and a b̄ quark. The W boson from the top quark decay defines how we

describe the final state and what we can expect to find in the detector. The branching

fractions for W boson decay are 1/9 per lepton, and 2/3 for hadronic decays [48]. If
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the decay yields a τ lepton, its branching fractions are ∼ 17% for e and µ each, and ∼

66% for hadronic decay. Single top production via a hadronic W decay is challenging

to find in an enormous sea of backgrounds, and so we search for it in the electron and

muon modes. Our final decay products in the t-channel are thus a light spectator quark,

and the decay products of the top quark, a b quark, lepton, and neutrino. The 2 → 3

process can yield an extra b quark in the event. The s-channel leaves a b̄ quark from the

Wtb interaction vertex, and a lepton, neutrino, and another b quark from the top quark

decay. For both channels, initial and final state radiation (ISR/FSR) can increase the

number of hadronic objects found in the final state.

We model these single top quark events by the monte carlo generator SingleTop[50],

which is based on the CompHEP generator [49]. SingleTop applies the correct matrix

element calculation for accurate NLO distributions and correctly accounts for the po-

larization of the top quark in its production and decay. In the t-channel, special care is

taken to attain the correct NLO simulation. The issue involves the additional b quark

from ISR in the 2 → 2 process and the explicit b quark in the 2 → 3 process. The

pythia generator creates ISR b quarks by backtracking through the event after it has

been generated and creating a sensible initial state that avoids collinear singularities

which could appear through the assumption of a massless b quark. The consequences of
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Figure 1.9: The t-channel monte carlo simulation requires the correct mixture of the 2 → 2 and 2 → 3

production modes. The matching of the pT (b) distributions for these modes at 10 GeV are shown (left),

as well as the corresponding η(b) distributions normalized to unity (right).

this process become evident when looking at the propagator of the b quark in the matrix

element:

1

p2
b

≈ − 1

EE∗(1 − cos(θ))
(1.7)

where E is the energy of the gluon from the proton or anti-proton, E∗ is the energy

of the b quark, and θ the angle between the two. As θ → 0, one can see that the

matrix element blows up. Therefore, most of the events generated by pythia have soft,

forward b quarks. This is very different to the NLO calculation, which tends to have

harder, more central b quarks, and so a more accurate mixture of the two is provided

by the SingleTop generator. This mixture was selected by making the pT distribution

of the extra b quark continuous and resulted in using the 2 → 2 process for events with

pT (b) < 10 GeV, and the 2 → 3 process for events with pT (b) > 10 GeV (Figure 1.9).

An overall normalization was selected to retain the theoretically calculated t-channel

production cross section. The s-channel simulation only applies a LO matrix element

calculation, but this has been shown to accurately reproduce the NLO distributions for

all partons [51].

Several parton level distributions for our t- and s-channel monte carlo samples are
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Figure 1.10: Parton level distributions for the t- (above) and s-channel (below) monte carlo simulation.

The parton pT (left), ηparton (middle), and ηparton × Qlepton (right) distributions are shown.

shown in Figure 1.10. These are taken into account when considering our event selection

criteria and the corresponding signal acceptance (Chapter 3).

1.4.5 Current State of Affairs

To date, several searches for single top quark production have been conducted without

significant evidence being found, and cross section limits have been set [65]–[70]. In

Table 1.6, the 95% confidence level measured and expected limits for each of these

searches are given. Run I refers to the data recorded at the Tevatron between 1992 and

1996. Run II refers to the data being recorded from 2002 onwards. The limits are given

for each of the detectors located at the Tevatron. The first measurement by DØ applied

cuts on the scalar sum of various combinations of jet, lepton, and missing energies,

and derived limits based on the final number of events. The latter two measurements

by DØ used neural network techniques to arrive at a final distribution used for limit

calculation. The first CDF measurement used a fit to a kinematic variable (HT ), and

the second used an angular variable for the individual s and t channel measurements
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(Qlepton × ηuntagged jet), and the same HT variable for the combined measurement.

These variables are discussed in Section 5.6.

95% CL Measured(Expected) Cross Section Limits [pb]

Published L (pb−1) t-channel s-channel Combined

Run I DØ 2000 90 58 39 —
DØ 2001 90 22 17 —
CDF 2002 106 13 18 14

Run II DØ 2005 230 5.0 (5.8) 6.4 (4.5) —
CDF 2005 162 10.1 (11.2) 13.6 (12.1) 17.8 (13.6)

Table 1.6: The published 95% confidence level measured (expected) upper limits for single top quark

production. For each measurement, the data taking period, experiment, year of publication, integrated

luminosity, and limits are given for each channel.

Referring to Table 1.6, one can see that our limits are quickly approaching the Stan-

dard Model predictions for single top quark production. Soon, we will make a first

observation of single top quark production, or perhaps even more exciting, uncover an

unexpected drop of new physics.

1.5 Analysis Overview

In the following chapters, the process of collecting data, analyzing it, and extracting a

final limit will be discussed. Chapter 2 will describe the Fermilab facility, the chain of

accelerators necessary to achieve final proton and anti-proton collision energies, and the

DØ detector in which we collide these protons and record the aftermath. The triggering

and data acquisition system are also discussed here. In Chapter 3, the reconstruction

of real physics objects from the detector readout is explained. The cuts we apply to

these physics objects to ensure good data quality and to begin isolation of our signal

are also given. Chapter 4 discusses the process of producing accurate simulations of

backgrounds in the search for single top. The important backgrounds are identified, the
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features of their production via monte carlo discussed, and a test of the accuracy of our

models is shown with a comparison to data. After the background model is shown to

be consistent with data within the assigned uncertainties, we move on to the techniques

used to isolate single top events in Chapter 5. An overview of the many variables we have

looked at for background discrimination is given, and distributions comparing signal and

background for these variables are shown. Our final discrimination technique involving

neural networks is explained, as well as the multi-network approach we are taking to

isolate our signal. Final input variables to the networks and their output distributions

are shown. Once the neural networks have been optimized, the output distributions are

used to derive a cross section limit. Chapter 6 introduces the fundamentals of deriving a

limit, and explains our method of applying a binned likelihood calculation to the neural

network distribution to attain a cross section limit. After final results are summarized in

Chapter 7, we look to the future in Chapter 8, and discuss when an observation of single

top quark production can be expected, and the precision of subsequent measurements

at both the Tevatron, and future hadron colliders.
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Chapter 2

Creating Single Top Quarks

2.1 Introduction

To create the smallest particles in the universe, it has become necessary to build the

world’s largest machines. Our hunt for single top quarks begins with protons and an-

tiprotons, created and accelerated to ultra-relativistic velocities by the Tevatron at Fermi

National Accelerator Laboratory in Batavia, Illinois. The Fermilab Tevatron consists

of a chain of accelerators ranging from several meters in length to a circular ring over

six kilometers in circumference. These accelerators each push protons and antiprotons

towards their final collision energy of 0.98 TeV or 1.96 TeV in the center of mass frame.

At their final energy, these protons are traveling at 99.99995% the speed of light and are

ready to produce the wide range of physics processes available at the Tevatron.

2.2 Theory

In order to produce single top quarks in particle collisions, two conditions must be met:

there must be sufficient energy available to produce the rest mass of the top quark,

and there must be a pathway via the incoming particles that produces the correct final
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Figure 2.1: Parton distribution functions(PDFs) for protons at the tevatron. Both the CTEQ6M

(used in this analysis) and the MRST2001 PDFs are shown. f(x) represents the parton distribution

function, and x the momentum fraction of the proton carried by that parton. The unlabeled curves are

ū and s = s̄ [71].

state. To accomodate both of these conditions, we collide extremely energetic protons

and antiprotons. While the 0.98 TeV of energy contained by each proton is sufficient

to produce a top quark, this energy is distributed throughout the components of the

proton, amongst its three valence quarks (uud), and a bubbling sea of partons produced

from their self-interactions. It is therefore necessary for the hard scattered partons from

the proton and the antiproton to contain the energy for the entire reaction. The parton

distribution functions (PDFs) give the probabilities for a specific parton with a specific

momentum to be involved in the hard scatter (Figure 2.1). The PDFs are based on fits

to many sets of data and they allow us to correctly model the pp̄ collisions and predict

scattering cross sections. Single top quarks are most often produced at the Tevatron

by the up valence quark from the proton and the antidown valence quark from the

antiproton (or the charge conjugate process for t), but they can also be produced from

the parton sea via any pair of weak isospin partners, or from an incoming b quark from

the sea.
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2.3 Acceleration Chain

2.3.1 Proton Production

The acceleration chain begins with the proton source in the preaccelerator [72, 73].

Here, a pressurized tank of hydrogen gas (H2) is slowly sprayed across two high-voltage

molybdenum electrodes, 1 mm apart. The diatomic molecules are ripped apart and

bond to a cesium plate in the source chamber. The low work function of the cesium

allows the hydrogen atoms to acquire an extra electron each to complete their s orbital

shell and become negatively charged (H−). These ions are then knocked off the cesium

surface by the next wave of incoming hydrogen atoms and are directed by an electric

field into the Cockcroft-Walton accelerator.

The Cockcroft-Walton accelerator gives the hydrogen ions their first push (Fig-

ure 2.2). It accelerates them through a large electric potential created through a voltage

multiplier ladder (consisting of diodes and capacitors). Through this potential, a con-

tinuous beam of ions is ramped up to 750 keV and injected into the Linac [75]. The
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Linac, or linear accelerator, consists of an alternating array of cyclindrical drift tubes

and empty gaps. A radiofrequency (RF) electric field is applied to these drift tubes

such that the hydrogen ions are accelerated in the gaps, and shielded in the drift tubes

while the field switches polarity. The oscillating RF field only gives positive accelera-

tion in the gaps at certain moments of its cycle, and so the continuous beam from the

Cockcroft-Walton accelerator condenses into ion bunches. The first portion of the 130

m Linac uses the original design from 1971 and brings the ions to 116 MeV. An upgrade

was added in 1993 to bring the ions to their final energy of 400 MeV.

At this point the hydrogen ions are sent through a thin carbon foil and stripped of

their electrons. The bare protons are then shot into the first synchrotron of the chain,

the Booster. This circular accelerator uses an RF field to accelerate the protons, and 96

copper wire electromagnets to contain them in a circular orbit. Using the basic Lorentz

force law, the strength of the magnetic field is increased from 0.0074 T to 0.7 T to

maintain the radius of the proton orbit as it gains energy with each lap. The protons

will make about 16,000 laps around the 475 m circumference of the Booster before

reaching an energy of 8 GeV. These protons are then delivered to the Main Injector.

The Main Injector is a second, much larger synchrotron that was added to the ac-

celeration chain in 2001. [72, 76]. Its 3,320 m circumference houses 344 electromagnetic

bending magnets (dipole) and 208 beam focusing magnets (quadrupoles). It has several

tasks: to accelerate protons to 150 GeV for injection into the Tevatron, to accelerate

protons to 120 GeV for antiproton production, and to accelerate antiprotons to 150

GeV for Tevatron injection. The antiproton production mechanism is discussed in Sec-

tion 2.3.2. Using one beampipe and one set of magnets, 8 GeV protons and antiprotons

are accelerated in opposite directions around the Main Injector to an energy of 150 GeV.

Following this, they are prepared for acceleration in the Tevatron.

The Tevatron is the final accelerator in the chain [72]. It is the largest synchrotron

at the laboratory, with a radius of 1 km, and also the world’s first synchrotron to use
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superconducting magnets. It was built in 1983, and houses about 1000 superconducting

magnets. Each dipole magnet is about 6.4 m long and made with approximately 68,400

km of niobium-titanium alloy wire (8 µm diameter). At maximum acceleration, they

are each producing a magnetic field of 4.2 T. In the final stage of acceleration, 36

bunches of protons and of antiprotons, containing 1011 and 109 particles respectively,

are injected into the Tevatron and ramped up to 0.98 TeV. These bunches are then held

at constant energy for the duration of the store (10-20 hours), and repeatedly collided

at the interaction points in the centers of the two detectors on the Tevatron ring, the

DØ and CDF detectors.

2.3.2 Antiproton Production

Antiproton production begins with 120 GeV protons from the Main Injector [73]. This

proton beam is collided with a 7 cm thick nickel target and results in a large spray of

interaction products, including about 20 antiprotons for each million incoming protons.

The wide spray of particles is collimated with a lithium lens, and sent through a bend-

ing magnet (essentially a mass spectrometer) to isolate the antiprotons. While being

contained in a very tight bunch, the spread of energy is large around a mean value of 8

GeV. This spread is unacceptable for further acceleration, and so the antiproton energy

spectrum is tightened in the Debuncher.

The Debuncher is a triangular shaped synchrotron, consisting of several bending and

focusing magnets. As the antiproton bunch circles the Debuncher, more energetic parti-

cles travel at a larger radius than less energetic ones. This effect alters the arrival time at

the RF cavity in such a way that all particles are accelerated towards the 8 GeV mean.

After many revolutions about the accelerator, the energy distribution has been tight-

ened, at the expense of elongating the bunch. The antiprotons are then sent to another

synchrotron, the Accumulator, to be stored until their total number is large enough for
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injection into the Main Injector, and then the Tevatron. Both the Debuncher and the

Accumulator share the same tunnel, and both apply stochastic cooling techniques [79]

to further focus the antiproton bunches and maintain the tight energy spectrum.

As the production of antiprotons is the limiting factor in preparing for collisions in

the Tevatron, dumping antiprotons at the end of a store is a considerable waste. In

an attempt to salvage these costly antiprotons and use them in the next store for colli-

sions, the Recycler was added to the Fermilab accelerator chain in 2001. The Recycler

shares the same tunnel as the Main Injector, but has its own beampipe and magnets.

The Recycler uses permanent strontium ferrite magnets (the same compound in refrig-

erator magnets) to bend the beam. The use of permanent magnets removes the noise

and problems that arrise in mechanical elements and leads to a very stable and reliable

storage system. With this new system, antiproton bunches can be saved after the ter-

mination of a store in the Tevatron and this significantly decreases the time needed to

accumulate enough antiprotons for the next store. In addition, the Recycler can act as a

post-Accumulator center and store antiprotons once the Accumulator has been filled to

capacity. Together, these two functions of the Recycler have helped to raise the overall

luminosity of the Tevatron.

2.4 Luminosity

The purpose of the Fermilab acceleration chain is not only to bring protons and an-

tiprotons to an energy of 0.98 TeV for collisions, but to collide these particles at a rate

high enough to study a vast array of rare processes, and increase the precision of already

measured processes. The rate of collisions is determined by the energy and density of

particles in both the proton and antiproton bunches. The unit of measurement used to

describe the scattering cross section of these bunches is the barn (b) 1. The rate at which

11 b = 10−24 cm2
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the effective cross sectional area of the proton or antiproton bunch is being bombarded

is the luminosity, given in units of particles per cm−2 s−1.

To record the delivered luminosity at the DØ interaction point, luminosity monitors

[77] have been installed around the beam pipe at z = ±140 cm. Both monitors are made

up of two layers of 24 radiation-hard plastic scintillator wedges, with a photomultiplier

tube mounted on each one. The wedges have a radius of 15 cm, and span the region

2.7 < |η| < 4.4. By measuring the sum of single diffractive, double diffractive, and hard

scattered pp̄ collisions in each bunch crossing, the luminosity can be determined through

the equation,

L =
fNLM

σLM

(2.1)

where L is the luminosity, NLM is the averge number of collisions, f the frequency of

bunches, and σLM the effective cross section of the monitor, including acceptance and

efficiency (LM = Luminosity Monitor). To accurately determine NLM , the number of

hard scatters per bunch crossing is assumed to follow a Poisson distribution, and the

distribution is then constrained to fit the number of bunch crossings with no interactions.

Increasing the luminosity at the Tevatron has been a ceaseless effort since its in-

ception. Run I luminosities ranged from 10 − 20 × 1030 cm−2 s−1 and brought DØ an

integrated luminosity of ∼ 120 pb−1 over four years. During this period, there were 6

proton and 6 anti-proton bunches circling the accelerator. In order to increase the Run

II luminosity while keeping the number of hard-scattered interactions per bunch crossing

at an acceptable level, the Tevatron switched to 36 proton and 36 anti-proton bunches.

Luminosities began at 10× 1030 cm−2 s−1 and have steadily increased to a current value

of 120 × 1030 cm−2 s−1. The integrated luminosity delivered so far exceeds 1 fb−1, and

an order of magnitude increase is expected by the end of Run II in 2009.
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Figure 2.3: A cross section of the DØ detector. The marked scale is given in meters and the main

components are labeled.

2.5 The DØ Detector

The DØ Detector is a formidable beast. Proposed in 1984 for Run I, it is 13 m high

× 11 m wide × 17 m long, and weighs about 5500 tons. It can be divided into three

main subdetectors — the central tracking region, the calorimeter, and the muon sys-

tem (Figure 2.3). To accomodate the increased luminosity in Run II, the detector went

through extensive upgrades. The central tracking and muon systems were completely

redesigned, but the calorimeter has remained the same, with a replacement of all elec-

tronics. A description of the current design is given based largely on the technical report

recently submitted [77].

2.5.1 Coordinates

The DØ detector is centered at the pp̄ interaction point. From this point, several coor-

dinate systems can be defined, and are in active use by the collaboration. A cartesian

coordinate system is defined with ẑ in the proton direction, ŷ pointing up, and x̂ point-
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ing radially inward, towards the center of the Tevatron ring. A cylindrical right-handed

coordinate system is defined with the ẑ direction along the beam pipe in the proton

direction, radial distance r, and azimuthal angle φ, where φ = 0 coincides with the

+x̂-axis. Finally there is an angle θ, defined as the angle from the +ẑ-axis. To ease the

transformation of coordinates from one relativistic reference frame along ẑ to another,

θ is further converted into rapidity (y) and in the approximation that mass is small

compared to energy, pseudorapidity (η).

y =
1

2
ln
[

E + Pzc

E − Pzc

]

η = −ln

[

tan

(

θ

2

)]

(2.2)

2.5.2 Central Tracking Systems

Starting from the interaction point, the first system a hard scattered particle encounters

is the central tracking. The central tracking consists of several subsystems, the Silicon

Microstrip Tracker (SMT), the Central Fiber Tracker (CFT), a 2T superconducting

solenoid, and the preshower detectors. These systems are new for Run II and an overview

of the more important characteristics is given.

2.5.3 Silicon Microstrip Tracker

The SMT is designed to give r-φ-z hits from particles as they traverse the detector. The

fundamental detecting unit is a silicon wafer with many parallel microstrips across its

surface. The strips are held at a bias voltage, and as charged particles pass through,

they ionize the silicon and produce current flows measured by the wire strips known as

“hits”. These silicon wafers are arranged in six barrels concentric with the beam pipe, 12

F-disks perpendicular to it, and 4 larger H-disks (Figure 2.5). The barrels are composed

of rectangular wafers, called ladders, arranged in four concentric layers around the z axis.

Most of the ladders are doubled sided, and layers 1 and 3 have microstrips oriented at 90◦
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Figure 2.4: A schematic of the central tracking systems.

stereo, and layers 2 and 4 are 2◦ stereo. The distance between microstrips (pitch) varies

from ladder to ladder, but is ∼ 50 µm (Table 2.1). The F-disks are interspersed between

the barrels, and an additional three more are placed at each end of the detector. Each

F-disk is made of 12 double sided trapezoidal shaped silicon wedges. The double sided

silicon microstrips have ± 15o stereo orientation. Finally, the four H-disks are located at

the ends of the SMT, with the furthest one at z = ± 121 cm. Each is made of 24 wedges

and each wedge consists of two single sided “half” wedges glued back-to-back, providing

an effective 15◦ stereo coverage. All together, there are ∼793,000 thousand channels

available for readout from the SMT for each event, but many of these are suppressed on

an event-by-event basis as they only contain noise and no “hits” from the pp̄ interaction.

2.5.4 Central Fiber Tracker

Surrounding the SMT is the Central Fiber Tracker. This device uses scintillating fibers

to detect the passage of charged particles. As particles travel through the fibers, a small

fraction of their energy is deposited and converted to light. This light travels through
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Module Type Layer Pitch (µm) Inner Outer
Radius (cm) Radius (cm)

F-disks DS - 50/62.5 2.57 9.96
H-disks SS - 40 9.5 26

80 readout
Central DSDM 1,3 50/153.5 2.72 7.58

Barrels (4) DS 2,4 50/62.5 4.55 10.51
Outer SS 1,3 50 2.72 7.58

Barrels (2) DS 2,4 50/62.5 4.55 10.51

Table 2.1: Design specifications of the SMT. Types are double-sided (DS), single-sided (SS), and

double-sided double metal (DSDM)

1.2 m

Figure 2.5: A schematic of the silicon microstrip tracker.
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a wave guide and is collected by a “visible light photon counter” (VLPC) outside the

detector, signaling a hit in the fiber tracker. The 835 µm fibers are arranged in eight

concentric cylinders about the beam pipe, with the innermost at a radius of 20 cm and

the outermost at 52 cm. Each cylinder is composed of a double layer of fibers, with one

layer parallel to the z axis and the other layer ±3◦ (alternating between cylinders). The

location of a particle in a layer is identified by the intersection of any two fibers that

received a signal.

Encasing both of the tracking systems is a 2T superconducting solenoid. Its magnetic

field aids in the measurement of momentum by curving the paths of charged particles.

Working together, the SMT and CFT are able to resolve the primary interaction vertex

to 35 µm along the beamline and help locate secondary vertices from b-quark decays

with a resolution of 15 µm (at η=0 and pT > 10 GeV).

2.5.5 Preshower Detector

To increase the resolution of the calorimeter after traversing the material in the solenoid,

the remaining 5 cm gap between the solenoid and calorimeter is instrumented with

another detector - the preshower. The preshower acts both as a final layer to the central

tracking and as an extension to the calorimeter. It is used to help match tracks in the

central tracking to energy clusters in the calorimeter, and acts as an extra calorimeter

layer for the less penetrating electromagnetic showers. The central preshower (CPS)

consists of three layers of scintillating fibers, triangular in cross section, arranged at

parallel, +23.77◦, and −24.02◦ angles to the z axis. There is also a thin (7/32”) radiative

lead plate encased by two stainless steel plates (1/32” each) between the solenoid and

the CPS. These plates add about two radiation lengths of material for particles normal

to the z axis, and up to four at larger η.

The forward preshower (FPS) rests in the thin cavity between the central and end
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calorimeters. It consists of two layers of double layered scintillators, separated by an 11

mm lead-steel-lead plate. The first layer is known as the minimum ionizing particle or

MIP layer, and the second layer following the lead plate is known as the absorber layer.

All charged particles will leave a hit in the MIP layer, and electrons and photons will

begin to shower in the absorber layer, producing a cluster of hits. Each layer is made of

48 wedges, and each wedge is double layered. Scintillating fibers in the layers are placed

at 22.5◦ with respect to one another. The layers are slightly offset such that particles

do not cross more than one set of uninstrumented cracks between the wedges.

2.5.6 Calorimeter

The calorimeter is the main instrument used to measure electron, photon, and hadron

jet energies. It completely encompasses the central tracking and is separated into three

units, one central calorimeter (CC), and north and south end calorimeters (ECN, ECS)

(Figure 2.6). The calorimeters are further divided into an electromagnetic region (EM),

a fine hadronic region (FH), and a coarse hadronic (CH), as you move further from the

interaction point. Each calorimeter is segmented into many cells containing an absorber

medium and an active medium, and are arranged in projective towers radiating from

the interaction point (Figure 2.7). Liquid argon is used as the active medium in all cells,

which requires the calorimeters to each be housed in a cryostat, held at approximately

80 K. The cell’s absorbing medium varies with the region: depleted uranium (EM),

uranium-niobium (2% alloy) (FH), copper (CC CH), stainless steel (EC CH). A typical

calorimeter cell consists of an electrically grounded absorber layer, a 2.3 mm gap of liquid

argon, and a G-10 coated copper signal board held at a positive voltage. Particles are

slowed down by the absorber layer, and ionize the liquid argon as they shower through

it, leaving a measured current proportional to the energy depositied in that cell.

The CC extends out to an |η| ∼ 1.0. It is composed of three concentric cylinders,
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Figure 2.6: A diagram of the DØ calorimeter. The central and end cryostats are shown and the

segementation of the various regions is labeled.

Figure 2.7: A cross section of a quarter of the DØ calorimeter. Starting from the vertical line radiating

from the interaction point (η = 0.0), the η segmentation is shown in steps of 0.1. One can see that the

calorimeter cells approximately match these rays in η.
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making up the EM, FH, and CH regions. The transverse size of cells is typically ∆η = 0.1

and ∆φ = 0.1. In φ, the EM region is split into 32 cells, and the FH and CH are split into

16 cells. The layers are offset in φ to avoid cracks. The EM region comprises the first

four layers of the calorimeter. These thinner layers are enough to contain most of the

energy in an electromagnetic shower, and can further help to distinguish differences in

shower shape with the extra resolution of the third layer, ∆η = 0.05 and ∆φ = 0.05. The

FH region consists of three layers and aids in measurement of the further penetrating

hadronic showers. The CH region consists of a single thick layer used to effectively

contain the remaining energy in the particle shower. Absorptive and radiative lengths

for particle traversal through the calorimeter are shown in Table 2.2.

Layer Absorption (λA) Radiation (Xo)
CC EC CC EC

(IH/MH/OH)
EM 1 2.0 0.3
EM 2 0.76 2.0 2.6
EM 3 (EM 1-4) 6.8 7.9
EM 4 9.8 9.3
FH 1 1.3 17.6/0.9/—
FH 2 1.0 17.6/0.9/—
FH 3 0.76 17.6/0.9/—
FH 4 17.6/0.9/—
CH 1 3.2 4.1/4.4/6.0
Total

Table 2.2: The absorptive and radiation lengths of the material composing each of the layers in the

calorimeter.

The ECN and ECS are identical and have the same regions as the CC, but are

segmented differently to deal with axial showers instead of radial ones. An EC consists

of three concentric cylinders. The innermost contains four EM layers, and several FH

and CH layers that make up the inner hadronic region. The next cyclinder is called the

middle hadronic and contains a FH and CH region. The final cylinder is called the outer
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hadronic and only contains a CH region. Absorptive and radiative lengths can be found

in Table 2.2.

2.5.7 InterCryostat Detector and Massless Gaps

To deal with the uninstrumented regions between the central and end calorimeters from

|η| = 0.8 – 1.4, two systems have been added: the massless gaps and the intercryostat

detectors. The massless gaps are essentially calorimeter cells without the absorptive

layer. They are located inside of the cryostats on the walls facing the gap between the

CC and ECs (Figure 2.7). The intercryostat detectors are located on the outer wall

of the ECs and cover a region from |η| = 1.1 - 1.4. The system is made of a layer of

scintillating tiles, each spanning an area ∆η × ∆φ = 0.3 × 0.3.

2.5.8 Muon System

The muon system is the outermost layer of the DØ detector (Figure 2.3). It is designed

to locate and aid in the momentum measurement of the deeply penetrating muons from

the hard scatter and secondary decays. As a heavier version of the electron, muons

have relatively fewer electromagnetic interactions as they traverse the detector, allowing

them to sustain their energy as they reach the muon system and even travel beyond

its boundaries. Two types of detectors are used to measure these muons, scintillators

and drift chambers. Scintillators are used for triggering on events involving a muon by

detecting the light given off as these charged particles traverse them. Drift chambers

are used to measure the position of the muon as well as its momentum. Each chamber

consists of two walls with cathode pads held at a negative voltage, and a wire running

along the center held at a positive voltage. The chamber is filled with a gas that becomes

ionized as muons shower through the detector, and the position is identifed by two values:

the difference in time between a chamber and its nearest neighbor detecting a particle
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from the signals on the sense wires, and the integrated charge on the two pads along

the walls. To aid in momentum measurement, a 109 cm thick, 1.9 T toroidal magnet

is situated between the layers of the muon system, and the magnetic deflection of the

track is used to assess momentum. The system has been superceded by the improved

central tracking for momentum measurement, but has a comparable resolution at high

energies.

The central muon system (|η| < 1.0) consists of two layers of scintillation tiles, an A-φ

layer between the calorimeter and the toroid, and a cosmic layer after the toroid (Figure

2.8). Each layer has four walls surrounding the detector, parallel to the beamline. Both

layers produce a fast readout for triggering and associating muons with the correct bunch

crossing, while the cosmic cap is also used to reject out-of-time or cosmic-ray muons.

The central muon system further includes three layers of proportional drift chambers

(PDTs). The A layer is sandwiched between the calorimeter and the toroid, while the

B and C layers are outside the toroid (Figure 2.9). Each of these layers is further made

up of three or four decks (sublayers) of drift chambers that can be used to construct a

particle track. The PDTs use a fast operating gas consisting of argon (84%), methane

(8%), and CF4 (8%), and the wires and pads are held at 4.7 and 2.3 kV respectively.

The PDTs have a maximum electron drift time of ∼ 500 ns, to be compared with the

bunch spacing of 396 ns. About 55% of the central system is covered by all three layers

of PDTs and about 90% with two layers.

The forward muon system (1.0 < |η| < 2.0) includes three layers of scintillation

counters, three layers of mini drift-tubes (MDTs) and shielding around the beam pipe

to reduce background in the detector. Each scintillation layer is perpendicular to the

beam pipe and each octant includes about 96 individual detecting panels. The A layer

is before the toroid and the B and C layers are found after it (Figure 2.8). The three

layers of drift tubes are paired with the scintillation layers and are arranged parallel

to them (Figure 2.9). While the PDTs in the central system were reused from Run
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Figure 2.8: An exploded view of the scintillation layers in the muon system. From the interaction

point, central muons will cross the A-φ Layer, the toroid, and the cosmic layer. Forward muons will

cross the A layer, the toroid, and then the B and C scintillation layers.

I, the forward system is completely new, and the MDTs exhibit greater segmentation,

are more radiation hard, and have a faster response time. They use a nonflammable,

90%-10% mixture of CF4-CH4 and have a maximum drift time of 60 ns. The A(B/C)

layer consists of 4(3) decks of these MDTs and all MDTs are arranged along the field

lines of the toroid. Again the A-layer falls before the toroid and the B/C-layer after.

Each forward system also includes a hundred ton block of shielding, surrounding the

beam pipe. The innermost layer is made of a 51 cm thick slab of iron, followed by 15

cm of polyethylene, and 5 cm of lead [78]. Iron is used for its relatively short interaction

(16.8 cm) and radiation (1.76 cm) lengths, and stops most electromagnetic and hadronic

showers. The iron is nearly transparent to low energy neutrons and so polyethylene is

added for its great absorptive capacity. The neutron capture process produces gamma

rays, which are in turn absorbed by the final layer of lead shielding.
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Figure 2.9: An exploded view of the wire chambers in the muon system. From the interaction point,

muons traverse the A, B, and C layers.

2.6 Data Acquisition

During live collisions, the Tevatron ring is colliding pp̄ bunches at ∼1.7 MHz. Each

bunch crossing yields a single hard scatter on average, but could also be absent of

any collisions, or have several. Due to the constraints of cost for data storage and

computing power, only select events will make it to permanent data storage to be used

in an analysis. This selection process consists of three levels of triggers, with each

requiring cuts on progressively better defined physics objects. The Level 1 or L1 trigger

system is based on the fast readout from individual subdetectors, and using hardware

triggers, can pass an event that fulfills a single detector requirement. Events that pass

one of these requirements are then processed by the Level 2 or L2 trigger system. Here,

rudimentary physics objects are constructed and the first global decision are made based

on information from several subdetectors. L2 triggered events are sent to the Level 3 (L3)
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Figure 2.10: A schematic of the subdetector data flow for the DØ trigger system. From
Global L2, data is passed on to the Global L3 processor, and then to tape (not pictured).

trigger system, where sophisticated software algorithms can be applied on the individual

and combined subdetector readout. Physics objects are constructed, and basic cuts on

energy, momentum, location, and object quantities can be applied. A diagram of the

data flow for triggering is shown in Figure 2.10.

At Level 1, every single event is looked at in real-time, so the trigger requirements

must be minimal enough such that all events can be processed in about 100 nanoseconds

with the available computing power. Each subdetector uses on-board hardware cards

and processors to determine if an event passes a basic trigger requirement. The Level 1

calorimeter (L1Cal) trigger looks for energy deposition in a 0.2 × 0.2 EM or hadronic

tower block exceeding a given threshold. All 1,280 EM and 1,280 hadronic towers (40 η×

32 φ) are involved in this search. The Level 1 central track trigger (L1CTT) and Level 1

Muon (L1Muon) triggers look for a charged particle track with momentum exceeding

a given threshold. The L1CTT uses the CFT and central preshower readout to locate

tracks with a momentum exceeding 1.5 GeV. The 1.7 MHz bunch crossing rate is filtered

down to about 1.6 kHz, and accepted events are sent on to the L2 trigger system.
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The L2 system further reduces the 1.6 kHz rate to about 1 kHz. This is done by

coordinating subdetector information and taking advantage of the extra processing time

to construct simple physics objects. The Level 2 calorimeter (L2Cal) trigger processor

creates electrons, photons, and jets, and calculates the missing transverse energy (E/T )

in the event. Electron and photon decisions are based on a seed EM tower with ET >

1 GeV and the energy of the next-highest neighbor, as well as the content of a 0.3× 0.3

tower block centered on the seed tower. Jet requirements are based on an EM+hadronic

seed tower with ET > 2 GeV and a 0.5 × 0.5 tower block centered on the seed tower.

The E/T is measured by using the primary vertex from the tracking systems, and then

calculating a vector sum of the transverse energy of all calorimeter cells. The Level 2

muon (L2Muon) system applies calibrations and takes advantage of timing to improve

muon candidates and cut on more precise pT , position, and timing values. The Level

2 central track trigger (L2CTT) and Level 2 silicon track trigger (L2STT) create pT -

sorted lists of tracks to trigger on, and the improved reconstruction of the L2STT allows a

measurement of the impact parameter (Section 3.3.1) for B-meson related triggers. The

Level 2 global trigger combines all the information and decisions made by the individual

L2 systems to pass or fail an event for L3 processing.

At Level 3, the trigger system has much more time to evaluate an event and reduces

the 1.0 kHz rate to the final 50 Hz which is written to tape for permanent storage.

An expandable farm currently using ∼200 dual processor AMD 2000 or Pentium III

1 GHz machines handles the job. Each machine collects the fully digitized output from

all subdetectors for a single event and provides a final trigger decision. Physics object

algorithms very similar to the offline reconstruction algorithms are used to create and

cut on the objects anticipated by each trigger. Descriptions of these objects and sample

triggers are given later in Chapter 3. After a L3 accept, the fully digitized event (∼ 250

kB) is sent to a robotic tape system about 3 km away from the detector.
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Chapter 3

Finding Single Top Quarks

3.1 Introduction

The nature of particle physics is not to run an experiment once or twice and then draw a

conclusion, but to run an experiment countless times (in our case about 30 trillion times a

year), gather enormous amounts of data, and draw conclusions on a statistical basis. The

fluctuations of intensity in the colliding proton beams, the complexity of the detector, the

inherent noise in the detecting elements, and the enormous size of background processes

being produced for any single signal process, require us to sift through large volumes of

data and derive a statistical interpretation of any result. Experiments at the Tevatron

accomplish such a feat by running and manning the experiment twenty-four hours a day,

seven days a week, all year long. This chapter describes the data collected over the past

several years. We discuss the process of reconstructing high quality physics objects in

this data, as well as the event selection requirements used as a first attempt to narrow

our search for single top.
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3.2 Data Samples

The data samples used in this analysis were collected from August 2002 to January 2005.

Several trigger lists were used during this period to collect the necessary samples for this

analysis. As the instantaneous luminosity of the Tevatron grew, tighter definitions for

triggers were required to keep the overall trigger rates and data flow within the limits

of the data acquisition system. This evolution of triggers will be apparent. This section

describes what we use each data sample for, which triggers were used to collect them,

and the corresponding integrated luminositiy for each.

3.2.1 e+jets

The electron+jets or “e+jets” data sample is the signal sample expected to contain

single top events with a leptonic decay from the W boson to an electron and a neutrino.

The sample contains events with at least one electromagnetic object and at least two

hadronic jets (of which the EM object counts for one). The total represented integrated

luminosity is 366 ± 24 pb−1. These triggers are summarized in Tables 3.1 and 3.2.

• EM15 2JT15 At Level 1 (L1), this trigger requires an EM calorimeter tower with

ET > 10 GeV and two jet towers with ET > 5 GeV. Level 2 (L2) requires at least

a 10 GeV EM object with an electromagnetic fraction (Section 3.4.3) > 0.85 and

two jets with ET > 10 GeV. The final Level 3 (L3) trigger requires ET > 15 GeV

with consistent calorimeter shower shape and at least two 15 GeV jets.

• E1 SHT15 2J20 This trigger requires a L1 EM object with ET > 11 GeV. There

is no L2 requirement, and at L3, an ET > 15 GeV EM with consistent shower

shape and two ET > 20 GeV jets are needed.

• E1 SHT15 2J J25 This trigger also requires an ET > 11 GeV EM object at

L1. L2 further requires the EM to have ET > 15 GeV, and L3 requires at least
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a 15 GeV EM with good shower shape, and two ET > 20 GeV jets, with one of

these further required to be above 25 GeV.

3.2.2 µ+jets

The muon+jets or “µ+jets” data sample is the signal sample for single top events where

the W boson decays leptonically to a muon and a neutrino. Triggers are listed in Tables

3.1 and 3.2 and the total integrated luminosity is 363 ± 24 pb−1.

• MU JT20 L2M0 The L1 trigger requires a muon scintillator and wire hit, and a

calorimeter tower above 5 GeV. At L2, a medium muon with quality = 2 (Section

3.4.2) is sought and at L3, a jet with ET > 20 GeV is required.

• MU JT25 L2M0 This trigger is similar to the previous one, with the exceptions

of a L1 EM tower > 3 GeV and at L3 a more energetic jet with ET > 25 GeV.

• MUJ2 JT25 At L1, this trigger requires a muon scintillator and wire hit, and

a calorimeter tower above 5 GeV. At L2, a medium muon with quality = 2 is

required as well as a jet with ET > 8 GeV, and at L3 the jet is required to exceed

25 GeV and have a detector |η| < 3.6.

• MUJ2 JT25 LM3 This trigger is identical to the previous one, but further re-

quires an L3 muon with pT > 3 GeV.

3.2.3 e + e (DIEM)

This sample consists of events where two electromagnetic objects have been produced

such as electrons, photons, or pions. It is used to measure efficiencies for electrons to pass

cuts that are applied in the main analysis. These efficiencies are then used to derive the

Monte Carlo Correction Factors necessary to directly compare Monte Carlo samples with
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data. The DIEM events we use are expected to have come from the leptonic decay of a Z

boson, Z → ee, and a cut is made above and below the reconstructed Z mass to ensure

the quality of the correction factors. (Section 4.3.1.2). The DIEM triggers are listed in

Tables 3.1 and 3.2 and the total integrated luminosity represented is 341 ± 22 pb−1.

• 2EM HI This trigger requires two EM trigger towers exceeding 10 GeV at L1.

There is no L2 requirement, and at L3, one of the EM objects must have ET >

20 GeV and have a detector |η| < 3.0.

• E1 2L20 Requires an L1 EM object with ET > 11 GeV. There is no L2 require-

ment, and two EM objects with ET > 20 GeV at L3.

• E2 2L20 Requires two L1 EM objects with ET > 6 GeV. There is no L2 require-

ment, and two EM objects with ET > 20 GeV at L3.

• E3 2L20 Requires two L1 EM objects with ET > 3 GeV, one of which is also >

9 GeV. There is no L2 requirement, and two EM objects with ET > 20 GeV at

L3.

• E1 2L15 SH15 Requires an L1 EM object with ET > 11 GeV. There is no L2

requirement, and at L3, two ET > 15 GeV EM objects, one of which also passes

electron shape requirements.

• E2 2L15 SH15 Requires two L1 EM objects with ET > 6 GeV. There is no L2

requirement, and at L3, two ET > 15 GeV EM objects, one of which also passes

electron shape requirements.

• E2 2L15 SH15 Requires two L1 EM objects with ET > 3 GeV, one of which is

also > 9 GeV. There is no L2 requirement, and at L3, two ET > 15 GeV EM

objects, one of which also passes electron shape requirements.
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3.2.4 µ + µ (DIMU)

This sample consists of events where two muons have been produced. It is used in the

analysis to measure efficiencies for muons to pass cuts that are applied in the main

analysis. These efficiencies are then used to derive the Monte Carlo Correction Factors

necessary to directly compare Monte Carlo samples with data (4.3.1.3). The DIMU

events are expected to have originated from the leptonic decay of a Z boson, Z → µµ,

and a cut is made above and below the reconstructed Z mass to ensure the quality of

muon efficiencies. The DIMU triggers are listed in Tables 3.1 and 3.2 and the total

integrated luminosity represented is 318 ± 21 pb−1.

• 2MU A L2M0 This trigger requires two muons with scintillator hits at L1. At

least one muon must be of MEDIUM quality at L2, and there is no L3 requirement.

• 2MU A L2M0 TRK10 This trigger requires two muons with scintillator hits at

L1. At least one muon must be of MEDIUM quality at L2, and at L3 a global

track with pT > 10 GeV is required.

• 2MU A L2M0 L3L15 This trigger requires two muons with scintillator hits at

L1. At least one muon must be of MEDIUM quality at L2, and at L3, a muon

must have pT > 15 GeV.

• 2MU A L2M0 TRK5 This trigger requires two muons with scintillator hits at

L1. At least one muon must be of MEDIUM quality at L2, and at L3 a global

track with pT > 5 GeV is required.

• 2MU A L2M0 L3L6 This trigger requires two muons with scintillator hits at

L1. At least one muon must be of MEDIUM quality at L2, and at L3, a muon

must have pT > 6 GeV.
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Triggers used to collect the Single Top Data Samples
Final Trigger Trigger Luminosity
State List Name pb−1

e+jets v8.2-v11.0 EM15 2JT15 110
v12.0-v13.0 E1 SHT15 2J20 210
v13.0-v13.3 E1 SHT15 2J J25 46

µ+jets v8.2-v11.0 MU JT20 L2M0 114
v12.0-v13.0 MU JT25 L2M0 210
v13.0-v13.2 MUJ2 JT25 26
v13.2-v13.3 MUJ2 JT25 LM3 13

DIEM v8.0-v11.0 2EM HI 124
v12.0 E1 2L20 217

E2 2L20 217
E3 2L20 217

E1 2L15 SH15 217
E2 2L15 SH15 217
E3 2L15 SH15 217

DIMU v8.0 - v10.0 2MU A L2M0 51
v11.0 2MU A L2M0 TRK10 57

2MU A L2M0 L3L15 57
v12.0 2MU A L2M0 TRK5 210

2MU A L2M0 L3L6 210

Table 3.1: The triggers used for each portion of the data set and the associated integrated luminosity.

As the instantaneous luminosity of the Tevatron increased over time, new versions of triggers had to be

written with tighter requirements to keep the overall bandwidth within the limits of the data acquistion

system.
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Final Trigger Trigger L1 L2 L3
State List Name
e+jets ≥v8.2 - 11.0 EM15 2JT15 CEM(1,10) CJT(2,5) EM(.85,10) JET(2,10) ELE SH T(1,15) JET(2,15)

v12.0 - 13.0 E1 SHT15 2J20 CEM(1,11) — ELE SHT(1,15) JET(2,20)
v13.0 - 13.3 E1 SHT15 2J J25 CEM(1,11) L2CALEM(15,x) ELE SHT(1,15) JET(2,20) JET(1,25)

µ+jets ≥v8.2 - 11.0 MU JT20 L2M0 mu1ptxatxx CJT(1,5) MUON(1,med) JET(1,20)
v12.0 - 13.0 MU JT25 L2M0 mu1ptxatxx CJT(1,5) MUON(1,med) JET(1,25)
v13.0 - 13.2 MUJ2 JT25 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,25,3.6)
v13.2 - 13.3 MUJ2 JT25 LM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) MUON(1,LOOSE)JET(1,25,3.6)

DIEM v8.0 2EM HI CEM(2,10) — ELE LOOSE(1,10)
v9.0 - 11.0 2EM HI CEM(2,10) — ELE(1,20)

v12.0 E1 2L20 CEM(1,11) — ELE(2,20)
v12.0 E2 2L20 CEM(2,6) — ELE(2,20)
v12.0 E3 2L20 CEM(2,3)CEM(1,9) — ELE(2,20)
v12.0 E1 2L15 SH15 CEM(1,11) — ELE(2,15)SH(1,15)
v12.0 E2 2L15 SH15 CEM(2,6) — ELE(2,15)SH(1,15)
v12.0 E3 2L15 SH15 CEM(2,3) — ELE(2,15)SH(1,15)

DIMU v8.0 - 10.0 2MU A L2M0 mu2ptxatxx MUON(1,med) —
v11.0 2MU A L2M0 TRK10 mu2ptxatxx MUON(1,med) TRK(1,10)
v12.0 2MU A L2M0 TRK5 mu2ptxatxx MUON(1,med) TRK(1,5)

Table 3.2: The Level 1, 2, and 3 requirements for each of the triggers used to collect the data samples. The conditions are explained in the

associated data sample section.
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3.3 Object Reconstruction

A triggered event is really just 250 kB of 1’s and 0’s representing the various electrical

and light signals measured in the detector. These bits must be ordered by complex

algorithms to produce the more familiar physics objects we seek to study. The trigger

system produces progressively more detailed shadows of such objects, and at L3, the

triggered objects are fairly close to those used in the analysis. Still, the unrestricted

time of the offline reconstruction code allows for more precise and clearly defined objects.

This section discusses the offline algorithms used to reconstruct the physics objects that

are evaluated in an analysis.

3.3.1 Particle Tracks

As charged particles traverse the tracking system, their paths are curved by the magnetic

field of the solenoid. Along these paths, they deposit a small amount of energy in each

layer of material in the tracker, otherwise known as a “hit.” The collection of hits from a

single particle form a particle track. It is the duty of the DØ tracking algorithms to sift

through the thousands of hits in any given event, and reconstruct the original particle

tracks. The following algorithms have been developed to this end:

Histogramming Method (HTF) [82] The HTF method may begin with either

SMT hits or CFT hits, and uses a transformation from x–y coordinates to ρ–φ (where ρ

is the curvature of a track, and φ the azimuthal angle). The coordinate transformation

facilitates track finding by locating a peak in the ρ–φ plane as the most likely track.

The algorithm consists of:

• All possible pairs of hits in the event are converted to a point in ρ − φ space,

and added to a histogram. Removing points below a minimum curvature, ρo, one

simply finds a peak in the distribution, and has thus located a track and all the

pairs of hits that constitute that track.
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• The number of tracks is then reduced by a 2D Kalman filter [83] and another

transformation. A Kalman filter is mathematically identical to a least-squares-fit,

but is written to be computationally efficient for real-time processing. The second

transformation adds in the z coordinate information, transforming from r-z space

to zo-C space, where zo is the z position of the track at the origin, and C is the

track inclination (C = dz/dr). Again, a peak is found in the zo-C space, and is

identifed as the most likely set of points forming a track.

• Finally, a 3D Kalman filter is used to fit the remaining hits in a track, and further

extrapolate the track to the other tracker, either the CFT or SMT.

Alternative Algorithm (AA) [81] The AA algorithm mainly uses SMT hits to

seed the track finding, but CFT hits can be used where the SMT coverage is limited.

The following steps are taken:

• Build a seed track in r− φ space with three SMT hits. First locate the beam spot

and any single hit. Next, select a second hit within φ = ±0.08. A third hit must

then be found which creates a track with a minimum curvature (r = 30 cm), and a

maximum impact parameter (Figure 3.1) with respect to the beam spot of 2.5 cm.

The three-hit track requires a chi-squared fit χ2
trk < 16.

• Further hits are added to the track from different layers of the SMT and CFT if

they improve the overall χ2
trk. Hits from the same layer can be accepted and define

multiple tracks if each case improves the χ2
trk.

• Tracks are then ordered by the number of hits they are composed of, and filtered

or removed if there are too many missing hits along the track or at either end of it.

Tracks sharing a portion of their hits may be kept if they pass other quality cuts.

It should be noted that no z information is taken into account with this algorithm.
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Most unphysical tracks are naturally removed by the algorithm, but the remaining

ones are dealt with at the primary vertex reconstruction stage.

Global Track Reconstruction (GTR) [84] The GTR algorithm is applied last,

using the reconstructed tracks from both the AA and HTF algorithms as inputs. A

standard Kalman fit is applied to these tracks, and the final set of tracks in the event is

defined.

3.3.2 Primary Vertices

The primary vertex is the three dimensional position of the hard scattered event from

the proton and the antiproton. Its location is of paramount importance as many other

variables, including energy, momentum and the position of secondary vertices, are cal-

culated in terms of the primary vertex. Two algorithms have been developed to locate

the primary vertex, and both show comparable results [85].

The DØreco algorithm consists of a two-pass procedure, and begins by locating the

beam spot, or the x–y location of the pp̄ interaction. This is done by fitting all tracks

with an impact parameter (IP) significance, SIP = IP/σIP < 100 (with respect to the

r − φ origin), to a common vertex through minimization of the impact parameter of all

tracks (Figure 3.1). If the worst fit track has a χ2
trk > 10, it is removed from the vertex,

and the procedure is repeated. Once all tracks have χ2
trk < 10, a first pass primary

vertex has been found. Additional primary vertices are then found with the remaining

tracks, repeating the steps as outlined above, until all primary vertices are found. The

beam spot is then identified through the position of all located vertices. Pass two is

identical to pass one, but places a tighter SDCA cut on all tracks, this time with respect

to the beam spot. Once all pass two primary vertices have been constructed, they are

each given a probability for coming from a minimum-bias event, or of not being the

hard-scatter vertex. This vertex probability is defined as the product of the probability
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for each track to be a minimum-bias track, weighted by the number of tracks involved

in the vertex. The hard-scatter vertex has the smallest minimum-bias probability of all

reconstructed vertices.

The DØroot algorithm shares the same pass-two procedure as the DØ reco algo-

rithm, but differs in pass-one. First, tracks are clustered together in z to separate multi-

ple vertices. Next, each cluster is fit with the Kalman filter technique. Once the pass-one

list of primary vertices is constructed, the same pass-two procedure is performed.

The average number of tracks attached to a given vertex is 20 for a basic multijet

data sample, with a reconstruction efficiency of ∼ 98% (100% in the central region and

tailing off outside of the SMT fiducial volume). The primary vertex resolution depends

on the number of attached tracks, but beyond 15 tracks it is dominated by the resolution

of the beam spot. The average resolution in the transverse plane is ∼ 35 µm [86].

3.3.3 Muons

Muons are reconstructed and categorized based on the pattern of hits in the muon system

as well as by having a spatially matched track in the central tracking system [87]. Muons

found only in the muon system are labeled “local”, and muons with an associated track

in the central tracking are called “global”. Tight, medium, and loose muons are defined

by the total number of hits found in the wire chambers and the scintillators. The quality

of a track fit between these points is also taken into consideration. Muons are further

subdivided by the number of segments (Nseg) or layers that a hit was found in. Nseg

= 1 requires at least one A layer hit, Nseg = 2 requires at least one B or C layer hit,

and Nseg = 3 includes at least one hit in the A layer and one in the B or C layer. From

these categories, many types and qualities of muons can be defined, and the accepted

ones are determined by the needs of a given analysis.
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3.3.4 Electromagnetic Clusters

Electromagnetic (EM) clusters are localized deposits of energy in the calorimeter con-

sistent with a purely electromagnetic interaction. These generally include showers from

electrons, photons, and π0’s and are completely contained in the first few layers of the

calorimeter. For the central calorimeter, the algorithm looks for an EM seed tower

above a given ET threshold, and includes all surrounding EM towers in a radius R =
√

∆η2 + ∆φ2 = 0.2. The end calorimeters requires a similar seed tower, and then in-

clude all EM towers in a transverse radius of 10 cm [86]. In addition, the so-called t42

algorithm (Section 3.3.5) is applied to remove noisy cells.

3.3.5 Jets

In many processes, the pp̄ interaction will lead to a scattering of the proton valence

quarks or the production of new quarks. These quarks will instantly hadronize, and

the resultant particles will radiate in a projective η-φ region through the detector in

the direction of the original quark’s momentum As these hadrons traverse the material

of the calorimeter, there will be both electromagnetic and strong interactions, and a

shower of particles will form, depositing energy throughout the calormieter and leaving

the signature of a jet. Volumes have been written addressing the concept of a “jet”

and how it truly relates to the hard scattered process, and while one can be referred

to these works [88, 89] and references therein, only the DØ experiment’s simple cone

algorithm used in this analysis will be discussed here. The purest form of the algorithm

is seedless, and simply requires testing every calorimeter tower as a “seed” and including

all surrouding towers in a radius R =
√

∆η2 + ∆φ2 as the contents of the jet. All test

jets could be computed, and the best quality jets selected as real jets. With the constaint

of computing power, this algorithm is modified such that only small clusters of towers

exceeding a given energy threshold are used as seeds. In addition, there are issues with
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jet cones overlapping and the algorithm studies midpoints between such jets in making

a decision to reconstruct two separate jets, or one jet involving a fraction of the energy

from each of the overlapping jets. Due to small levels of inherent noise in the calorimeter,

an additional cell-killing algorithm is applied to improve the energy measurement. This

algorithm, known as “t42” [90, 91], only allows calorimeter cells to be included in a jet

or electromagnetic object if (a) the cell has a neighbor whose energy is 4σ above the

noise threshold and (b) the cell itself is greater than 2σ above the noise threshold.

3.3.6 b-Quark Jets

Several algorithms for identifying b-quark mesons from the hard-scattered event have

been developed at this experiment. All take advantage of the decay of the b meson:

some look for a muon from b decay inside of a jet, while others seek the b decay vertex

itself. Typically, a b meson will travel several millimeters before decaying into lighter

particles. On average, simulations have shown [92] that the b meson leaves five charged

decay products with pT > 0.5 GeV/c, and that 99% of the time they are contained in a

cone of R = 0.5. Additionally, the standard model tells us that the b meson will decay

to a muon about 10% of the time. Four independant b-tagging algorithms have been

constructed to take advantage of these observations, and each has been used successfully

in various analyses. This analysis however, applies a newly developed neural network

b-tagging algorithm, which combines the power of three of the previously independant

b taggers. We will explain each of these individual b-tagging algorithms as well as

the neural network b-tagger. A more thorough explanation of the multivariate neural

network technique is given in Chapter 5.

Counting Signed Impact Parameter (CSIP) Algorithm [93] The CSIP tag-

ger looks for tracks in a jet with a large perpendicular distance, known as the impact

parameter (IP), with respect to the primary vertex (PV) (Figure 3.1). These tracks are

59



assumed to originate from the secondary decay vertex of a b hadron in the jet. The

impact parameter significance, SIP , is defined as the ratio of the impact parameter to

its resolution. SIP is positive (negative) if the track intersects the jet axis in the positive

(negative) momentum direction. Once a minimum number of tracks have been located

exceeding a given SIP threshold, the jet is considered to be tagged (Section 3.4.5).

Jet LIfetime Probability Tagger (JLIP) Algorithm [94, 95] The JLIP tagger

also uses the track impact parameter significance to locate b jets, but instead of requiring

a given number of tracks passing a SIP threshold, the significances of all relevant tracks

are combined into a single probability for the jet to be a b jet. (Section 3.4.5).

Secondary Vertex Tagger (SVT) [92, 96] The SVT algorithm aims to locate

the set of tracks from the b-hadron decay, and to reconstruct a secondary vertex. The

first step involves reconstructing all R = 0.5 track-based jets. The tracks in these jets

are first clustered by their distribution in z along the beamline, and are required to pass

quality cuts (Table 3.4). Identified track-jets then go through a fitting process, building

a vertex with all combinations of two-track seed vertices and adding a track at a time

until the highest quality vertex is identified. This list of secondary vertices is then passed

on for filtering at the identification stage (Section 3.4.5).

Neural Network Tagger (NN Tagger) [97, 98] The neural network tagger uses

variables from the three taggers listed above to derive a function that effectively separates

light-quark and b-quark jets. The function guides light-quark jets towards 0 and b quark

jets towards 1. Several cut points on this neural network output define the various

operating points of the tagger (Section 3.4.5), designed to maximize the tagging efficiency

or to minimize the false-tag probability. By using all the available information, the NN

Tagger is able to achieve higher b-tagging efficiency for lower false-tag efficiency than

any of the three component tagging algorithms on their own.
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Figure 3.1: Illustrated above is the impact parameter (IP) of a track (~ptrk) with respect to a jet

momentum axis (~pjet). The IP is used both in vertex reconstruction and b-tagging algorithms.

In the literature, the IP is also referred to as the distance of closest approach (DCA).

3.3.7 Neutrinos

Neutrinos are identified by the momentum and energy imbalance they leave in the detec-

tor. Passing through all detector material without interaction, they are revealed by the

excess in the sum of all transverse energy (E/T ) in the event, and their momentum vector

is opposite to that. The z component of their momentum is left ambiguous as the initial

z momentum of each of the hard-scattered partons from the proton and the antiproton

is undetermined. The E/T algorithm sums the transverse energy of all calorimeter cells

with respect to the primary vertex, except for those in the coarse hadronic region. These

noisier cells are only included if they are part of an identified jet. The t42 algorithm

described in Section 3.3.5 is also applied to remove noisy cells. Corrections for muon

energy and calorimeter energy scale calibrations are also made (Section 3.4.6).

3.4 Object Identification

After each of the physics objects in an event has been reconstructed, quality cuts are

made on these objects for acceptance into an analysis. These cuts are based on com-
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parisons of data and Monte Carlo simulations, on how well we understand the relevant

subdetector contributing to the object’s information, and the specific needs of an analy-

sis. Below, the quality variables applied to each object and the cuts on these variables

are given.

3.4.1 Primary Vertices

After first-pass primary vertex lists have been assembled (Section 3.3.2), the require-

ments listed in Table 3.3 are set for all tracks making up the final list of primary

vertices. The hard-scatter primary vertex is selected as the vertex with the smallest

minimum-bias event probability.

Track Variable DØreco Vertex DØroot Vertex
pT ≥ 0.5 GeV/c ≥ 0.5 Gev/c

SMT hits ≥ 2 (data), ≥ 0 (MC) ≥ 2
IP significance ≤ 5.0 ≤ 3.0

Table 3.3: The requirements for all tracks involved in the final reconstruction of primary
vertices for both the DØreco and DØroot algorithms [85].

3.4.2 Muons

The muon identification used in this analysis [87] requires a minimum of the following:

A so-called “medium, Nseg = 3” muon, defined as

• ≥ two A-layer wire hits

• ≥ one A-layer scintillator hit

• ≥ two wire hits in the B- and C-layers combined

• ≥ one scintillator hit in the B- and C-layers combined

• a matched track to the central tracking systems, the silicon microstrip tracker
(SMT) and central fiber tracker (CFT)
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To reject cosmic-ray muons, we require

• A, B, and C-layer scintillation times < 10 ns from the bunch crossing time

• Central track χ2 < 4

• |SIP | < 3σ

• ∆z(central track, primary vertex)| < 1 cm

To ensure the muon has come from W boson decay, and not the decay of a b quark, we
require the muon to be isolated from a jet

• ∆R(µ, jet) > 0.5

• Track halo isolation = |
∑

tracks

pT /pT (µ)| for all tracks within a radius R < 0.5 of

the muon track

• Calorimeter halo isolation = |
∑

cells

ET /pT (µ)| for all cells within a radius 0.1 < R <

0.4 about the muon’s calorimeter track

These cuts have been optimized using both data and Monte Carlo simulations. In

addition, the invariant mass of the Z boson in Z → µµ events has been found to have

better resolution and be shifted in Monte Carlo events compared to data. To correct

this, a scale factor is applied to Monte Carlo muons to shift and smear their energy

distribution. This scaling and smearing takes on the form

1

p′T
=

1

αpT

+ [Gaussian(0, σ = S)] (3.1)

where p′T and pT are the corrected and uncorrected muon momenta, and α and S are

the energy scale and smearing parameters respectively. The fit values for α and S are:

ηµ < 1.6 ηµ > 1.6
α 0.991 0.999
S 0.0023 c/GeV 0.0047 c/GeV

3.4.3 Electromagnetic Clusters

Once EM clusters have been reconstructed, we must further identify whether they are

electron, photon, or pion clusters. This analysis seeks electron clusters and uses the

following variables to identify and assess the quality of each EM object:
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• fEM = EEM/Etotal The electromagnetic fraction, or fEM, is the fraction of the total

calorimeter energy in an R = 0.2 cone contained in the EM calorimeter region. It

is expected to be close to one for a real electromagnetic shower.

• χ2
EM A covariance matrix (Mij) has been developed to test how closely the EM

cluster shower shape resembles that of an electron cluster. The matrix consists of

the following seven variables - the energy in each of the four EM layers, the total

EM energy, the primary vertex z position, and the transverse shower width in φ.

Monte carlo electrons, that have been accurately modeled by test beam electrons,

are used to build the matrix. The matrix is defined as

Mij =
1

N

N
∑

n=1

(xn
i − x̄i)(x

n
j − x̄j) (3.2)

where the sum is over electrons in the reference Monte Carlo sample and xi and

xj are the variables making up the covariance matrix. The χ2
EM for the event is

then calculated as

χ2
EM =

7
∑

i,j=1

(xn
i − x̄i)Mij(x

n
j − x̄j) (3.3)

• The cluster isolation, fiso, defined below, measures how localized the energy dis-

tribution is in the cluster by comparing energy in an EM tower cone of R = 0.2

with the total surrounding energy in an R = 0.4 cone.

fiso =
Etotal(R < 0.4) − EEM(R < 0.2)

EEM(R < 0.2)
(3.4)

In addition, a match between the EM cluster and a central track is required for an

electron candidate. With respect to the energy centroid of the EM in the calorimeter,

this is defined as |∆φEM,trk| < 0.05 and |∆ηEM,trk| < 0.05.
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To select good electrons, an electron likelihood, L, has been developed [101]. It

is based on the following eight variables: fEM , χ2
EM, ECal

T /ptrk
T , Prob(χ2

SpatialEM-trk),

IP(e-trk,PV), Ntrks(R < 0.05),
∑

trks

pT (R < 0.4), and CPSstripmax. The probability

P (χ2
SpatialEM-trk) tests the spatial match between the calorimeter cluster and the matched

track in φ and z. Central preshower CPSstripmax is the total number of hits in the u, v,

and x layers of the largest cluster in the preshower within a 20 cm radius of the EM

axis. All variable distributions are found in electron and non-electron samples, and the

probabilities to be signal (Psignal) and background (Pbkgd) are calculated. The likelihood

is created such that signal events tend towards 1, and background events tend towards

0. It is defined as a function of all input variables ~x as:

L(~x) =
Psig(~x)

Psig(~x) + Pbkg(~x)
(3.5)

In addition to these cuts, an energy scale factor and smearing are applied to EM

objects reconstructed in Monte Carlo samples. When comparing to data, these factors

account for the better resolution and slightly shifted dielectron invariant mass found in

Z → ee Monte Carlo samples. The EM energy scale is parameterized as

E ′ = E × [α + Gaussian(0, σ = αS)] (3.6)

where E ′ and E are the corrected and uncorrected calorimeter energy, α the data/MC

EM scale factor, and S the smearing parameter. The values for α and S are given below.

Electron identification is thoroughly discussed in References [99] and [100].

Inside Fiducial Outside Fiducial
(CC) (CC) (EC)

α 1.003 0.95 0.996
S 0.044 0.112 0.032
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3.4.4 Jets

Owing to the size of jets, and the inherent noise in the calorimeter cells, a lengthy list

of variables has been constructed to ensure the quality of these objects. We reconstruct

R = 0.5 jets, and require all jets to pass selection cuts, listed in Section 3.5, on the

following variables for use in our analysis:

• fEM = EEM/Etotal The electromagnetic fraction, or fEM, is the fraction of the

total calorimeter energy in the jet cone contained in the EM region. We require

0.05 < fEM < 0.95.

• fCH = ECH/Etotal The coarse hadronic fraction, or fCH, is the fraction of the total

calorimeter energy contained in the coarse hadronic layers of the jet cone. We

require fCH < 0.4.

• fHot = Ecell1/Ecell2 The hot fraction is the ratio of the energy in the most energetic

cell of a jet to that of the second most energetic cell. It is designed to remove jets

which are really just a very noisy or “hot” cell. We require fHot < 10.

• n90 This is the number of calorimeter towers in a jet that contain 90% of the total

energy of the jet. This is used to remove noisy jets with unnaturally collimated

energy deposition due to coherent noise in a calorimeter tower. We require n90 >

1.

• L1Conf A Level 1 trigger confirmation is applied to remove noisy jets. This vari-

able requires two independent data acquistion chains, the L1 calorimeter readout

and the final calorimeter precision readout, to yield similar measurements. A value

greater than an optimized threshold is required for jets to be accepted. The L1conf

is defined as
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∑

towers

ET

ET × (1 − fCH)
(3.7)

where the ET sum is over all L1 trigger towers in the jet cone, and the ET and fCH

are derived from the precision readout. We require L1Conf > 0.4 (CC,EC) and >

0.2 (ICR).

Jet Energy Scale Calibration

More than just ensuring the quality of reconstructed jets, we must make sure these

jets represent the physics objects we are after — the hard-scattered quarks. After

scattering, these quarks hadronize and form a jet of particles, and only after showering

through the detector do they become the calorimeter jet that we identify (Figure 3.2).

To correct the energy of our calorimeter jet back to that of the particle jet, the jet energy

scale (JES) calibrations are applied [102] as defined by:

Eparticle jet =
Emeas − O

R × S
(3.8)

where Eparticle jet is the corrected particle jet energy, Emeas is the reconstructed calorime-

ter jet energy, O is an energy offset, R is the calorimeter response to a jet, and S is

the jet cone showering correction. The offset energy comes from the underlying event

(other partons not involved in the hard scatter, but fragmented none-the-less), energy

pile-up in the detector electronics from a consistently active region, events with multiple

hard scatters, typical electronic noise, and noise from the nuclear radioactive decay of

the uranium used in the calorimeter. The offset (O) is found by averaging over min-

imum bias data samples and averaging over φ, and is left as a function of detector η

and instantaneous luminosity. The calorimeter response (R) is a measure of how effi-

ciently the detector measures the energy deposited in it. It is determined by balancing

the transverse energy in back-to-back γ+jet events, where the photon energy has been
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Figure 3.2: The evolution of a “jet”. After the pp̄ interaction, a parton will hadronize and form a

particle jet. This particle jet will then enter the detector and evolve into a particle shower as it interacts

with the detector material. Electromagnetic jets will deposit most of their energy in the first layers of

the calorimeter, and the shower from hadronic jets will penetrate deeper into the calorimeter.

measured very accurately, and the unbalanced energy (E/T ) represents the inefficiency

of the calorimeter. It is derived as a function of the jet energy and detector η. The

showering fraction takes into account any energy that has leaked outside of the jet cone.

The energy distribution of very isolated jets is studied (in back-to-back γ+jet and dijet

events), and the average radius at which all cone energy has been contained is used to

determine the showering fraction. The final jet energy scale corrections and their errors

are shown in Figure 3.3.

Jet Energy Resolution

The jet energy resolution found in Monte Carlo is better than that found in data.

To correct for these differences, the jet energy is smeared in Monte Carlo after the JES

has been applied. The energy asymmetry in back-to-back γ+jet and dijet events are

used to calculate the jet resolution, σpT
. A fit is performed in both data and Monte
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Figure 3.3: The jet energy scale correction factor (left) and its errors (right) are shown as a function

of jet pT (upper) and jet η (lower). The upper four plots are for data, the lower four plots for Monte

Carlo.
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Carlo (Eqn 3.9), and the appropriate scale factors are applied to Monte Carlo samples

to correct the jet energy resolution.

σpT

pT

=

√

N2

p2
T

+
S2

pT

+ C2 (3.9)

The values for the constants N , S, and C are given below as a function of detector

η for both monte carlo and data:

Monte Carlo Data
N S C N S C

0.0 < |η| < 0.5 4.26 0.658 0.0436 5.05 0.753 0.0893
0.5 < |η| < 1.0 4.61 0.621 0.0578 0.0 1.20 0.0870
1.0 < |η| < 1.5 3.08 0.816 0.0729 2.24 0.924 0.135
1.5 < |η| < 2.5 4.83 0.0 0.0735 6.42 0.0 0.0974

3.4.5 b-Quark Jets

The neural network b-tagging algorithm [98] combines seven variables described here.

Results from the tagger are discussed, as well as the loose and tight operating points we

apply in this analysis.

Counting Signed Impact Parameter (CSIP) Input Variable

• CSIP Combined = (6 × 3s) + (4 × 2s) + (3 × 3w) + (2 × 2w)

Impact Parameter Significance SIP = IP
σIP

CSIP 3s = the number of tracks with SIP > 3

CSIP 2s = the number of tracks with SIP > 2

CSIP 3w = the number of tracks with SIP < −3 and ∆φ(trk, jet) < 1.15

CSIP 2w = the number of tracks with SIP < −2 and ∆φ(trk, jet) < 1.15

CSIP Combined is the only CSIP tagging variable used in the neural network tagger.

It linearly combines the impact parameter significance of several types of tracks into a

single discriminating variable.
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Jet LIfetime Probability (JLIP) Input Variables

• The positive and negative JLIP probabilities for a jet (Equation 3.10) are calcu-

lated from the product of the track probabilities for all tracks inside the jet cone.

Only tracks with IP > 0 are used in the positive JLIP probability, and tracks with

IP < 0 are used in the negative JLIP probability.

P±
jet = Π± ×

N±

trk
−1

∑

j=0

(-log
∏±)j

j!
where Π± =

N±

trk
∏

i=1

Ptrk(SIP(IP>0
IP<0)) (3.10)

The Track Probability is defined as Ptrk(SIP ) =

∫ −|SIP |

−50
R(s) ds.

∫ 0

−50
R(s) ds.

, where R(s) is a fit

to the negative half of the signed impact parameter distribution for multijet data

or Monte Carlo samples with little or no b-quark jet content.

Secondary Vertex Tagger (SVT) Input Variables

• The decay length significance, SLxy
, is the variable used by this algorithm to iden-

tify a b-quark jet. Once a secondary vertex has been identified, and its corre-

sponding track-jet has been matched to a calorimeter jet, a significance exceeding

a threshold declares the jet b tagged. The decay length significance (Eqn. 3.11)

is defined as the ratio of the transverse decay length from the primary vertex to

the secondary vertex, and the resolution of this distance. The sign comes from the

collinearity of the decay length and the momentum of the secondary vertex, i.e. if

a secondary vertex and calorimeter jet are both on the same side of the primary

vetex, Lxy is positive, and if they are found on opposite sides of the primary ver-

tex, Lxy is negative. To increase the range of the distributions of the other SVT

variables (for the neural network training), a very loose threshold for the signifi-

cance has been set to identify a tagged jet. Table 3.4 shows the requirments for

tracks and secondary vertices used in the SVT algorithm for the typical LOOSE
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and TIGHT operating points, and the SUPER LOOSE point used in this neural

network tagger.

SLxy
=

Lxy

σLxy

=
|−→r SV −−→r PV |

σLxy

(3.11)

• χ2
dof = χ2 per degree of freedom of the secondary vertex

• Ntracks = the number of tracks used to reconstruct the secondary vertex

• MSV = the mass of the secondary vertex

• NSV = the number of secondary vertices found in the jet

All five SVT variables listed above are used as inputs to the neural network tagger.

Variable SUPER LOOSE LOOSE TIGHT
Secondary Vertex Track Criteria

pT (GeV/c) > 0.5 1.0 1.0
Number of SMT Hits > 2 2 2

r-φ DCA of tracks (cm) ≥ 0.15 0.15 0.15
z DCA of tracks (cm) ≥ 0.4 0.4 0.4

tracks χ2 < 15 10 3
IP significance of tracks ≥ 0.0 3.0 3.5

Secondary Vertex Critera
track-to-vertex χ2 ≤ 15 15 15

vertex χ2 < 100 100 100
vertex collinearity ≥ 0.9 0.9 0.9

vertex decay length (cm) ≤ 2.6 2.6 2.6
minimum track multiplicity ≥ 2 2 2

b-quark Jet Criteria
signed decay length significance ≥ 2.5 5.0 7.0

Table 3.4: The requirements for secondary vertex tracks, track-jets, and reconstruction for the SUPER

LOOSE, LOOSE, and TIGHT versions of the secondary vertex tagger [96, 98].
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Figure 3.4: The neural network output for light-quark (left) and b-quark (right) jets for both Monte

Carlo and data. (NT in the caption refers to a “negative tag”)

Neural Network b-Tagger

Using the seven variables described above, a neural network was trained with light-

quark multijet events and b-jet enriched events for both data and Monte Carlo samples.

LOOSE, MEDIUM, and TIGHT cut points (Table 3.5) are placed on the neural network

output (Figure 3.4) to define b-tagged jets. In this analysis, we apply both the LOOSE

and TIGHT versions of the neural network tagger.

TIGHT MEDIUM LOOSE
NN Cut > 0.775 > 0.65 > 0.5

Fake Rate 0.3 0.5 1.0

Table 3.5: The operating points for the neural network tagger. For each point, the neural network

cut value, and the corresponding fake-rate are given [98].

3.4.6 Neutrinos

The neutrino momentum (E/T ) must be corrected for all electrons, jets, and muons found

in the event. Electron energies have been adjusted by the EM scale, and this adjustment

is reflected in the missing transverse energy by adding it vectorially with the E/T . All jet

energies have been adjusted by the jet energy scale, but only the response R (Section
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3.4.4) of this scaling is compensated in the missing transverse energy. In addition, each

muon in the event has left a minimum ionizing energy trail as it traversed the calorimeter

(∼ 2 GeV), but escaped with most of it’s energy. To correct the calorimeter E/T , the

minimum ionizing energy is removed, and the muon pT measured by the tracking system

is used in the calculation. The final missing tranverse energy after EM, JES, and muon

corrections is denoted E/T
Corr.

3.5 Event Selection

With countless protons smashed to bits, armies of events fighting their way down a

triggering gauntlet, and millions finally making it to the safe haven of permanent storage,

it is time to select the chosen few. Our search for single top quark production with the

leptonic decay of a W boson has led to the set of cuts listed below. This is the only

round of selection in the analysis, and all events passing this selection will be used in

the more sophisticated discrimination techniques applied later.

Single Top Guest List Requirements

Primary vertex

Ntrks ≥ 3 ∆z(DØreco,DØroot) < 5 cm
|zvtx| < 60 cm

≥ 2 jets

Leading Jet ET > 25 GeV, ηdet < 2.5 fHot < 10
Second Jet ET > 20 GeV, ηdet < 3.4 n90 > 1
Other Jets ET > 15 GeV, ηdet < 3.4 fCH < 0.4

L1Conf > 0.4 (CC, EC), > 0.2 (ICR) 0.05 < fEM < 0.95
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≥ 1 b-quark jet

Single Tag: = 1 TIGHT tagged jet (which is also LOOSE by definition)
Double Tag: = 2 LOOSE tagged jets (at least one also being TIGHT)

≤ 2 bad hadronic jets

The number of jets failing the good jet cuts is restricted

Missing transverse energy (E/T )

15 GeV < E/T < 200 GeV
15 GeV < E/T

Corr < 200 GeV

Triangle cuts (∆φ(object,E/T ) vs. E/T plane)

Leading Jet Accept if below line ∆φ(jet,E/T ) = π−1.5
35

E/T + 1.5

CC Electron Accept if above line ∆φ(e,E/T ) = −1.5
35

E/T + 1.5

Muon Accept if above line ∆φ(e,E/T ) = −1.5
35

E/T + 1.5

For the e + jets analysis, = 1 electron, = 0 MEDIUM muons

EM cluster requirements
|ηdet| < 1.1 (central calorimeter only)
fEM > 0.90 fiso < 0.15
χ2

EM < 50 ET > 15 GeV

EM tracking requirements
|φEM − φtrk| < 0.05 |ηEM − ηtrk| < 0.05
track pT > 10 GeV/c ∆z(etrk, DØroot) < 1.0 cm

EM likelihood
L > 0.4 if ET ≥ 30 GeV
L > 0.85 if ET < 30 GeV
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For the µ + jets analysis, = 1 MEDIUM muon, = 0 EM objects

Muon track quality
pT > 15 GeV/c IP(µ-trk,PV) < 0.2 cm (No SMT hits)
Nseg = 3 IP(µ-trk,PV) < 0.02 cm (With SMT hits)
χ2

trk < 4.0

Muon cosmic veto
∆tA-scint < 10 ns ∆tBC-scint < 10 ns
SIP < 3 χ2

trk < 4.0
|zµ − zPV| < 1.0 cm

Muon isolation
∆R(µ, jet) > 0.5
Track halo isolation < 0.15, Cal halo isolation < 0.15 if pT ≥ 30 GeV/c
Track halo isolation < 0.06, Cal halo isolation < 0.08 if pT < 30 GeV/c

Using the decay processes described in Section 1.4.4 as a guide, the selection criteria

have been created. We require a clean, high quality primary vertex. From this primary

vertex, all physics object four-vectors are calculated. Mainly two jet events are expected

from s-channel decay, and two or three jets from t-channel decay, but we allow for

additional jets from initial- and final-state radiation in the event, allowing up to four

jets. To remove the large multijet background, a harder (higher pT ) and more central

(smaller η) leading jet is required, as well as a harder second jet. In addition, a large

fraction of the background is removed by requiring at least one b-quark jet tagged by

the TIGHT version of the neural network tagger. To aid the multivariate discrimination

techniques later applied, the sample is split into single- and double- tagged channels.

To increase the signal acceptance in the double tagged channel, the second tagged jet

is only required to have a LOOSE tag. To keep both tagged channels orthogonal, the

single tagged channel does not allow events with more than one LOOSE tagged jet. A

cut is made on the number of bad jets (jets failing the good-jet requirements) in the

event to remove periods with excess noise in the calorimeter. A minimum E/T is required

to assure a high-pT neutrino is in the event. A maximum E/T is set to remove events
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with coherent noise in the calorimeter, falsely magnifying the neutrino momentum. In

the e + jets analysis, we allow exactly one well constructed electromagnetic object, and

require a matched track to identify this as an electron. We further veto on events with

any MEDIUM quality, isolated muons. The opposite is required in the µ+ jets analysis,

requiring exactly one, isolated, MEDIUM quality muon, and no electromagnetic objects.

Triangular shaped cuts in the ∆φ(object,E/T ) - E/T plane have also been implemented to

reduce the large multijet background (Fig 3.5). The leading-jet triangle cut removes

low E/T events where the E/T and the jet are back-to-back. Physically, these jets have

most likely been incorrectly calibrated, and reconstructed with more energy than they

actually possess. The electron triangle cut removes low-E/T events where the E/T and

the electron are aligned. These cases involve a hadronic jet being misreconstructed as

an EM cluster, therefore under-measuring the jet energy and increasing the aligned E/T .

Muons may have their track pT over or under measured, and the muon triangle cuts are

used to remove dense regions of this nature.

In Table 3.6, the total number of events in each data sample are given, as well as the

numbers before and after tagging. Final samples are split into single tagged events and

double tagged events for neural network training and the final calculation of limits.

Selected Events
Data Sample Total Events Before Tagging =1 Tag =2 Tag
e+jets 13,411,834 5,351 270 53
µ+jets 6,574,561 4,747 225 32

Table 3.6: The number of events in data samples passing various stages of the analysis. Shown are

the total sample size, the numbers of events passing all selection criteria before applying the b-tagging

requirement, and those passing with one or two b tags.
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TRIANGLE PLOTS - ELECTRON CHANNEL

multijet sample tqb Monte Carlo data sample
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Figure 3.5: Triangle plots (∆R(object,E/T ) vs E/T ) for the multijet, t-channel single top, and data

samples. Shown are the electron triangle (first row), leading jet triangle (second row), and the second

leading jet triangle (third row). The cut region is marked by the black line. These cuts were introduced

to remove the abundant multijet background. After application of the lepton and leading jet triangle

cuts, a second leading jet cut is unnecessary.
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Chapter 4

Modeling Single Top Quark

Backgrounds

4.1 Introduction

Having collected and pruned the dataset, it is necessary to accurately model its com-

position so that a single top signal can be extracted. The well established technique

of Monte Carlo simulation is used to model most of the expected backgrounds in the

data sample. From the hard scatter, through particle traversal of the detector, and

electronics and trigger simulation, each event is painstakingly modeled. Generator sim-

ulations are based on the efforts of many particle physics theorists who improve the

calculations, iteratively including many new measurements taken by the experimental

community. Detector simulations accurately detail every detecting element and amount

of material that particles traverse as they radiate from the interaction point. All that

is left is to correctly identify the pertinent backgrounds in the analysis, and then begin

the CPU-intensive task of generating the events.
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4.2 Masters of Disguise

We have identified three main culprits in this analysis, craftily posing as single top:

W+jets events, top quark pair production, and misreconstructed multijet events. Each

has their own tactics for concealment in our data samples, and must be probed for its

individual weaknesses.

W+jets events (Figure 4.1(a)) mimic our single top signal remarkably well, producing

two or more jets, and a lepton and E/T from a W boson. Wbb events even pass the b

quark jet requirement, and the sizeable cross section of Wjj events allows a number of

events with jets misidentified as b’s to remain in the data. The only weaknesses are the

lack of a real top quark (which can still be convincingly reconstructed in many events),

and the angular correlations between physics objects inherent in a top quark decay, but

not present here.

Top quark pair production or tt̄ events pose quite a different problem (Figure 4.1(b)).

Each event contains real top quarks, b quarks, and W bosons, and they must be filtered

by the higher jet multiplicity, and differing E/T and jet pT distributions in comparison to

single top. The l + jets events can be dealt with through their high jet multiplicity and

jet pT distributions. Dilepton events are more easily spotted through their extra lepton,

and when that is not reconstructed, the E/T and invariant mass of the W boson are both

discriminating factors.

Multijet events or “QCD” events (Figure 4.1(c)) make their way into our data sample

through either the misreconstruction of a jet as an EM cluster (electron channel) or b

quark pair production with one of the b’s decaying into a muon that swings wide of the

jet or the jet is lost, and it thus fakes an isolated muon (muon channel). The exceedingly

large production cross section for multijet events initially allows many events into the

analysis, but the lack of any real top quarks and W bosons helps to beat back this

overflowing tide.
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ū

t

t̄

g

d̄

u

u

g

”e”

Figure 4.1: The main backgrounds to single top production. Shown are (a) a Wbb example from the

W + jets background, (b) top pair production, and (c) an example of the multijet background for the

electron analysis.

In addition to the main backgrounds, there is a small contribution to both channels

from diboson events, such as WW → lνjj and WZ → lνjj.

All of the backgrounds except multijets are modeled through Monte Carlo simu-

lations. Although the multijet background can be modeled well by Monte Carlo, it

is more accurately modeled by real data and is extracted instead from a subset of the

l+jets data samples.

4.3 Monte Carlo Simulation

The first stage of Monte Carlo simulation (Figure 4.2) involves creating the hard scat-

tered parton 4-vectors (E, px, py, pz). Based on calculations of the matrix elements for

a process, and using the proton parton distribution functions generated by the CTEQ

group [104], there are several packages available in the high energy physics community

to create these vectors. The relevant ones are mentioned with each sample description

in the following section. In addition to creating the parton 4-vectors, all initial and

final state radiation is included in the model, as well as the hadronization of the hard

scattered partons, and their subsequent 4-vectors. Additionally, the “underlying event”,

or the remains of the fragmented proton and antiproton are modeled. Decays of heavier

particles such as the b quark and τ lepton are also accurately modeled by other packages.
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Figure 4.2: The chain of packages used to generate Monte Carlo events. pythia is one example of

many 4-vector generators, and in practice, TrigSim is replaced by a trigger efficiency calculation.

To account for events with multiple hard-interactions in the event, additional pp̄ inter-

actions are overlaid with the modeled background event, with the number of additional

scatters following a poisson distribution with a mean chosen to match that seen in data

for a given instantaneous luminosity.

Once the 4-vectors for all involved hadrons have been determined, the traversal of

particles through a full detector simulation is begun. The showering of each hadron

through all detector material, including the many liquid argon-uranium layers of the

calorimeter, is modeled, as well as the energy deposition at each step. A simulation

program known as DØGSTAR accomplishes this task, and another package known as

DØSim simulates the detector electronics response to the deposited energy. In addition

to the deposited energy, electronic noise is added for all detector systems.

Following the electronics simulation, the TrigSim package models the DØ trigger

system. Recalling that the L1 system utilizes hardware triggers, and the L2 and L3

systems use software triggers, only the L1 trigger needs additional modeling for Monte

Carlo simulation . Once the L1 system has been modeled, real data events and simulated

Monte Carlo events have an identical structure, and can be passed through the real

online and offline software. Triggered Monte Carlo events are marked, and finally passed

through the offline reconstruction algorithms described in Section 3.3. While TrigSim

is the ideal approach to finishing the Monte Carlo simulation, it has been difficult to

execute in practice and an alternative method has been applied (Section 4.3.1.5).
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4.3.1 Correction Factors

After the full simulation, data and Monte Carlo samples look indistinguishable to the

offline reconstruction and ID alogrithms, yet the generally cleaner and more precise

Monte Carlo events must still be modified to better mimic true data events. The object

efficiencies and associated correction factors are listed below.

4.3.1.1 Primary Vertex Correction Factors

There is a slight difference in the primary vertex reconstruction efficiency in Monte Carlo

and data. Monte Carlo is therefore scaled by the following factor:

• Electron channel primary vertex factor, εPV = 1.004 ± 0.018

• Muon channel primary vertex factor, εPV = 0.991 ± 0.004

4.3.1.2 Electron Correction Factor

The efficiency to identify an electron candidate depends on the EM cluster’s properties,

its isolation, a track match, and a likelihood. Monte Carlo efficiencies exceed the data

in all respects, and are therefore scaled accordingly. Z → ee events are used to derive

the efficiencies through a standard tag-and-probe method. Selecting events in a narrow

Z-mass window (80 – 100 GeV), one electron passing tight selection cuts is labeled the

“tag” and the efficiency for the other electron, the “probe”, to pass the cut in question is

measured. Background events in the measurement are taken into account by looking at

the Z-mass sidebands (60 – 70 GeV and 110 – 120 GeV) and using them for subtraction.

The ratios of the data and Monte Carlo efficiencies are used to scale the Monte Carlo.

Fe−ID =
εData
Iso,EMF,Hm7

εMC
Iso,EMF,Hm7

×
εData
pT(Trk),∆Z(Trk,PV)

εMC
pT(Trk),∆Z(Trk,PV)

× εData
Likelihood

εMC
Likelihood

Fe−ID (Ee
T < 30 GeV) = (0.996 ± 0.03) × (0.943 ± 0.03) × (0.902 ± 0.02)

= 0.847 ± 0.05
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Fe−ID (Ee
T > 30 GeV) = (0.996 ± 0.03) × (0.943 ± 0.05) × (0.983 ± 0.01)

= 0.923 ± 0.04

4.3.1.3 Muon Correction Factor

The efficiency to identify a muon candidate involves the following: satisfying the Muon

ID requirements, locating a track match, passing a DCA significance cut, matching the

primary vertex to the track, and passing tight isolation requirements. Monte Carlo

simulation again shows higher efficiencies, and a scale factor is derived. The tag-and-

probe method described in the previous section is used to derive the muon cut efficiencies,

and the subsequent Monte Carlo scale factor is given below. We note that only one scale

factor is given, and that it would have been more accurate to include two, for the pT

region less than 30 GeV and greater than 30 GeV. The subsequent effect on the analysis

is within the assigned errors, and this will be addressed in future analyses.

Fµ−ID =
εData
Tracking

εMC
Tracking

×
εData

χ2
track

εMC
χ2

track

× εData
DCA

εMC
DCA

× εData
TightIso

εMC
TightIso

× εData
PV

εMC
PV

Fµ−ID = 0.988 × 0.983 × 0.997 × 0.985 × 0.998

= 0.953 ± 0.050

4.3.1.4 Jet Corrections

Energy corrections and deviations between Monte Carlo and data are taken into account

by the jet energy scale (JES) and jet energy resolution (JER) described in Section 3.4.4.
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Figure 4.3: A sample L3 trigger turn-on curve for electrons. Data points and their fit are

shown for a 25 and 35 GeV pT threshold. The extrapolated curve for a 15 GeV threshold is

also shown.

4.3.1.5 Trigger Efficiency

As an alternative to the TrigSim package for Monte Carlo trigger simulation, the single-

object L1, L2, and L3 trigger efficienciency curves are calculated as a function of pT in

unbiased data samples, and folded together to simulate the multi-object triggers used

in the analysis. These efficiencies, or turn-on curves, are determined for each trigger list

and used to weight each Monte Carlo event [105]. The probability for a single electron,

muon, or jet to pass a trigger requirement is the product of the conditional probabilities

of each trigger level:

P (L1, L2, L3) = P (L1) · P (L2|L1) · P (L3|L1, L2) (4.1)

The probability for an event to fire a given trigger is the product of individual object

probabilities:

P (object1, object2) = P (object1) · P (object2) (4.2)

For e + jets triggers, the L1, L2, and L3 electron efficiencies are measured in data

samples constructed from triggers involving at least one EM object. A subset of Z → ee

events are then located in this sample, and the efficiencies are found using the “tag-and-
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probe” method for the L1, L2, and L3 trigger conditions. The efficiencies are measured

independently for each trigger-list version, and a luminosity-weighted average is applied

to Monte Carlo events. At L1, the trigger efficiency is found to be a constant for ET >

15 GeV, and nearly identical for all trigger-list versions, εL1 = 0.99. At L2, the trigger

is fully efficient, εL2 = 1.00, and at L3, the trigger efficiency is found to have a sharp

turn-on as a function of lepton transverse energy, εL3(ET ). With the restriction of all

electrons in our data sample having ET > 15 GeV, measuring the turn-on curve for a

15 GeV L3 trigger must be done by extrapolation. First, turn-on curves are derived for

these electrons with L3 trigger thresholds of 35, 30, 25, and 20 GeV. The fit parameters

from each trigger threshold are then used to extrapolate down to the values for a 15 GeV

trigger. The electron L3 trigger efficiency takes the form:

εL3(ET ) = 0.5 A ×
(

1 + Erf(
ET − B√

2C
)

)

(4.3)

Erf(x) =
2√
π

∫ x

0
e−u2

du

where A, B, and C are parameters of the fit, and Erf (x) is the standard error function.

Example 35 GeV, 25 GeV, and the extrapolated 15 GeV turn-on curves are shown in

Figure 4.3. On average, the L3 triggers reach a maximum efficiency of 0.97 at 2 GeV

above their threshold setting.

For µ + jets triggers, the muon efficiencies are again measured from unbiased data

samples, collected with EM and jet triggers. For muons above 15 GeV/c, the L1 and

L2 triggers are found to be constants as a function of pT , but show a distinct detector

η dependance. They are parameterized as shown in Equation 4.4, where a, b, c, and d

are parameters of the fit, and the efficiency is set to zero for the uninstrumented regions

at the base of the detector. The L1 efficiency peaks at 0.99 in the central and end caps

of the calorimeter, and dips down to 0.90 in the inter-cryostat region. The L2 efficiency
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peaks at 0.98 for forward detector η, and smoothly drops to 0.95 at detector η = 0. The

L3 trigger efficiency is fully efficient for all triggers, εL3 = 1.00.

εL1,L2(η) = a + b e−c(η2−d2) sin(η2 − d2) (4.4)

= 0 for |η| < 1.1 and 4.25 < φ < 5.15

Jet trigger efficiencies are measured in two data samples, one triggered by muons,

and another with single electrons confirmed offline. The efficiency is measured in three

detector η regions (|η| < 0.8, 0.8 ≤ |η| < 1.5, |η| ≥ 1.5) as a function of jet pT and

trigger version. The same functional form as the L3 electron trigger efficiency is used

(Equation 4.3). For jets with pT > 15 GeV, the L1 trigger efficiency is about 0.99 for

all regions, however, this peak value is not reached in the v12 EC until 20 GeV, and for

earlier trigger versions, 23 GeV (CC/ICD) and ∼30 GeV(EC). The L2 trigger efficiencies

are nearly fully efficient, εL2 ' 1.00 for all regions. The L3 trigger efficiencies range from

0.96–0.99, and the maximum turn-ons are reached about 10 GeV above the L3 trigger

threshold. The efficiency for a jet to pass an EM trigger is also measured, and used to

correct the EM trigger probabilities. The fit to this efficiency takes one of two forms:

f(ET ) = (a + b · ET ) ·
(

1 + Erf

(

ET − c√
ET · d + e

))

(4.5)

f(ET ) = (a + b · ET ) ·
(

1 + Erf

(

ET − c + f · ET√
ET · d + e

))

(4.6)

where a–f are parameters of the fit.

The final trigger weight applied to a Monte Carlo event is thus a multiplicative factor

of all object L1, L2, and L3 efficiencies, with care taken in adding the probability for a

jet to trigger an EM trigger. To take into account the variations in the trigger efficiency

in data from each trigger list, the luminosity-averaged values or averaged functions are
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Figure 4.4: Sample distributions of the trigger weight applied to events in the electron channel for

t-channel signal (left), Wjj (center), and tt̄ → ` + jets (right) Monte Carlo samples.

applied to Monte Carlo. Sample event trigger weight distributions are shown in Figure

4.4 and the average event trigger weights for all samples are given in Table 4.1.

Average Event Trigger Weights
Electron Muon

Before tagging Before tagging
tqb 0.83 0.83
tb 0.83 0.84
Wbb 0.78 0.78
Wjj 0.75 0.76
tt̄ → ` + jets 0.88 0.87
tt̄ → `` 0.86 0.87
WW 0.79 0.83
WZ 0.80 0.84

Table 4.1: The average event trigger weights applied to Monte Carlo events in the electron and muon

samples before tagging.

4.3.1.6 Tag-Rate Functions

The various b-taggers which compose the neural network tagger are not modeled well

enough to directly compare Monte Carlo results with data — in turn, the neural network

tagger inherits this feature. Monte Carlo tagging efficienicies are higher than data, show

sample dependance, and variation as a function of jet ET and detector η. To deal with

these issues, Taggability Functions and Tag Rate Functions (TRFs) are derived from

data and Monte Carlo samples to calculate the probability that each jet in an event
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is tagged by the neural network tagger. Taggability Functions measure the probability

that a jet has a chance of being tagged. A jet is “taggable” if it has a track-jet and a

calorimeter-jet within ∆R =
√

∆φ2 + ∆η2 = 0.5. TRFs are then used to calculate the

probability that a taggable jet is tagged by the tagging algorithm. TRFs are derived

for b, c and light quark jets. Each Monte Carlo Taggability Function and TRF is scaled

to a data equivalent to make the samples directly comparable. While neural network

tagging in data is a boolean parameter (tagged or untagged), Monte Carlo events are

weighted by the probability that the event has one or two b-tagged jets. Thus, events

passing all other event selection criteria are given the appropriate b-tag weight before

use in the final analysis.

The data TRF is calculated from a µ+jets data sample, where the muon is found

inside of a jet cone and is expected to have come from the decay of a b quark. These

muon-jets are required to be “taggable,” and a taggability function is derived as a

function of jet pT and η (Figure 4.5). The TRF is then calculated. Since the true b-

quark fractions in the data sample are not known, the tagging efficiencies are calculated

by playing two independent b-tagging methods off of one another, the neural network

tagger applied in this analysis, and a semi-leptonic b-tagger that looks for a muon from

the b-quark decay to tag a jet. Through a system of eight equations and eight unknowns,

the efficiencies of both taggers are solved by studying their tag rates in the µ + jets

sample, and in a b-enriched subset of this sample with back-to-back b jets. The tagging

efficiencies are further parameterized as a function of jet ET and detector η separately.

Monte Carlo b-tagging efficiencies are derived from various samples that include b-

quark jets (bb̄, tt̄, Z → bb, Z → bb → µX). Taggable jets require the usual calorimeter

jet and track jet quality cuts, and must also have a b quark within a radius R = 0.5 of

the jet. The Taggability Function is derived as a function of the jet pT and η (Figure

4.5). The neural network tagging algorithm is then directly applied and the TRF is

calculated as a function of jet ET and detector η separately (Figure 4.6).
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Figure 4.5: The taggability functions as a function of jet pT (left) and jet η (right), shown for multijet

(QCD) and “EM” data samples, and a Monte Carlo multijet (QCD) sample.

In addition to identifying b jets, the neural network algorithm correctly identifies some

c quark decays. These decays typically have a shorter decay length, making them harder

to resolve from the primary vertex, and lower in overall tagging efficiency. Again, the

efficiency for taggable jets (this time with a matched c quark) to be tagged is calculated

as a function of jet ET and detector η (Figure 4.7).

Once all Taggability Functions and TRFs are derived, a two-dimensional parameter-

ization is made for each one based on the observed ET and detector η dependance, and

the average overall efficiency of the sample. This parameterization takes the form:

ε(pT , η) =
ε(pT ) ε(η)

εavg
(4.7)

A 2D function is derived from the data sample, and an averaged 2D function is

taken for all Monte Carlo samples that have been studied. To correct for Monte Carlo

differences from data, a 2D function is derived to scale the monte carlo down to the

data for both Taggability and Tag Rates, F(ET , η) = εdata(ET ,η)
εMC(ET ,η)

. The product of these

two final, scaled efficiency ratios, is then applied to each Monte Carlo jet. Monte Carlo

jets encompassing a b quark have TRFb applied, and those with a c quark have TRFc

applied.
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b-quark Jet Tagging Efficiencies (TRFb)
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Figure 4.6: The b-quark jet tagging efficiency (TRFb) applied to jets in Monte Carlo samples. The

Monte Carlo TRF is shown before (red) and after (green) scaling to the data TRF. Both the ET (left)

and detector η (right) dependances are shown, as well as the tight (upper) and loose (lower) versions

of TRF.
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c-quark Jet Tagging Efficiencies (TRFc)
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Figure 4.7: The c-quark jet tagging efficiency (TRFc) applied to jets in Monte Carlo samples. The

Monte Carlo TRF is shown before (red) and after (green) scaling to the data TRF. Both the pT (left)

and detector η (right) dependances are shown, as well as the tight (upper) and loose (lower) versions

of TRF.

Fake (light-jet) Tagging Efficiencies (TRFfake)
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Figure 4.8: The fake, or light-jet tagging efficiency (TRFfake) applied to jets in Monte Carlo

samples. The TRF is shown for the CC, ICR, and EC regions of the calorimeter as a function

of jet ET . The TIGHT (left) and LOOSE (right) versions of the TRF are shown.
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There is a small fraction of light quark jets which, through detector resolution and

noise effects, are mistagged by the neural network tagging algorithm. There is also a

legitimate source of muons from strange meson decays (such as the K+ → µ+νµ), but

these are not often reconstructed because they are softer, and may not decay until they

have passed beyond the inner tracking (cτK+ = 3.7 m [48]). These strange meson decays

are taken into account with the light jet mistag rate. The mistag rate is inferred from

the expected symmetry of the signed decay length significance (Equation 3.11) about

zero. This rate is derived from light quark jets in data. Biases from b- and c-quark

contamination in the light quark jet sample are corrected for with a Monte Carlo based

scale factor. The final parameterization is a function of jet ET in three detector η regions,

CC, ICR, EC (Figure 4.8). Mistag rates for the LOOSE and TIGHT versions of the

tagger are given in Table 4.2.

Mistag Efficiency per jet (%)
LOOSE TIGHT

light-jet TRF (Data)
CC 1.03 ± 0.10 0.289± 0.04
ICR 1.06 ± 0.09 0.288± 0.03
EC 1.19 ± 0.06 0.299± 0.02

Table 4.2: The mistagging efficiencies for the LOOSE and TIGHT versions of the neural network

tagger, shown for each calorimeter region.

4.3.2 Normalization

To allow for direct comparison between Monte Carlo and data, the Monte Carlo samples

must be normalized appropriately. The Monte Carlo sample production cross section (σ),

branching fraction (B), and number of generated events in the initial sample (Ninitial) all

contribute to this factor. In addition, the sample must be normalized to the integrated

luminosity (L) of the data sample. Monte Carlo samples are normalized by the following

factor:
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Fnorm = Ldata ×
σ B

Ninitial
(4.8)

To better model the fraction of multijet and W+jets events that make up the data

sample after all event selection (before b-tagging), we calculate the fractions of real

and fake W bosons in the data using the so-called “Matrix Method” (Section 4.6). This

method provides the sole normalization factor for the multijet sample and an additional

one for the W + jets samples (Wjj, Wbb) on an event-by-event basis.

4.4 Monte Carlo Samples

4.4.1 Single Top Signal Samples

The single top samples were produced using a modified version of Comphep[49] dubbed

“SingleTop”. The model incorporates the CTEQ6M parton distribution functions, and

sets Q2
W = (Mt/2)2 for the t channel, and Q2

W = M2
t for the s channel. pythia 6.221

[52] was used for ISR, FSR, the underlying event, and jet showering. evtgen 9.39.02

[53] was used for b-quark decays and tauola 2.5.04 [54] was used for τ decays. pythia

was also used for the overlay of additional pp̄ interactions, with a mean value of 0.5 for

the poisson distribution. Sample statistics are given in Table 4.3.

4.4.2 Top Pair Production Samples

Two tt̄ samples have been produced, a tt̄ → `+jets sample, and a tt̄ → `` sample. Both

have been created by the alpgen 1.2.1 [55] package, utilizing the CTEQ6.1M parton

distribution functions, and a Q2
W = M2

t . pythia 6.202 [52] was used for ISR, FSR, the

underlying event, t and W decay, and jet showering. evtgen 9.39.02 [53] was used for
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b decay and tauola 2.5.04 [54] for τ decay. alpgen [55] further includes the top quark

spin information for production and decay. pythia was also used for the overlay of

additional pp̄ interactions, with a mean value of 0.8 for the poisson distribution. Sample

statistics are given in Table 4.3.

4.4.3 W+jets Samples

A Wjj sample (j = u, d, s, g, c) and a Wbb sample have been produced for the analysis.

The hard scatter was produced by the alpgen 1.1 [55] package using the CTEQ6.1M

parton distribution function, and Q2
W = (MW /2)2. pythia 6.202 [52] was applied for

ISR, FSR, the underlying event, W decay, and jet showering (pythia internally used

CTEQ5L). evtgen 9.39.02 [53] was used for b quark decay and tauola [54] for τ

decay. Parton level cuts have been applied (for u,d,s,g,c,b), requiring pT > 12 GeV/c

and |η| < 3.5, ∆R(j, j) > 0.4, lepton pT > 12 GeV and detector |η| < 2.7, and neutrino

pT > 8 GeV. pythia was also used for the overlay of additional pp̄ interactions, with a

mean value of 0.5 for the poisson distribution. Sample statistics are given in Table 4.3.

4.4.4 Diboson Samples

The diboson samples, WW → lνjj and WZ → lνjj, were produced with the same pack-

ages and parameters as the W+jets samples. Sample statistics can be found in Table 4.3.

4.5 Data Samples

The multijet background has been derived from a data sample. In the electron channel,

this background is derived from the e + jets sample with events where the EM object
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Monte Carlo Samples

Cross Section Branching Numbers Int. Lum.
Event Type [pb] Fraction of Events [fb−1]
Signals
tqb→e+jets 1.98 ± 0.30 0.1309 ± 0.0026 33,000 127
tqb→µ+jets 1.98 ± 0.30 0.1304 ± 0.0026 31,500 122
tb→e+jets 0.88 ± 0.14 0.1309 ± 0.0026 32,500 282
tb→µ+jets 0.88 ± 0.14 0.1304 ± 0.0026 31,000 270

Backgrounds
tt̄→l+jets 6.8 ± 1.2 0.4444 ± 0.0089 191,300 65
tt̄→ll 6.8 ± 1.2 0.1111 ± 0.0089 97,750 131
Wbb →eνbb 30.2 ± 5.40 0.1111 ± 0.0022 99,500 30
Wbb →µνbb 30.2 ± 5.40 0.1111 ± 0.0022 99,000 30
Wjj →eνjj 2, 580 ± 460 0.1111 ± 0.0022 189,500 0.7
Wjj →µνjj 2, 580 ± 460 0.1111 ± 0.0022 188,000 0.7
WW →lνjj 6.80 ± 0.15 0.3928 ± 0.0079 23,000 9
WZ →lνjj 2.10 ± 0.19 0.3928 ± 0.0079 23,000 28

Table 4.3: The cross sections, branching fractions, initial numbers of events, and integrated luminosi-

ties of the Monte Carlo event samples. A top quark mass of 175 GeV is used for all samples.

has a very low electron likelihood (L < 0.05) and a poor or missing track, and E/T

< 15 GeV. It is expected that these clusters are low energy or poorly reconstructed

hadronic jets, and the low E/T signifies the lack of a real neutrino. The sample contains

24,741 events after selection, before b tagging. The muon channel derives its multijet

background from the µ+ jets data sample by removing the muon isolation requirement,

requiring anti-isolation (Track Halo Isolation > 0.15 and Calorimeter Halo Isolation >

0.15), and requiring E/T < 15 GeV. The sample contains 43,552 events after selection,

before b-tagging.

4.6 Background Fraction Estimation – The Matrix

Method

To estimate the fraction of real and fake lepton events that make up the data, we apply

the so-called “Matrix Method” [106, 107]. While we have acceptable models for both
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the real lepton events (Monte Carlo), and fake lepton events (data), their fractions

in the data sample must be determined. The matter is complicated by the fact that

some real leptons can leak into the fake-lepton data sample, and vice versa. The lepton

fractions are evaluated in the data sample before b-tagging to (a) take advantage of the

increased statistics and (b) not bias or destroy our single top search capabilities in the

final b-tagged samples. Only the W+jets and multijet samples are scaled by the matrix

method, as the modeled normalizations of the other real lepton samples are sufficiently

understood.

In both the e and µ channels, there is a single cut that defines a real lepton, and

distinguishes the “loose” and “tight” samples (where tight means the complete event

selection without b tagging, and Loose further removes the lepton ID cut). The proba-

bilities for real (Preal) and fake (Pfake) leptons to pass this cut are measured in samples

independent of our main data sample, and are then used to estimate the content in the

data sample. The matrix method starts with a few basic ideas concerning the number

of events in a sample:

Nloose = N fake
loose + N real

loose (4.9)

Ntight = N fake
tight + N real

tight

= PfakeN
fake
loose + PrealN

real
loose (4.10)

Given these equations, one can solve for the number of events that pass the tight

selection in the real and fake samples:

N fake
tight = Pfake

PrealNloose − Ntight

Preal − Pfake

(4.11)

N real
tight = Preal

Ntight − PfakeNloose

Preal − Pfake

(4.12)

With these equations, we are equipped to estimate the fractions of real and fake

lepton events that make up our data sample, and apply the appropriate scale factors.

This calculation is discussed separately for each lepton channel.
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4.6.1 Electron Calculation

The cut separating the loose and tight samples is the electron likelihood, L. Nloose

and Ntight are obtained by simply counting the number of events in the loose and tight

samples.

The probability for real electrons to pass the likelihood cut, Preal, is measured using

the DIEM sample. This sample is expected to contain Z → ee events and is verified

through the reconstructed invariant mass of the Z boson. A standard tag-and-probe

method is used:

• Select events passing primary vertex quality cuts, and containing two electron

candidates passing all requirements but the likelihood.

• Require one of the candidates to pass the likelihood requirement (tag) and calculate

the efficiency for the other (probe) to pass the likelihood cut.

• To ensure an enriched sample of true Z → ee events, only events in an invariant

mass window of 80 – 100 GeV are used. Events in the 60 – 70 GeV and 110 –

120 GeV side bands are used to estimate and subtract background events from the

80 – 100 GeV window.

The real-electron probabilities are parameterized as a function of electron ET . Detector

η of the electron and the number of jets in the event were also studied, and no strong

dependance was found.

Preal(e) = 0.830 ± 0.042 Ee
T < 30 GeV

Preal(e) = 0.826 + 0.003 × Ee
T ± 5% 30 GeV < Ee

T < 45 GeV
Preal(e) = 0.980 ± 0.049 Ee

T > 45 GeV

The fake-electron probability is measured in the e + jets dataset, using a low-E/T

sample orthogonal to the data sample. Requiring E/T < 15 GeV, we do not expect many

real W bosons in these events, and therefore expect a highly enriched sample of fake
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electrons. The probability for these events to pass the electron likelihood is then directly

calculated. The fake-electron probabilities were parameterized as a function of electron

ET . The electron detector η and numbers of jets in the event were also studied, and no

strong dependance was found.

Trigger List v8–11 Pfake(e) = 0.492 − 0.018 × Ee
T ± 10% Ee

T < 20 GeV
Pfake(e) = 0.101 ± 0.010 20 GeV < Ee

T < 30 GeV
Pfake(e) = 0.190 ± 0.019 Ee

T > 30 GeV

Trigger List v12–13 Pfake(e) = 0.751 − 0.030 × Ee
T ± 10% Ee

T < 20 GeV
Pfake(e) = 0.151 ± 0.015 20 GeV < Ee

T < 30 GeV
Pfake(e) = 0.282 ± 0.028 Ee

T > 30 GeV

To check the accuracy of our real and fake probabilities, we plot the W transverse

mass in the data sample (before b-tagging), and the composition in each bin as predicted

by the matrix method (Figure 4.9). As expected, fake electrons cluster towards a low,

unphysical W boson mass, and real electrons peak about the true W boson mass.

With the measured probabilities, the matrix method is applied, and the following

values attained:

Electron Channel Matrix Method Numbers
Nloose N real

loose N fake
loose

Ee
T < 30 GeV 4422 ± 67 1117 ± 111 3305 ± 85

Ee
T > 30 GeV 6827 ± 83 3181 ± 261 3646 ± 150

Ntight N real
tight N fake

tight

Ee
T < 30 GeV 1402 ± 37 927 ± 60 475 ± 46

Ee
T > 30 GeV 3949 ± 63 3062 ± 143 887 ± 128

The matrix method scale factors listed below are applied to the multijet and W+jets

samples. The multijet scale factor is left as a function of the electron fake efficiency.

The yields (Y) in the W + jets scale factor are for samples after event selection but

excluding b-tagging, and are defined in Section 4.7.2.
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Figure 4.9: The reconstructed W transverse mass in electron channel data (before b-tagging),

and the matrix method predicted composition in each bin.

Fmultijet =
N fake

tight
Nmultijet

FW+jets =
Nreal

tight
− (Yljets+Yll+YWW +YWZ)

YWjj+YWbb

=
Pfake(ET ,trig)N fake

loose
Nmultijet

Electron Channel Matrix Method Scale Factors

Trigger List v8-11 Fmultijet = 0.456 × Pfake(e) Ee
T < 30 GeV

Fmultijet = 0.208 × Pfake(e) Ee
T > 30 GeV

Trigger List v12-13 Fmultijet = 0.439 × Pfake(e) Ee
T < 30 GeV

Fmultijet = 0.238 × Pfake(e) Ee
T > 30 GeV

Trigger List All FW+jets = 1.196 All Ee
T
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4.6.2 Muon Calculation

The cuts separating the muon loose and tight samples are the isolation cuts, Track

Halo Isolation and Calorimeter Halo Isolation. Nloose and Ntight are obtained by simply

counting the numbers of events in the loose and tight samples.

The probability for real muons to pass the isolation cuts, Preal, is measured using

the DIMU data sample. This sample is expected to contain Z → µµ events, which is

verified by checking the reconstructed invariant mass of the Z boson. The same steps

are taken as in the electron calculation. We find the following real muon probabilities

as a function of the number of jets in the event:

Eµ
T < 30 GeV Preal(µ) = 0.690 ± 0.001 2 Jet Events

Preal(µ) = 0.651 ± 0.002 3 Jet Events
Preal(µ) = 0.675 ± 0.005 4 Jet Events

Eµ
T > 30 GeV Preal(µ) = 0.982 ± 0.001 2 Jet Events

Preal(µ) = 0.978 ± 0.002 3 Jet Events
Preal(µ) = 0.982 ± 0.005 4 Jet Events

The fake muon probability is measured in the µ + jets dataset, but using a low-E/T

sample orthogonal to the main data sample. Requiring E/T < 15 GeV, we do not expect

many real W bosons in these events, and therefore expect an enriched sample of fake

muons. The probability for these events to pass the muon isolation is then directly

calculated. We find the fake muon efficiency as a function of muon pT :

Pfake(µ) = 0.057 ± 0.003 pµ
T < 20 GeV/c

Pfake(µ) = 0.108 ± 0.006 20 GeV ≤ pµ
T < 30 GeV/c

Pfake(µ) = 0.43 ± 0.02 30 GeV ≤ pµ
T < 40 GeV/c

Pfake(µ) = 0.59 ± 0.03 40 GeV ≤ pµ
T < 50 GeV/c

Pfake(µ) = 0.77 ± 0.04 pµ
T ≥ 50 GeV/c

To ensure the accuracy of our real and fake probabilities, we plot the W transverse

mass in the data sample (before b-tagging), and the predicted composition in each bin as

predicted by the matrix method (Figure 4.10). As expected, fake muons cluster towards

a low, unphysical W boson mass, and real muons peak about the true W boson mass.
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With the measured probabilities, the matrix method is applied, and the following

values attained:

Muon Channel Matrix Method Numbers
Nloose N real

loose N fake
loose

7866 ± 88.7 3437.4 ± 85.7 4428.6 ± 274.4
Ntight N real

tight N fake
tight

4747 ± 68.9 854.4 ± 52.6 3892.6 ± 87.5

The following matrix method scale factors are thus applied to the multijet and

W + jets samples:

Fmultijet =
N fake

tight
Nmultijet

FW+jets =
Nreal

tight
− (Yljets+Yll+YWW +YWZ)

YWjj+YWbb

Muon Channel Matrix Method Scale Factors

Fmultijet = 0.066 ×Pfake(µ) pµ
T < 30 GeV/c

Fmultijet = 0.145 ×Pfake(µ) pµ
T > 30 GeV/c

FW+jets = 1.16 All pµ
T
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Figure 4.10: The reconstructed W transverse mass in muon channel data (before b-tagging), and the

matrix method predicted composition in each bin.
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4.7 Certifying the Model

After applying all scale factors and corrections to the background samples, we are left to

test our model and how well it represents the data. It is essential that all physics object

distributions in the background model are consistent with data (within the uncertainties

of our model), or we must admit there is a crucial lack of understanding, and that

subsequent results will not be reliable. In the following event selection plots before

b-tagging (Figure 4.11), the pT distributions for the lepton, leading jet, and second

leading jet, as well as the number of jets, E/T and the reconstructed W transverse mass

are shown. Plots are shown for the electron and muon channels separately. Within the

errors of the background model and statistics of the data samples, all plots are found

to be in agreement. In Appendix A, a more comprehensive set of plots is shown for all

physics objects. To further gauge our understanding of the individual components of the

background model, we create a W + jets/multijet enriched sample, and a tt̄ enriched

sample to compare with data. These plots are also seen to be consistent with data and

can be found in Appendix A.

4.7.1 Acceptances

The fraction of events in a Monte Carlo sample that passes the event selection is called

the acceptance. This value is later used in the calculation of sample yields (Section

4.7.2), and the calculation of final cross section limits (Chapter 6). The acceptance for

a sample is defined as:

AMC =
B

Ninitial

∑

events

εtrigger εcorrection εb−tagging (4.13)

where Ninitial is the number of events in the Monte Carlo sample before any selection, B is

the branching fraction for a process to a specific decay mode, and εx are the efficiencies of
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SELECTION BEFORE TAGGING — Electron Channel Distributions
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SELECTION BEFORE TAGGING — Muon Channel Distributions
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Figure 4.11: The data and background model comparison for all samples after event selection,

excluding b-tagging. Each object pT distribution is shown, as well as the number of jets in the

event and reconstructed W transverse mass.
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each event to pass the trigger (Section 4.3.1.5), Monte Carlo to data corrections (Section

4.3.1.1 – 4.3.1.4), and the b-tagging requirement (Section 4.3.1.6). Signal acceptances

are given in Table 4.4.

Percentage Acceptance for Signal
Before 1 Tag 2 Tag

Tagging
Electron Channel 2.55 1.09 0.14
Muon Channel 2.39 1.00 0.13

Table 4.4: The percentage acceptance for t-channel single top in each lepton and tagging channel.

4.7.2 Yields

A sample’s yield is defined as the number of events predicted to pass event selection after

all corrections have been applied, and the sample has been scaled to the appropriate

integrated luminosity. For Monte Carlo samples, the yield is calculated as

Yield = YMC = AMCLσ (4.14)

where AMC is the acceptance (Equation 4.13, L is the integrated luminosity, and σ is the

cross section of the sample in question. For the multijet sample, the yield is calculated

as

Yield = Ymultijet =
∑

events

Fmultijet (4.15)

where Fmultijet is the matrix method scale factor for each event as described in Section

4.6. The yield for data is simply the number of events passing event selection.

Yields before and after b-tagging for all samples are summarized in Tables 4.7 and

4.8. It should be noted that the matrix method brings the background sum and data

samples into close agreement before tagging by construction.
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Electron Channel Yields
Before 1 Tag 1 Tag 2 Tag 2 Tag

Sample Tagging (YIELD) (TRAIN) (YIELD) (TRAIN)
t-channel 18.5 7.9 7.8 1.0 1.1
s-channel 8.4 3.5 3.5 0.5 0.5
tt̄ → ` + jets 113.9 46.6 46.6 23.1 22.8
tt̄ → `` 26.9 11.4 11.5 3.0 2.8
Wbb 49.1 20.3 20.2 2.0 2.3
Wjj 3775.6 101.1 103.0 2.4 2.8
WW 17.6 0.9 — 0.0 —
WZ 5.8 0.8 — 0.0 —
multijet 1359.6 57.9 56.1 3.3 —

Background Sum
without s-channel 5348.5 239.0 — 33.7 —
with s-channel 5356.9 242.5 — 34.2 —

Data 5351.0 270.0 — 53.0 —

Table 4.5: The electron sample yields before and after b-tagging. The background sum is given

for comparison with data. The tagged samples are split into YIELD and TRAIN samples, used for

calculating limits and neural network training respectively (Section 5.5). Samples not used for network

training are not split.

Muon Channel Yields
Before 1 Tag 1 Tag 2 Tag 2 Tag

Sample Tagging (YIELD) (TRAIN) (YIELD) (TRAIN)
t-channel 17.2 7.2 7.1 0.9 0.9
s-channel 7.9 3.3 3.3 0.5 0.4
tt̄ → ` + jets 103.7 42.2 42.2 20.6 20.8
tt̄ → `` 26.0 11.1 11.0 2.7 2.6
Wbb 43.7 17.9 18.1 1.8 1.7
Wjj 3692.5 98.5 91.3 2.7 3.0
WW 19.9 1.0 — 0.0 —
WZ 6.9 0.8 — 0.1 —
multijet 904.8 65.9 65.7 8.5 11.0

Background Sum
without s-channel 4797.4 237.3 — 36.3 —
with s-channel 4805.3 240.6 — 36.8 —

Data 4747.0 225.0 — 32.0 —

Table 4.6: The muon sample yields before and after b-tagging. The background sum is given for com-

parison with data. The tagged samples are split into YIELD and TRAIN samples, used for calculating

limits and neural network training repsectively (Section 5.5). Samples not used for network training

are not split.
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4.7.3 Distributions

The final distributions for the electron and muon samples in the single and double tag

channels are shown in Figures 4.12 and 4.13. The ET distriubtions for the lepton, leading

jet, and second leading jet, as well as the number of jets, E/T and the reconstructed W

transverse mass are shown. All plots are in agreement within the errors of the model.

A more complete set of plots is included in Appendix A.

Electron Channel Yields
Before Single Double

Sample Tagging Tag Tag
t-channel 18.5 7.9 1.0
s-channel 8.4 3.5 0.5
tt̄ → ` + jets 113.9 46.6 23.1
tt̄ → `` 26.9 11.4 3.0
Wbb 49.1 20.3 2.0
Wjj 3775.6 101.1 2.4
WW 17.6 0.9 0.0
WZ 5.8 0.8 0.0
multijet 1359.6 57.9 3.3

Background Sum
without s-channel 5348.5 239.0 33.7
with s-channel 5356.9 242.5 34.2

Data 5351.0 270.0 53.0

Table 4.7: The electron sample yields before and after b-tagging. The background sum is given

for comparison with data. The tagged samples are split into YIELD and TRAIN samples, used for

calculating limits and neural network training respectively (Section 5.5). Samples not used for network

training are not split.

4.7.4 Systematic Uncertainties

4.7.4.1 Integrated Luminosity

The integrated luminosity uses a total inelastic cross section that is an average of re-

sults from the CDF and E811 experiments at Fermilab [108]. The uncertainty on the

integrated luminosity is:

• Integrated luminosity error = ±6.5%
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Single Tag Electron Channel Distributions
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Figure 4.12: The data and background model comparison for the single tag samples after event

selection. Each object ET distribution is shown, as well as the number of jets in the event and the

reconstructed W transverse mass.

108



Double Tag Electron Channel Distributions
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Figure 4.13: The data and background model comparison for the double tag samples after event

selection. Each object ET distribution is shown, as well as the number of jets in the event and the

reconstructed W transverse mass.
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Muon Channel Yields
Before Single Double

Sample Tagging Tag Tag
t-channel 17.2 7.2 0.9
s-channel 7.9 3.3 0.5
tt̄ → ` + jets 103.7 42.2 20.6
tt̄ → `` 26.0 11.1 2.7
Wbb 43.7 17.9 1.8
Wjj 3692.5 98.5 2.7
WW 19.9 1.0 0.0
WZ 6.9 0.8 0.1
multijet 904.8 65.9 8.5

Background Sum
without s-channel 4797.4 237.3 36.3
with s-channel 4805.3 240.6 36.8

Data 4747.0 225.0 32.0

Table 4.8: The muon sample yields before and after b-tagging. The background sum is given for com-

parison with data. The tagged samples are split into YIELD and TRAIN samples, used for calculating

limits and neural network training repsectively (Section 5.5). Samples not used for network training

are not split.

4.7.4.2 Cross Sections

The single top, tt̄, and diboson samples are normalized with the calculated theoretical

cross sections. The errors on these values, including the error on the top quark mass,

∆Mt = 5.1 GeV, are:

• Cross section errors
t-channel = ±16% tt̄ → ` + jets = ±18% WZ = ±8.9%
s-channel = ±15% tt̄ → `` = ±18% WW = ±2.2%

4.7.4.3 Branching Fractions

The single top, tt̄, and diboson samples have been forced to decay into the selected

lepton channels. To calculate acceptances and final yields, the branching fractions are

taken into account. The errors on these branching fractions are [48]:

• Branching fraction error = ± 2%
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4.7.4.4 Triggers

The trigger efficiencies described in Section 4.3.1.5 are applied to all Monte Carlo sam-

ples. To measure the error, the acceptance and yields are remeasured in all samples

while varying the trigger object turn-on curves by ±1σ. The percentage change in each

sample is listed in Table 4.9, and these are used as the trigger errors.

Systematic Errors on Monte Carlo Trigger Calculation (%)

Electron Channel Muon Channel
Sample Single Tag Double Tag Single Tag Double Tag
t-channel 10.7 10.9 4.2 3.7
s-channel 10.0 9.8 3.9 3.8
tt̄ → ` + jets 7.9 8.0 3.4 3.4
tt̄ → `` 8.1 7.8 3.4 3.3
Wbb 9.9 7.9 5.5 4.6
Wjj 9.7 8.6 5.7 6.1
WW 10.2 8.8 5.2 5.2
WZ 11.2 11.1 5.4 6.2

Table 4.9: The average percentage difference in sample yields after varying the trigger efficiency

turn-on curves by ±1σ.

4.7.4.5 Primary Vertex Identification

Monte Carlo samples are adjusted for the slight difference in primary vertex reconstruc-

tion efficiency with comparison to data. The error on this correction factor is:

• Primary vertex error
Electron channel = ±1.8%

Muon channel = ±0.4%

4.7.4.6 Electron Identification

Monte Carlo samples are adjusted for the differences in electron cut efficiencies observed

between Monte Carlo and data. The errors on these correction factors are:
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• Electron identification errors
ET < 30 GeV ET > 30 GeV

Isolation,EMF,Hm7 = ±3.0% = ±3.0%
pTtrk

= ±3.2% = ±3.2%
Likelihood = ±2.2% = ±1.0%
Combined = ±5.9% = ±4.3%

4.7.4.7 Muon Identification

Monte Carlo samples are adjusted for the differences in muon cut efficiencies observed

between Monte Carlo and data. The error on this correction factor is:

• Muon identification error
All cuts combined = ±5.2%

4.7.4.8 Jet Fragmentation

Differences are observed in the jet fragmentation models between various Monte Carlo

generators, such as herwig and pythia. The error associated with the jet fragmentation

was studied in the Run I tt̄→alljets analysis, and we use these errors as no current

measurement has been performed yet.

• Jet fragmentation error
t-channel = ±5% tt̄ → ` + jets = ±7% WW = ± 5%
s-channel = ±5% tt̄ → `` = ±5% WZ = ± 5%

4.7.4.9 Jet Reconstruction and Identification

The identification cuts used to define an acceptable hadronic jet have been shifted by

±1σ to take into account the stability of our jet definition and its effects in sample

acceptances and final yields. These uncertainties are given in Table 4.10.

4.7.4.10 Jet Energy Resolution

The systematic error is quoted from the percentage change in the yields after varying

the jet energy resolution by ±1σ. The errors are listed in Table 4.11.
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Systematic Errors on the Jet Identification (%)

Electron Channel Muon Channel
Sample Single Tag Double Tag Single Tag Double Tag
t-channel 6.8 7.7 5.5 10.2
s-channel 4.2 11.8 3.4 14.3
tt̄ → ` + jets 0.5 3.2 1.2 3.4
tt̄ → `` 3.2 15.6 16.3 20.3
Wbb 7.3 20.4 7.0 15.3
Wjj 5.2 24.4 11.4 38.3
WW 17.3 19.5 23.5 37.0
WZ 7.3 38.0 17.9 9.3

Table 4.10: The percentage difference in sample yields after varying the jet energy identification by

±1σ. The larger of the two variations is quoted as the error.

Systematic Errors on the Jet Energy Resolution (%)

Electron Channel Muon Channel
Sample Single Tag Double Tag Single Tag Double Tag
t-channel 1.5 1.8 0.3 6.2
s-channel 0.6 1.6 1.7 4.7
tt̄ → ` + jets 0.5 1.4 0.6 1.9
tt̄ → `` 0.8 4.9 14.0 13.5
Wbb 1.3 4.4 2.8 6.0
Wjj 4.4 43.8 3.3 14.1
WW 35.6 42.8 11.3 37.0
WZ 1.5 5.1 7.1 9.3

Table 4.11: The percentage difference in sample yields after varying the jet energy resolution by ±1σ.

The larger of the two variations is quoted as the error.
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4.7.4.11 Jet Energy Scale

The systematic error from the jet energy scale is derived by varying the jet energy scale

by ±1σ and calculating the percentage difference in the sample acceptances. Instead of

averaging the acceptances for the varied σ’s, a conservative approach is taken, and the

larger deviation is quoted as the error. The errors are listed in Table 4.12.

Systematic Errors on the Jet Energy Scale (%)

Electron Channel Muon Channel
Sample Single Tag Double Tag Single Tag Double Tag
t-channel 5.8 9.4 3.7 8.7
s-channel 5.1 14.2 4.7 16.3
tt̄ → ` + jets 2.0 4.4 1.3 2.2
tt̄ → `` 3.3 8.3 7.1 9.1
Wbb 12.7 17.7 14.5 15.0
Wjj 14.8 19.4 14.6 18.4
WW 12.0 23.1 9.9 16.0
WZ 10.6 24.9 10.0 23.4

Table 4.12: The percentage difference in sample yields after varying the jet energy scale by ±1σ. The

larger of the two variations is quoted as the error.

4.7.4.12 Flavor-Dependant Tag Rate Fuctions

The flavor dependant TRFs involve systematic errors from several sources, including

the errors on the taggability rate functions, the equations used to derive the data TRFs

(System8), the data/MC correction, differences in varying Monte Carlo samples, and

statistical uncertainties. To account for these errors, we shift the taggability and tag

rate functions by ±1σ and calculate the sample acceptances. The larger of the two

acceptances from the nominal value is quoted as the error. These errors are listed in

Table 4.13.

4.7.4.13 Matrix Method

The matrix method allows us to calculate the real and fake lepton fractions in our data

sample before tagging. These fractions are in turn used to normalize our multijet, Wjj,
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Systematic Errors on the Tag Rate Functions(%)

Electron Channel Muon Channel
Sample Single Tag Double Tag Single Tag Double Tag
t-channel 1.8 4.2 1.7 3.4
s-channel 0.5 3.8 0.6 3.1
tt̄ → ` + jets 0.6 3.6 1.8 2.9
tt̄ → `` 0.5 3.7 1.8 3.1
Wbb 1.0 3.9 1.3 3.2
Wjj 5.0 7.4 0.3 4.8
WW 3.7 8.7 0.1 7.9
WZ 1.2 3.8 1.5 3.2

Table 4.13: The percentage difference in sample yields after varying the taggability and tag rate

functions by ±1σ. The larger of the two variations is quoted as the error.

and Wbb samples. The definition of and error on these normalization factors and their

components are shown below.

Multijet Normalization Factor (Fmultijet)

• Fmultijet =
N

fake

tight

Nmultijet

• ∆Fmultijet = Fmultijet

√

(

∆N
fake

tight

N
fake

tight

)2

+
(

∆Nmultijet

Nmultijet

)2

• Nfake
tight =

εrealNLoose−NTight

εreal−εfake
, the number of fake lepton events predicted in the tight sample by

the matrix method (Section 4.6).

• ∆Nfake
tight = the uncertainty on the number of fake lepton events predicted in the data sample

(before tagging) by the matrix method (Section 4.6). The uncertainty is calculated by standard

error propagation, and the expression is given in its entirety in [106].

• Nmultijet = the number of events in the multijet background sample before tagging (Tables 4.7

and 4.8).

• ∆Nmultijet =
√

Nmultijet, the uncertainty on the number of events in the multijet background

sample before tagging (Tables 4.7 and 4.8).
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Wjj and Wbb Normalization Factors (Fwjj,wbb)

• FWjj,Wbb =
Nreal

tight−(Ytt̄+YW W +YW Z)

YW bb+YW jj

• ∆FWjj,Wbb = FWjj,Wbb

√

∆Nreal2

tight
+∆Y2

tt̄
+∆Y2

WW
+∆Y2

WZ

(Nreal
tight

−(Ytt̄+YW W +YW Z))2
+

∆Y2

Wbb
+∆Y2

Wjj

(Y2

W bb
+∆Y2

Wbb
)2

. The uncertainties on

all yield errors are considered negligible compared to ∆N real
tight, and so only this error is taken

into account.

• N real
tight =

NTight−εfakeNLoose

εreal−εfake
, the number of real lepton events predicted in the tight sample by

the matrix method (Section 4.6).

• ∆N real
tight = the uncertainty on the number of real lepton events predicted in the data sample

before tagging by the matrix method (Section 4.6). The uncertainty is calculated by standard

error propagation, and the expression is given in full in [106].

The multijet, Wjj, and Wbb scale factors and errors shown above are given for

completeness, but the relevant error with respect to the limit calculation is on the final

tagged samples. The definitions of these yields in terms of the matrix method are given,

as well as their associated errors:

Matrix Method Normalization Errors After b-Tagging

• Nfinal
sample = ffinal

sampleN
real
tight, the final sample yield, where sample is multijet or W+jets.

• ffinal
sample =

f
final

sample

f
tight

sample

, the fraction of events in the tight sample passing the final b-tagging require-

ment, where the sample is multijet or W+jets. This is determined by applying the the neural

network tagger (data) or tag-rate-function (monte carlo) to the sample.

• ∆Nfinal
sample = Nfinal

sample

√

(

∆f
final

sample

f
final

sample

)2

+

(

∆Nreal
tight

freal
tight

)2

, the uncertainty on the final yield of the sam-

ple. It is calculated through standard error propagation, and correctly accounts for all correla-

tions in the calculation of N real
tight and ffinal

sample. The expression is given in its entirety in [107].

• ∆ffinal
sample = the uncertainty on the fraction of events in the tight sample that pass the final

b-tagging requirement. This uncertainty is derived from Monte Carlo for the W+jets samples,

and the multijet data sample directly. Standard error propagation is applied, and the complete

expression is given in [107].
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4.7.4.14 Final Uncertainties

The final uncertainties are given in Tables 4.14–4.17 for each lepton and tagging channel.

These values and their correlations are properly taken into account in the calculation of

cross section limits, as discussed in Chapter 6.
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UNCERTAINTIES FOR SINGLE-TAGGED ANALYSES

Single-Tagged Electron Channel Percentage Errors
tqb tb Wbb Wjj ttlj ttll WW WZ multijet

Components for Normalization
Luminosity 6.5 6.5 — — 6.5 6.5 6.5 6.5 —
Cross Section 16.0 15.0 — — 18.0 18.0 2.2 8.9 —
Branching Fraction 2.0 2.0 — — 2.0 2.0 2.0 2.0 —
Matrix Method — — 3.3 3.3 — — — — 3.3
Primary Vertex 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 —
Electron ID 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 —
Jet Fragmentation 5.0 5.0 — — 7.0 5.0 5.0 5.0 —

Components for Normalization and Shape
Jet ID 6.8 4.2 — — 0.8 3.2 17.3 7.3 —
Jet Energy Scale 5.8 5.1 — — 2.0 3.3 12.0 10.6 —
Jet Energy Resolution 1.5 0.6 — — 0.5 0.8 35.6 1.5 —
Trigger 10.7 10.0 — — 7.9 8.1 10.2 11.2 —
Flavor-Dependant TRFs 1.8 0.5 1.0 5.0 0.6 0.5 3.7 1.2 —

Statistics 1.1 1.1 1.4 1.0 0.6 0.9 2.6 2.5 4.2
Combined

Acceptance Uncertainty 14.2 — — — — — — — —
Yield Uncertainty 22.9 22.4 6.4 8.0 22.7 22.6 44.0 21.8 14.1

Table 4.14: The percentage uncertainties for all modeling components and scale factors applied in

the single tag electron analysis.

UNCERTAINTIES FOR DOUBLE-TAGGED ANALYSES

Double-Tagged Electron Channel Percentage Errors
tqb tb Wbb Wjj ttlj ttll WW WZ multijet

Components for Normalization
Luminosity 6.5 6.5 — — 6.5 6.5 6.5 6.5 —
Cross Section 16.0 15.0 — — 18.0 18.0 2.2 8.9 —
Branching Fraction 2.0 2.0 — — 2.0 2.0 2.0 2.0 —
Matrix Method — — 9.1 9.1 — — — — 9.1
Primary Vertex 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 —
Electron ID 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 —
Jet Fragmentation 5.0 5.0 — — 7.0 5.0 5.0 5.0 —

Components for Normalization and Shape
Jet ID 7.7 11.8 — — 3.2 15.6 19.5 38.1 —
Jet Energy Scale 9.4 14.2 — — 4.4 8.3 23.1 24.9 —
Jet Energy Resolution 6.2 1.6 — — 1.4 4.9 53.0 5.1 —
Trigger 10.9 9.8 — — 8.0 7.8 8.8 11.1 —
Flavor-Dependant TRFs 4.2 3.8 3.9 7.4 3.6 3.7 8.7 3.8 —

Statistics 1.1 1.1 1.4 1.0 0.6 0.9 2.6 2.5 18.3
Combined

Acceptance Uncertainty 22.6 — — — — — — — —
Yield Uncertainty 25.4 28.5 13.0 14.4 23.6 28.9 63.2 49.1 22.6

Table 4.15: The percentage uncertainties for all modeling components and scale factors applied in

the double tag electron analysis.
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UNCERTAINTIES FOR SINGLE-TAGGED ANALYSES

Single-Tagged Muon Channel Percentage Errors
tqb tb Wbb Wjj ttlj ttll WW WZ multijet

Components for Normalization
Luminosity 6.5 6.5 — — 6.5 6.5 6.5 6.5 —
Cross Section 16.0 15.0 — — 18.0 18.0 2.2 8.9 —
Branching Fraction 2.0 2.0 — — 2.0 2.0 2.0 2.0 —
Matrix Method — — 4.3 4.3 — — — — 4.3
Primary Vertex 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 —
Electron ID 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 —
Jet Fragmentation 5.0 5.0 — — 7.0 5.0 5.0 5.0 —

Components for Normalization and Shape
Jet ID 5.5 3.4 — — 1.2 16.3 23.5 17.9 —
Jet Energy Scale 3.7 4.7 — — 1.3 7.1 9.9 10.0 —
Jet Energy Resolution 0.3 1.7 — — 0.6 14.0 11.3 7.1 —
Trigger 4.2 3.9 — — 3.4 3.4 5.2 5.4 —
Flavor-Dependant TRFs 1.7 0.6 1.3 0.3 1.8 1.8 0.1 1.5 —

Statistics 1.2 1.2 1.4 1.0 0.7 1.0 2.6 2.4 2.1
Combined

Acceptance Uncertainty 10.5 — — — — — — — —
Yield Uncertainty 19.6 20.2 5.3 5.9 21.5 30.8 30.1 26.0 16.2

Table 4.16: The percentage uncertainties for all modeling components and scale factors applied in

the single tag muon analysis.

UNCERTAINTIES FOR DOUBLE-TAGGED ANALYSES

Double-Tagged Muon Channel Percentage Errors
tqb tb Wbb Wjj ttlj ttll WW WZ multijet

Components for Normalization
Luminosity 6.5 6.5 — — 6.5 6.5 6.5 6.5 —
Cross Section 16.0 15.0 — — 18.0 18.0 2.2 8.9 —
Branching Fraction 2.0 2.0 — — 2.0 2.0 2.0 2.0 —
Matrix Method — — 10.0 10.0 — — — — 10.0
Primary Vertex 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 —
Electron ID 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 —
Jet Fragmentation 5.0 5.0 — — 7.0 5.0 5.0 5.0 —

Components for Normalization and Shape
Jet ID 10.2 14.3 — — 3.4 20.3 37.0 9.3 —
Jet Energy Scale 8.7 16.3 — — 2.2 9.1 16.0 23.4 —
Jet Energy Resolution 6.2 4.7 — — 1.9 13.5 37.0 9.3 —
Trigger 3.7 3.8 — — 3.4 3.3 5.2 6.2 —
Flavor-Dependant TRFs 3.4 3.1 — — 2.9 3.1 7.9 3.2 —

Statistics 1.2 1.2 1.4 1.0 0.7 1.0 2.6 2.4 6.0
Combined

Acceptance Uncertainty 24.0 — — — — — — — —
Yield Uncertainty 23.8 29.5 10.9 11.5 22.0 33.4 76.3 59.1 16.6

Table 4.17: The percentage uncertainties for all modeling components and scale factors applied in

the double tag muon analysis.
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Chapter 5

Isolating Single Top Quarks From

Background

5.1 Introduction

This is the point where I take a deep breath... now release. It is a sort of halfway point

in the analysis — we have collected our data, trimmed it down, modeled it, and are

satisfied with our understanding thus far. So the big question is: “Where are the single

top quarks???” A multitude of paths lay open for anyone at this point. A large enough

excess in the data and a few hints in the correct physics object distributions could beg

for the calculation of a cross section using event counts alone, but that is not our case.

A cut could be placed on a single discriminant variable that shows moderate separation

between our t-channel single top signal and one or more of the dominant backgrounds.

A limit based on event counts could then be derived, but only after removing a precious

region of phase-space containing some signal. This is also unacceptable with a signal

cross section that is very small. To maximize our signal acceptance, we avoid making any

further cuts, and instead choose a multivariate approach that combines the discriminant

power of several variables, while still retaining 100% of the signal sample after event

120



selection. This approach manifests in the form of neural networks. To give the main

idea, the technique requires the selection of several discriminating variables, a sample of

monte carlo signal events, and a sample of background events. The network “studies”

the input samples, and produces a function that guides background events towards zero

and signal events towards one. And that’s it. It sounded fantastic the first time around,

but curiosity quickly ensued, leading me to wonder, “How does it work?”

5.2 Building A Brain

The human brain consists of about a 100 billion computing units known as neurons.

These neurons are elaborately connected, and together give us the amazing powers of

reasoning and memory that separate us from all other life on this planet. Although these

neurons are functionally much slower than today’s modern computing processors, their

design and connectivity allow the brain to run complex algorithms that easily outperform

a computer. With the seemingly limitless ability to adapt and learn, it was reasoned

that many problems could be more efficiently solved on computers by mimicking the

designs of the brain, leading to the birth of neural networks.

The brain’s fundamental unit, the neuron, is composed of a cell body, several input

lines known as dendrites, and a multi-branched output line, the axon (Figure 5.1(a)).

The gap where axons from one neuron meet with the dendrite of another is called the

synapse. Electrical signals are sent along each axon, and based on the inhibitory and

excitory responses of the neurotransmitters in the synapse, a signal may be passed on to

the dendrite for processing in the next neuron. The two key components of this electrical

signal processing are the summing of electrical signals from all input dendrites by the

cell body, and the all-or-nothing transmission through the synaptic gap. An artifical

neuron similarly receives multiple inputs, linearly combines them, and then processes

this result through a mathematical function closely mimicking the on/off nature of the
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(a) Biological Neuron (b) Artificial Neuron

Σ +

Inputs                   Node                Output

Figure 5.1: A schematic of a biological neuron (left) and an artificial neuron (right). The biological

neuron shows many dendrites feeding into the cell body, where their signals are summed, carried along

the axon, and possibly transmitted at its ends to the synaptic gap. Similarly, the artificial neuron has

several inputs fed into a cell body, and a node that dually sums the signals and functionally mimics the

synaptic gap for transmission of an output signal.

synaptic gap (Figure 5.1(b)). By connecting several layers of these artifical neurons, an

artificial neural network is constructed.

In Figure 5.2, the architecture of a simple feed-forward neural network is shown.

The network consists of two input variables or “input nodes” (xi), three hidden nodes

or “neurons” (nj), and a single output node (O1). The connectivity represents the flow

of information from left to right, and each connection can be weighted (wij, zjk). The

hidden nodes contain the function modeling the synaptic gap, which process a linear

combination of all input nodes and transmit a relatively large or small value, mimicing

the desired on/off nature of a real neuron. A sigmoid is chosen for the functional form

of the synaptic gap. It is defined as

Sigmoid(~x) =
1

1 + e a−bx
=

1

1 + e a−~w·~x

where a is the threshold, a constant determining the turn-on point of the sigmoid,

and b is a constant dictating how sharp the turn-on is (Figure 5.3). The sigmoid is
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Figure 5.2: A simple, feed-forward neural network architecture involving two input variables, three

hidden nodes, and a single output node. Information flows from left to right.

chosen from a class of several logistic functions, all fulfilling a theorem stating: a linear

combination of logistic functions can approximate any continuous function made up of

one or more variables [109]. This theorem assures us that a properly trained network

can derive a function capable of separating signal from background, if such a function

exists, and dictates that our output node combines the hidden nodes linearly, rather

than sigmoidally.

For the example neural network given in Figure 5.2, the explicit functional form of

the output is given below (where C is a parameter of the output node).

O(−→x ) = C + z11n1 + z21n2 + z31n3

= C + z11
1

1 + ea1−(w11x1+w21x2)
+ z21

1

1 + ea2−(w12x1+w22x2)
+ z31

1

1 + ea3−(w13x1+w23x2)

While the output function is now completely defined, the weights connecting each node

that ultimately allow for signal-background discrimination are yet to be determined.

The flexibility of the method should become apparent, as you can design an infinite

number of architectures, varying the number of nodes at any layer, and the number of

connections from any node to any other node.
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Figure 5.3: Illustration of the sigmoid function, and the effects of varying the exponential

constants. Varying the threshold a, shifts the turn-on point of the curve left or right (left

plot), and varying the value of the weight in the exponential b, affects how sharply the turn-on

occurs (right plot). A large exponential weight approximates a step-function, a simple on/off

switch.

5.3 Learning (In Theory)

As it stands, we have created a fixed model of a brain. All the components are there,

but they define a static output function — there is no way to evolve. The essential

ingredient is the ability for self-modification, to adapt to the information being processed,

to produce a desired result. Seeking to produce a function that gives signal events a

value close to one, and backgound events a value close to zero, we define an error function

(E) to measure how well we are achieving this. The error function is defined as

E =
∑

p

1

2
ωp (Op − Tp)

2 (5.1)

where the summation is over all signal and background events p, and ωp is the overall

weight of an event. Op and Tp are the actual output, and target output of the neural

network for each event. For signal events, Tp = 1, and for background events, Tp =

0. The process of learning means minimization of the error function with respect to

the network weights (~a, ~w, C, ~z). Several algorithms have been devised to this end
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[110, 111, 112]; we use a conjugate gradient algorithm by Broyden, Fletcher, Goldfarb,

and Shanno known as the BFGS method. The method involves computing a direction

(~s) in error space based on the conjugate gradient. For each epoch, or iteration t of the

algorithm, an α that minimizes E(~wt + α~st) is computed, and all weights in epoch t + 1

are adjusted by this α, ~wt+1 = ~wt + α~st. The size of the weight adjustment, α, is a

tunable parameter. Through successive iterations, the neural network output function

is trained to separate the phase-space of signal and background events.

5.4 Learning (In Practice)

An open source neural network package called Multi Layer Perceptron Fit (MLPFit)

[113], is used in this analysis. The same package was used in DØ’s Run I single top

quark search [66]. It uses the same feed-forward architecture described in Section 5.2 for

our neural networks. The parameters we vary during optimization are the number and

choice of input variables, the number of hidden nodes, and duration of training (number

of epochs). Once a network architecture has been specified, the following training process

begins:

• Initialize — each connective weight in the network is assigned a random value,
−0.5 < wij < 0.5.

• Calculate E(~x) — begin a training epoch, all signal and background events are
passed through the network, and the error function E(~x) is calculated.

• Minimize E(~x) — the BFGS method is used to minimize the error function and
slightly adjust all weights in the network.

• Repeat — with the new weights, begin another training epoch.

The user decides when the training process is complete, or specifically how many

training epochs they would like to perform. By construction, every consecutive epoch

will reduce the error function and improve the performance of the network, but one
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must be careful to avoid overtraining. The hope for the neural network is that it will

find significant features, or areas of phasespace that discriminate between signal and

background events. In the beginning epochs, this is effectively done, but as the number

increases, the network may begin learning to discriminate against features unique to the

samples themselves, and not the global properties of either signal or background. To

avoid this pitfall, a testing epoch is performed after each training epoch. A testing epoch

uses independent signal and background samples to the training ones, and calculates the

error function. An effective neural network will successively decrease the value of the

testing error function, but once over-training begins, this value will start to rise. At this

minimum of the testing error function, we stop the training process. Example testing

and training curves are shown in Figure 5.4.
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Figure 5.4: Example training (blue) and testing (red) curves for the neural network learning process.

For each curve, the error function E(~x) is shown as a function of the number of network epochs. The

vertical line at 15 epochs corresponds to the minimum of the testing error. This point signals that

training is complete.

5.5 Our Neural Network Approach

In our search for t-channel single top, we have selected five backgrounds to discriminate

against: Wjj (j = u, d, s, c, g), Wbb, tt̄ → l + jets, tt̄ → ll, and multijet events. The
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relative fraction of the total background model for each is given in Table 5.1. Each is

trained and optimized independantly for the electron and muon channels. We further

separate events into samples with exactly one b-tagged jet and those with two b-tagged

jets. This approach leaves us with 20 independently trained and optimized networks:

2 lepton decay channels (electron, muon) × 5 backgrounds (Wjj, Wbb, tt̄ → ` + jets,

tt̄ → ``, multijet) × 2 tagging options (1 tag, 2 tags). In addition to these networks, a

final step is taken to combine the discrimintive power of the five background networks,

into one “Super” network (Section 5.8).

Individual Background Model Fractions (%)
Electron Channel Muon Channel

Single Tag Double Tag Single Tag Double Tag
Wjj 42 7 41 8
multijet 24 10 28 23
tt̄ → ` + jets 19 68 18 57
Wbb 9 6 7 5
tt̄ → `` 5 9 5 7
WW/WZ 1 0 1 0

Table 5.1: The fraction of the total background model that each background accounts for. These are

shown in percent for both the electron and muon channels.

In addition to the individual channels described above, our signal and background

files have further been split into what we call TRAIN and YIELD samples (Figure 5.5).

To avoid any bias in the training of the neural networks, and in the calculation of yields

and final limit, these two aspects of the analysis have been completely decoupled. The

TRAIN files are used for testing and training of the neural networks, and the YIELD

files are used to calculate final yields, and are run through the optimized neural networks

to derive cross section limits. The unweighted, raw statistics of each of these samples

are given in Table 5.2. The files are not split exactly evenly, but rather odd numbered

events go in one sample, and even numbered events go in the other. The number of

odd and even events in a sample after event selection are not necessarily equal, but the

statistical deviation is small and within the errors of the analysis. The “number” of
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Figure 5.5: Signal and background samples are split into “TRAIN” and “YIELD” samples for the

neural network and limit calculation respectively. They are split by odd and even numbered events after

event selection, allowing for slight deviation from a true 50/50 split. The TRAIN sample is further split

for neural network training and testing.

an event is the generation number for Monte Carlo events and the real event number

for data samples. This system of splitting by odd and even number events (instead of

a perfect 50/50 split) is applied so that the systematics can be derived on the correct

set of events for the jet energy resolution and jet identification. The final yields of the

YIELD and TRAIN samples are correctly adjusted to account for the sample splitting.

Number of Events for Tagged Training Samples
Electron Channel Muon Channel
TRAIN YIELD TRAIN YIELD

tqb 4,322 4,349 4,045 4,080
tt̄ → ` + jets 12,346 12,624 11,217 11,301
tt̄ → `` 6,092 6,137 5,901 6,022
Wbb 2,724 2,609 3,408 3,475
Wjj 4,714 4,713 6,883 6,799
multijet (single tag) 1,042 1,064 2,240 2,304
multijet (double tag) 60 60 284 276

Table 5.2: The number of events in each TRAIN and YIELD sample for each background. The values

are given for each lepton channel and further, each tagging channel. The single tag multijet channel is

trained with the statistics shown, but there are too few events for double tag training, and no network

is trained.
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Figure 5.6: The output for a neural network trained against the tt̄ → ` + jets background is shown

(left). The signal vs background efficiency (right) is plotted for cut values along the neural network

output axis. The integral of the shaded area above this efficiency curve is defined as our figure of merit.

5.5.1 Variable Optimization

With a search strategy in place, it remains to find an optimum set of variables with

which to train each network. There is no predefined method for locating this set of

variables, but there are some guidelines, and of course the quality of the final product.

We have therefore experimented with many combinations of variables, and the total

number of input variables. To directly compare the results of each trained network, we

have developed a figure of merit. Using the final neural network output distribution, for

example Figure 5.6, we plot the acceptance of signal versus the acceptance of background

to pass a cut on the distribution. For each acceptance plot, we take 21 cut points along

the axis of the neural network output distribution, in steps of 0.05 from 0 to 1. The

figure of merit is then defined as the integral of the area above the acceptance curve. The

smaller this area, the more effectively the network has separated signal and background.

Starting with an initial pool of 41 variables, it is essential to identify the most dis-

criminating variables, and remove the weakest ones. While it is possible to train a neural

network with all 41 variables and derive an effective output function, this is avoided for

several reasons: (a) the computational time is enormous (b) there is a large redundancy

in the phasespace offered by these variables, as many are correlated, and this serves

129



no helpful purpose in training the network (c) no physics understanding is gained by

training with all 41 variable - you know some of the variables in the set were useful,

but you don’t know which ones. To begin eliminating variables from this pool, another

multivariate technique known as a decision tree (Appendix C) is used. The decision

tree provides a ranking system for the importance of all variables used in the technique.

By feeding the entire list of variables into a decision tree, we select the most important

variables to train our neural networks with. The ranking term is called the gini value,

and we keep all variables with a gini value greater than 1% of the gini sum of all ranked

variables. This seed set of variables is then used to optimize the neural networks. Start-

ing with the highest ranked variable, variables are added one at a time to the neural

network and the number of hidden nodes and training epochs are optimized. The figure

of merit is calculated, and then the process is repeated with the next variable. After all

variables have been added and the final network trained, the smallest figure of merit is

found and the associated set of variables is now the optimized set.

It is important to note that the decision tree is simply a guide for the neural network

optimization, and its ranking lists do not necessarily reflect the order of the most dis-

criminating variables for the neural network, or single top production for that matter.

We do use a large enough set of variables from the decision tree ranking list to allow

the neural network to better probe the single top phasespace. Other algorithms for op-

timization could certainly be used, including a more brute force method of trying every

combination of input variables and order of those input variables. The great advantage

of the decision tree is that it allows us to automate the optimization process and provides

an effective subset of the initial 41 variables, saving computational time.

A final concern lies with the total number of variables in each network, and moreover,

the total number of independent variables in all five background networks for each chan-

nel. From first principle, the total number of free parameters in a single top process come

from the energy-momentum 4-vectors of all involved final state physics objects. With
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one lepton, one neutrino, and two, three, or four jets, we have 16, 20, or 24 free parame-

ters. At first thought, it seems natural to just use these variables, a complete set of the

available phasespace, and train the network with them. In practice, detector resolution

effects can weaken the strength of these variables, and so one seeks a complimentary set

of variables, which through transformation, would map to the original 4-vectors. These

variables may be more complex, such as the transverse mass of the reconstructed W

boson or the sum of all jet transverse energies. Regardless of the mapping, there should

still be a small number of variables which are capable of describing the single top phase-

space. To further trim down the number of variables in all the background networks

for a given signal channel, we take the complete set of variables used in these optimized

networks, and use the decision tree to rank them once more for each background. We

then repeat the optimization process in their new ranking order and use the figure of

merit to decide the optimized set of variables. This second round of optimization allows

us to reduce the total number of variables in all five background networks and still retain

the same discriminating power found in the first round of optimization.

5.6 Discriminating Variables

Through a careful study of the t-channel single top Feynman diagrams, and the dominant

backgrounds, a set of 41 variables was created with which to train the neural networks.

These variables fall into three categories:

• Single-Object Kinematics Transverse momenta of physics objects.

• Event Kinematics Properties such as transverse momentum, transverse mass,
total transverse energy, and total energy of composite final state objects such as
the W boson or the top quark, and total event energy.

• Angular Variables Angles between objects that take account of their origin from
a polarized top quark or not.
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5.6.1 Final State Object Reconstruction

In t-channel single top, one expects a final state top quark and a light quark; a low

pT b quark may also be present. The top quark decays into a W boson and a higher

pT b quark. The W boson is reconstructed from the identified lepton and the neutrino

from its decay. The z component of the neutrino momentum is determined through a

W mass constraint, and the smaller of the two |pz(ν)| solutions is taken. This choice

is correct 70% of the time. The calculation of pz(ν) and the W transverse mass are

given in Appendix B. The top quark is reconstructed from the highest pT b-tagged jet

in the event and the W boson. This choice of b-tagged jet is correct 90% of the time in

t-channel production.

5.6.2 b-Tagged Jet Variables

Powerful background discrimination can be attained in a t-channel single top search

by constructing variables based on the b-tagged jet. While the neural network tagging

algorithm is applied directly to the data and multijet samples and there is no ambiguity

in which jet has been tagged, a weight is applied to Monte Carlo events based on the

probability of the event having one tagged jet or two tagged jets. This probability is

composed of the probabilities for each of the individual jets being tagged, as derived in

our tag-rate functions (Section 4.3.1.6). Instead of defining the jet in the event with the

highest probability of being b-tagged as the b-quark jet, we create multiple copies of the

same event, and allow all combinations of jets to be tagged. The weight of the original

event is retained by properly weighting all copies such that their sum is equivalent to the

original event. For example, an event with three jets would have the following tagging

permutations:
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Three Jet Event Tagging Permutations
Jet1 Jet2 Jet3 Weight
— — — 0.114
tag — — 0.456
— tag — 0.076
— — tag 0.006
tag tag — 0.304
— tag tag 0.004
tag — tag 0.024
tag tag tag 0.016

Total 1.000

The tagging probability is a function of jet pT and η, and for illustration I have assumed

these jets to have tag-rate values of: Jet1 = 0.80, Jet2 = 0.40, Jet3 = 0.05. The event

weight for a Jet1 tag only is thus 0.80 × (1 − 0.40) × (1 − 0.05) = 0.456. In this three

jet event, there is 1 untagged permutation, 3 single tag permutations, 3 double tag

permutations, and 1 triple tag permutation. For the single tag channel, this event would

be copied into the three single tag permutations, and their total weight would still add

up to the weight of the original “single-tagged” event, 0.538. The double tag channel

follows similarly. It is important to note that the same Monte Carlo events are used

in the single and double tagged analyses, but are weighted by the appropriate tagging

probabilities to differentiate the two channels.

5.6.3 Variables

The initial list of sensitive variables studied in this analysis is presented below. A

description of each variable is given, and the optimized networks that use this variable,

if any, are listed (s = single tag, d = double tag). Figures 5.7–5.12 show the background

model and data comparison for those variables used in the final optimized networks.

Accompanying each of these plots are the distributions for t-channel single top and the

background(s) this variable is used to discriminate against. We note that the angular

variables are not used in the muon channel analysis. These variables did not show good

agreement in the background model and data comparison, specifically because of the

multijet model. All other distributions show acceptable agreement from the multijet
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sample. Furthermore, this is an isolated occurence in the muon channel, as the electron

channel has a very different source of multijet events. It was decided that omitting

these variables was the best decision for the muon channel neural networks.

Single-Object Kinematics

1. ET(jet1): Transverse energy of the leading jet. [d: tt̄ → ` + jets]

2. ET(jet2): Transverse energy of the second leading jet. [d: Wbb, Wjj]

3. ET(tag1): Transverse energy of the leading tagged jet.

4. ET(untag1): Transverse energy of the leading untagged jet. This is the leading jet
that is not b-tagged.

5. E/T : The transverse component of the the missing energy in the event. [s: tt̄ → ``,
multijet]

Event Kinematics

6. ET(jet1, jet2): Transverse energy of the system of the leading two jets, i.e., the
four-vector sum of the leading two jets. [s: Wbb, Wjj, tt̄ → ``]

7. ET(alljets − tag1): Transverse energy of the system of all jets except the leading
tagged jet.

8. HT (alljets): Scalar sum of the transverse energies of all jets in the event. [s: Wjj,
tt̄ → ` + jets, d: Wbb, Wjj, tt̄ → ` + jets]

9. HT (alljets − tag1): Scalar sum of the transverse energies of all jets except the
leading tagged jet.

10. HT(alljets, lepton, E/T): Scalar sum of the transverse energies of all jets, the lep-
ton, and the E/T . [s: tt̄ → ` + jets, tt̄ → ``, multijet, d: tt̄ → ` + jets, multijet]

11. HT(jet1, jet2): Scalar sum of the transverse energies of the leading and second
leading jets. [s: Wbb, Wjj]

12. HT(jet1, jet2, lepton, E/T): Scalar sum of the transverse energies of the leading
jet, second leading jet, lepton, and E/T . [s: Wbb, tt̄ → ` + jets, tt̄ → ``, d: Wjj,
tt̄ → ``]

13. H(alljets): Scalar sum of the energy of all jets in the event. [d: Wbb, tt̄ → ``]

14. H(alljets − tag1): Scalar sum of the energy of all jets except the leading tagged
jet. [s: Wbb, Wjj, tt̄ → ` + jets, tt̄ → ``]
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15. H(alljets, lepton, E/T ): Scalar sum of the energy of all jets, lepton, and E/T . [d:
Wbb]

16. H(jet1, jet2): Scalar sum of the energy of the leading and second leading jets.

17. H(jet1, jet2, lepton, E/T ): Scalar sum of the energy of the leading jet, second
leading jet, lepton, and E/T .

18. MT(jet1, jet2): Transverse mass (=
√

(E1 + E2)2 − (px,1 + px,2)2 − (py,1 + py,2)2)
of the system of the leading two jets.

19. MT(W ): Transverse mass (=
√

(E` + Eν)2 − (px,` + px,ν)2 − (py,` + py,ν)2) of the

W boson, constructed from the lepton and E/T . [s: tt̄ → ``, multijet, d: tt̄ → ``,
multijet]

20. M(alljets): Invariant mass of the system of all jets, i.e., the four-vector sum of all
jets in the event.

21. M(alljets − tag1): Invariant mass of the system of all the jets except the leading
tagged jet. [s: Wbb, tt̄ → ` + jets]

22. M(alljets, lepton, E/T): Invariant mass of the system of all jets, lepton, and E/T .

23. M(jet1, jet2): Invariant mass of the system of the leading and second leading jets.

24. M(jet1, jet2, lepton, E/T): Invariant mass of the system of the leading and second
leading jets, lepton, and E/T ..

25. M(W, tag1): Invariant mass of the system of the W boson and the leading tagged
jet (the reconstructed tagged top quark mass). [s: Wjj]

26.
√

ŝ: Invariant mass of the system of all objects in the event,
√

(
∑

Ei)2 − (
∑

~pi)2,
where the sums go over the objects in the event. Equivalent to the center of mass
energy. [d: Wbb, tt̄ → ` + jets]

27. Aplanarity (A): a variable used to describe the momentum flow of jets in the
event. It is based on the smallest of the three eigenvalues of the momentum
tensor Mab of the jets in the event. The eigenvalues of planar events would be:
Q1 = Q2 = 0 and Q3 = 1. A = 3

2
Q1

28. Sphericity (S): a variable used to describe the momentum flow of jets in the
event. It is based on the smaller of two eigenvalues of the momentum tensor Mab

of the jets in the event. The eigenvalue of spherical events would be: Q1 = Q2 =
Q3 = 1

3
. S = 3

2
(Q1 + Q2)
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Angular Variables

29. ∆R(jet1, jet2): Angular separation in η, φ between the leading two jets. [s: Wbb,
tt̄ → ` + jets, tt̄ → ``, d: Wjj]

30. Q(lepton) × η(untag1): Charge of the lepton multiplied by the pseudorapidity
of the leading untagged jet. In the t-channel, the final state d quark produced
with the top quark tends to go along the incoming proton direction. Similarly, the
d̄ quark produced with the anti-top quark goes along the anti-proton direction.
We take this CP symmetry into account by multiplying the η distribution by the
charge of the lepton, which reflects the charge of the top quark.

31. cos(jet1, lepton)lab: Cosine of the angle between the leading jet and the lepton
in the laboratory rest frame. [d: Wbb]

32. cos(jet2, lepton)lab: Cosine of the angle between the second leading jet and the
lepton in the laboratory rest frame. [s: Wjj]

33. cos(tag1, lepton)lab: Cosine of the angle between the leading tagged jet and the
lepton in the laboratory rest frame.

34. cos(jet1, alljets)alljets: Cosine of the angle between the leading jet and the alljets
system in the alljets reference frame.

35. cos(jet2, alljets)alljets: Cosine of the angle between the second leading jet and the
alljets system in the alljets reference frame.

36. cos(tag1, alljets)alljets: Cosine of the angle between the leading tagged jet and the
alljets system in the alljets rest frame.

37. cos(untag1, alljets)alljets: Cosine of the angle between the leading untagged jet
and the alljets system in the alljets reference frame.

38. cos(jet1, lepton)tag1top: Cosine of the angle between the leading jet and the lepton
in the rest frame of the top quark reconstructed with the leading tagged jet. [s:
Wbb, Wjj]

39. cos(jet2, lepton)tag1top: Cosine of the angle between the second leading jet and
the lepton in the rest frame of the top quark reconstructed with the leading tagged
jet.

40. cos(tag1, lepton)tag1top: Cosine of the angle between the leading tagged jet and
the lepton in the rest frame of the top quark reconstructed with the leading tagged
jet. [s: multijet]

41. cos(untag1, lepton)tag1top: Cosine of the angle between the leading untagged jet
and the lepton in the rest frame of the top quark reconstructed with the leading
tagged jet.
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Figure 5.7: Distributions for input variables in the single tag neural networks. For each lepton channel,

we show the background model compared to data (left column) and the unit-normalized distributions

for each network that uses the variable (right column). Starting with the top row, we show HT (alljets),

HT (alljets,lepton,E/T ), HT (jet1,jet2,lepton,E/T ), H(alljets–tag1), and PT (jet1,jet2).
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Figure 5.8: Distributions for input variables in the single tag neural networks. For each lepton

channel, we show the background model vs data (left column) and the unit-normalized distributions for

each network that uses the variable (right column). Starting with the top row, we show E/T , MT (W ),

M(alljets–tag1), ∆R(jet1,jet2), and M(W ,tag1).
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Figure 5.9: Distributions for input variables in the single tag neural networks. For each lepton channel,

we show the background model vs data (left column) and the unit normalized distributions for each

network that uses the variable (right column). Starting with the top row, we show the angular variables

cos(tag1,lepton)tag1top, cos(jet1,lepton)tag1top, and cos(jet2,lepton)lab. These angular variables are not

used in the muon channel networks.
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Figure 5.10: Distributions for input variables in the double tag neural networks. For each lepton

channel, we show the background model compared to data (left column) and the unit-normalized

distributions for each network that uses the variable (right column). Starting with the top row, we

show PT (jet1), PT (jet2), E/T , HT (alljets), and HT (alljets,lepton,E/T ).
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Figure 5.11: Distributions for input variables in the double tag neural networks. For each lepton

channel, we show the background model compared to data (left column) and the unit-normalized

distributions for each network that uses the variable (right column). Starting with the top row, we

show HT (jet1,jet2,lepton,E/T ), H(alljets), H(alljets,lepton,E/T ), MT (W ), and
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Figure 5.12: Distributions for input variables in the double tag neural networks. For each lepton

channel, we show the background model compared to data (left column) and the unit-normalized

distributions for each network that uses the variable (right column). Starting with the top row, we

show ∆R(jet1,jet2), cos(tag1,lepton)tag1top, cos(jet1,lepton)lab. These cosine variables are not used in

the muon channel networks.
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5.7 Optimized Neural Networks

Following the procedure given in Section 5.5, we have trained and optimized all 20 single

background networks. The electron channel was mainly used in the optimization process,

and the final variable choices found in the electron channel were then applied to the

muon channel. The muon network architecture is still optimized on the muon samples,
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and one or two modifications were made for obvious differences in the discrimination

power achieved by blindly using the electron findings. Starting with the input variable

optimization for each network, the decision tree ranking order is shown for pass 1 and

pass 2 variables for each background and each tagging channel in the electron samples

(Tables 5.3–5.7). Generally, one or two variables dominate the gini ranking, but we

find that optimizing with further variables produces greater discrimination in the final

networks. This is attributed to the fact that decision trees and neural networks are

fundamentally different multivariate techniques, and while the decision tree can guide

us in variable selection, it will not necessarily find the same optimum set as a neural

network. As much as it guides, its use further helps to automate the optimization

process. Automation is important since this analysis will be repeated in the future

using larger datasets. Using the pass 2 list given in these tables, the optimized set of

variables for each network is selected by adding the variables one at a time, in ranking

order. The figure of merit is calculated for each subset of variables, and the lowest figure

of merit defines the optimum set. Figure 5.13 shows the figure of merit as a function

of the number of input variables, added in the ranking order shown in the gini ranking

tables. We found that some higher ranked variables were detracting from the power of

the lower ranked variables, and so removed these from the list and repeated the exercise.

The figures of merit as a function of the final set of network input variables are shown

in Figure 5.14. The associated set of variables and their order in these figure of merit

graphs are given in Table 5.8. The muon channel uses the same set of variables, with the

omission of all angular cosine variables. The architecture and training parameters for

the final networks are summarized in Tables 5.11 and 5.12. The signal and background

efficiency for the final neural networks are given in Figure 5.15. The final neural network

output for each signal-background pair is given in Figure 5.16.

Comparing the network outputs, it is evident that the tt̄ and multijet backgrounds

are more easily discriminated against than the W+jets samples. The most important
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background in the single tag channel is the Wjj background and it has proved the most

difficult to remove. I believe further studies could find a more optimal network, but the

Wbb network provides some discriminative power over the Wjj background, as shown in

the super neural network, and helps to deal with this background. The limited statistics

in the double tag multijet sample required application of the single tag network to the

double tag sample. This choice proved effective in the double tag channel as shown

by the network output. The background model and data comparison for each neural

network is in good agreement, and illustrates correct modeling of the data and effective

network discrimination.
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NEURAL NETWORK INPUT VARIABLES — RANKING ORDER

Wbb Single–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
M(alljets) 22.00 H(alljets–tag1) 14.80
cos(jet1,lepton)tag1top 2.95 ∆R(jet1,jet2) 3.43
MT (W ) 1.51 HT (jet1,jet2) 3.31
ET (jet1) 1.25 cos(jet1,lepton)tag1top 2.87
HT (jet1,jet2,lepton,E/T ) 1.06 ET (jet1,jet2) 1.58
ET (jet1,jet2) 0.73 HT (jet1,jet2,lepton,E/T ) 0.72
M(W ,tag1) 0.67 M(alljets–tag1) 0.71
M(alljets–tag1) 0.60 M(W ,tag1) 0.51
ET (alljets–tag1) 0.44 HT (alljets,lepton,E/T ) 0.29
cos(jet1,alljets)alljets 0.43
M(jet1,jet2,lepton,E/T ) 0.40
H(alljets) 0.40
cos(jet1,lepton)lab 0.37
Sum of all Rankings 34.74 Sum of all Rankings 28.22

Wbb Double–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
M(alljets) 17.40 H(alljets) 15.30
MT (W ) 5.73 HT (alljets) 6.86
H(alljets,lepton,E/T ) 5.23 ∆R(jet1,jet2) 6.59
cos(jet1,lepton)tag1top 3.65 ET (jet2) 4.42

∆R(jet1,jet2) 3.09
√

ŝ 4.15
E/T 2.11 H(alljets,lepton,E/T ) 3.98
H((jet1,jet2,lepton,E/T )–tag1) 1.55 cos(jet1,lepton)lab 2.33
cos(jet1,lepton)lab 1.47 ET (jet1) 2.31
Aplanarity 1.22 HT (jet1,jet2,lepton,E/T ) 1.76
Sphericity 1.16 HT (alljets,lepton,E/T ) 1.72
H(jet1,jet2) 1.06
ET (jet1,jet2) 1.00
ET (jet1) 0.99
cos(jet2,lepton)lab 0.79
cos(jet1,alljets)alljets 0.70
M(jet1,jet2,lepton,E/T ) 0.54
Sum of all Rankings 49.08 Sum of all Rankings 49.42

Table 5.3: The decision tree ranking for variables considered in the Wbb networks. Pass 1 variables

derive from the set of 41 variables, and Pass 2 variables derive from the combined set of optimum Pass

1 variables for all networks. Variables with a ranking greater than 1% of the sum of all rankings are

considered for neural network training, and only these variables are shown.
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NEURAL NETWORK INPUT VARIABLES — RANKING ORDER

Wjj Single–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
HT (jet1,jet2) 13.50 HT (alljets) 13.80
M(alljets) 3.62 HT (jet1,jet2) 2.18
cos(jet1,lepton)tag1top 1.51 M(alljets–tag1) 2.10
H(alljets–tag1) 1.25 M(W ,tag1) 1.82
ET (alljets–tag1) 1.13 cos(jet1,lepton)tag1top 1.37
HT (alljets–tag1) 1.12 H(alljets–tag1) 0.96
Q×η 0.84 ET (jet1,jet2) 0.74√

ŝ 0.84 HT (alljets,lepton,E/T ) 0.52
cos(untag1,lepton)tag1top 0.80
M(W ,tag1) 0.71
ET (jet1) 0.69
ET (jet2) 0.65
ET (jet1,jet2) 0.54
cos(jet2,lepton)lab 0.51
Sphericity 0.40
MT (W ) 0.40
HT (jet1,jet2,lepton,E/T ) 0.32
Sum of all Rankings 30.29 Sum of all Rankings 23.79

Wjj Double–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
HT (alljets) 11.00 HT (alljets) 12.3
ET (jet1) 3.55 ET (jet2) 4.06
ET (jet2) 3.18 HT (jet1,jet2,lepton,E/T ) 3.91
MT (W ) 3.13 cos(jet1,lepton)lab 3.87
cos(jet1,lepton)lab 2.03 ET (jet1) 3.66
H(jet1,jet2,lepton,E/T ) 1.81 H(alljets) 3.48
H(alljets) 1.78 ∆R(jet1,jet2) 1.96

M(alljets) 1.73
√

ŝ 1.64
ET (jet1,jet2) 1.57 H(alljets,lepton,E/T ) 1.06
Sphericity 1.33 HT (alljets,lepton,E/T ) 0.58
cos(je1,alljets)alljets 1.21
HT (jet1,jet2,lepton,E/T ) 1.16
M(jet1,jet2,lepton,E/T ) 1.06
M(jet1,jet2) 1.06
ET (E/T ) 1.02
H(jet1,jet2) 1.00
Aplanarity 0.84
∆R(jet1,jet2) 0.80
cos(jet2,lepton)lab 0.78
HT (jet1,jet2) 0.60
M(alljets–tag1) 0.46√

ŝ 0.46
Sum of all Rankings 43.07 Sum of all Rankings 36.74

Table 5.4: The decision tree ranking for variables considered in the Wjj networks. Pass 1 variables

derive from the set of 41 variables, and Pass 2 variables derive from the combined set of optimum Pass

1 variables for all networks. Variables with a ranking greater than 1% of the sum of all rankings are

considered for neural network training, and only these variables are shown.
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NEURAL NETWORK INPUT VARIABLES — RANKING ORDER

tt̄ → ` + jets Single–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
HT (alljets,lepton,E/T ) 30.70 HT (alljets,lepton,E/T ) 30.6
M(alljets–tag1) 6.57 M(alljets–tag1) 7.31
HT (alljets–tag1) 5.30 HT (alljets) 4.88
∆R(jet1,jet2) 3.52 ∆R(jet1,jet2) 4.19
H(jet1,jet2) 2.43 H(alljets–tag1) 1.21
HT (alljets) 2.15 HT (jet1,jet2,lepton,E/T ) 0.731
M(alljets) 1.59 ET (E/T ) 0.685√

hats 0.94
Sum of all Rankings 57.51 Sum of all Rankings 51.45

tt̄ → ` + jets Double–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
HT (alljets,lepton,E/T ) 24.30 HT (alljets,lepton,E/T ) 28.40

∆R(jet1,jet2) 6.58
√

ŝ 8.24
HT (alljets) 4.09 ∆R(jet1,jet2) 8.08
HT (alljets–tag1) 3.45 HT (alljets) 4.08√

ŝ 3.26 ET (jet1) 3.73
M(alljets) 3.03 H(alljets) 3.53
M(alljets–tag1) 1.64 HT (jet1,jet2,lepton,E/T ) 2.78
HT (jet1,jet2,lepton,E/T ) 1.55 H(alljets,lepton,E/T ) 2.26
HT (jet1,jet2) 1.21 cos(jet1,lepton)lab 1.79
ET (E/T ) 1.21 MT (W ) 1.76
cos(jet1,alljets)alljets 1.19 ET (jet2) 1.41
MT (W ) 1.19 HT (alljets–tag1) 1.38
M(jet1,jet2,lepton,E/T ) 1.17
ET (jet1) 1.09
Sphericity 1.07
H(jet1,jet2) 1.04
Aplanarity 1.02
MT (jet1,jet2) 1.01
H(jet1,jet2,lepton,E/T ) 0.92
H((jet1,jet2,lepton,E/T )-tag1) 0.86
H(alljets) 0.68
Sum of all Rankings 65.60 Sum of all Rankings 68.82

Table 5.5: The decision tree ranking for variables considered in the tt̄ → ` + jets networks. Pass

1 variables derive from the set of 41 variables, and Pass 2 variables derive from the combined set of

optimum Pass 1 variables for all networks. Variables with a ranking greater than 1% of the sum of all

rankings are considered for neural network training, and only these variables are shown.
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NEURAL NETWORK INPUT VARIABLES — RANKING ORDER

tt̄ → `` Single–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
MT (W ) 20.80 MT (W ) 20.20
HT (jet1,jet2,lepton,E/T ) 8.34 HT (jet1,jet2,lepton,E/T ) 7.05
∆R(jet1,jet2) 3.75 HT (alljets,lepton,E/T ) 2.13
HT (alljets,lepton,E/T ) 1.90 ∆R(jet1,jet2) 1.96
H(jet1,jet2) 1.06 ET (jet1,jet2) 1.37
H(alljets) 0.91 ET (E/T ) 1.17
H(alljets,lepton,E/T ) 0.54 H(alljets–tag1) 1.13
cos(untag1,alljets)alljets 0.48 H(jet1,jet2) 1.11
ET (jet1) 0.45 M(alljets–tag1) 0.64

HT (alljets) 0.56
Sum of all Rankings 42.09 Sum of all Rankings 37.55

tt̄ → `` Double–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
MT (W ) 19.90 MT (W ) 19.7
HT (je1,jet2,lepton,E/T ) 6.40 HT (jet1,jet2,lepton,E/T ) 7.37
H(alljets) 3.47 H(alljets) 6.52
∆R(jet1,jet2) 3.05 HT (alljets,lepton,E/T ) 3.21
HT (alljets,lepton,E/T ) 2.78 H(alljets,lepton,E/T ) 2.40√

ŝ 2.21 ET (jet2) 2.05
HT (alljets) 1.43 ∆R(jet1,jet2) 1.95
cos(jet1,lepton)lab 1.20 HT (alljets) 1.54

H(alljets,lepton,E/T ) 1.20
√

ŝ 1.51
Aplanarity 1.17 cos(jet1,lepton)lab 0.88
Sphericity 0.99 ET (jet1) 0.78
H(jet1,jet2) 0.88
ET (jet1,jet2) 0.86
ET (E/T ) 0.83
cos(jet1,alljets)alljets 0.69
Sum of all Rankings 51.15 Sum of all Rankings 48.44

Table 5.6: The decision tree ranking for variables considered in the tt̄ → `` networks. Pass 1 variables

derive from the set of 41 variables, and Pass 2 variables derive from the combined set of optimum Pass

1 variables for all networks. Variables with a ranking greater than 1% of the sum of all rankings are

considered for neural network training, and only these variables are shown.
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NEURAL NETWORK INPUT VARIABLES — RANKING ORDER

multijet Single–Tag Network Input Variables
Pass 1 Variables Rank Pass 2 Variables Rank
ET (E/T ) 28.50 ET (E/T ) 29.80
MT (W ) 9.28 MT (W ) 8.62
ET (tag1) 3.87 cos(tag1,lepton)tag1top 6.29
cos(tag1,lepton)tag1top 3.60 ET (tag1) 4.15
ET (jet1) 2.07 HT (alljets,lepton,E/T ) 1.99
M(jet1,jet2,lepton,E/T ) 1.54 ∆R(jet1,jet2) 0.90
ET (untag1) 0.86
HT (jet1,jet2,lepton,E/T ) 0.61
∆R(jet1,jet2) 0.53
Q×η 0.53
Sum of all Rankings 51.79 Sum of all Rankings 51.75

Table 5.7: The decision tree ranking for variables considered in the multijet networks. Pass 1 variables

derive from the set of 41 variables, and Pass 2 variables derive from the combined set of optimum Pass

1 variables for all networks. Variables with a ranking greater than 1% of the sum of all rankings are

considered for neural network training, and only these variables are shown. Low statistics did not allow

for double-tag multijet training.
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NEURAL NETWORK OUTPUT — FIGURE OF MERIT

Electron Channel Samples
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Figure 5.13: The figure of merit vs the number of input variables in the pass 2 list. Variables are

added in the order of their decision tree ranking (given in Figures 5.3-5.7). Each column shows the

optimization for single and double tag electron samples.
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NEURAL NETWORK OUTPUT — FIGURE OF MERIT
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Figure 5.14: The figure of merit vs the number of input variables for the final set of variables.

Variables are added one at a time, as given in Table 5.8. Each column shows the optimization for each

lepton and tagging channel. Each row shows the optimization for each background. The double tag

multijet channel applies the single tag network.
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FINAL NEURAL NETWORK INPUT VARIABLES

Single Tag Double Tag
Wbb 1 H(alljets–tag1) H(alljets)

2 ∆R(jet1,jet2) HT (alljets)

3 HT (jet1,jet2)
√

ŝ
4 Cos(jet1,lepton)tag1top H(alljets,lepton,E/T )
5 ET (jet1,jet2) cos(jet1,lepton)lab

6 HT (jet1,jet2,lepton,E/T ) ET (jet1)
7 M(alljets–tag1) HT (jet1,jet2,lepton,E/T )

Wjj 1 HT (alljets) HT (alljets)
2 M(W ,tag1) ET (jet2)
3 cos(jet1,lepton)tag1top HT (jet1,jet2,lepton,E/T )
4 H(alljets–tag1) ∆R(jet1,jet2)
5 ET (jet1,jet2)

tt̄ → ` + jets 1 HT (alljets,lepton,E/T ) HT (alljets,lepton,E/T )

2 M(alljets–tag1)
√

ŝ
3 HT (alljets) HT (alljets)
4 ∆R(jet1,jet2) ET (jet1)
5 H(alljets–tag1)
6 HT (jet1,jet2,lepton,E/T )

tt̄ → `` 1 MT (W ) MT (W )
2 HT (jet1,jet2,lepton,E/T ) HT (jet1,jet2,lepton,E/T )
3 HT (alljets,lepton,E/T ) H(alljets)
4 ∆R(jet1,jet2) HT (alljets,lepton,E/T )
5 ET (jet1,jet2) H(alljets,lepton,E/T )
6 E/T ET (jet2)
7 H(alljets–tag1)

multijet 1 E/T E/T

2 MT (W ) MT (W )
3 cos(tag1,lepton)tag1top cos(tag1,lepton)tag1top

4 HT (alljets,lepton,E/T ) HT (alljets,lepton,E/T )

Table 5.8: The final list of input variables for each neural network. The order is the same as displayed

in the figure-of-merit plots in Figure 5.14. The electron lists are given, and the muon lists are identical,

apart from the removal of all angular cosine variables.
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FINAL NEURAL NETWORK INPUT VARIABLES

Optimized Single Tag Variables
Wbb Wjj tt̄→ l+jets tt̄→ ll multijet

1. ET (jet1) — — — — —
2. ET (jet2) — — — — —
3. E/T — — —

√ √
4. ET (jet1,jet2)

√ √
—

√
—

5. HT (alljets) —
√ √

— —
6. HT (alljets,l,E/T ) — —

√ √ √
7. HT (jet1,jet2)

√
— — — —

8. HT (jet1,jet2,l,E/T )
√

—
√ √

—
9. H(alljets) — — — — —
10. H(alljets,lepton,E/T ) — — — — —
11. H(alljets–tag1)

√ √ √ √
—

12. MT (W ) — — —
√ √

13. M(alljets–tag1)
√

—
√

— —
14. M(W ,tag1) —

√
— — —

15.
√

ŝ — — — — —
16. ∆R(jet1,jet2)

√
—

√ √
—

17. cos(jet1,lepton)tag1top e e — — —
18. cos(tag1,lepton)tag1top — — — — e
19. cos(jet1,lepton)lab — — — — —

Table 5.9: The optimized set of neural network input variables for the single-tag analysis, after the

first and second round of selection. There are a total of 13 unique variables for all networks combined.

An “e” denotes the variable was only used in the electron networks, a “
√

” for both lepton networks.
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FINAL NEURAL NETWORK INPUT VARIABLES

Optimized Double Tag Variables
Wbb Wjj tt̄→ l+jets tt̄→ ll multijet

1. ET (jet1) — —
√

— —
2. ET (jet2)

√ √
— — —

3. E/T — — — —
√

4. ET (jet1,jet2) — — — — —
5. HT (alljets)

√ √ √
— —

6. HT (alljets,lepton,E/T ) — —
√

—
√

7. HT (jet1,jet2) — — — — —
8. HT (jet1,jet2,lepton,E/T ) —

√
—

√
—

9. H(alljets)
√

— —
√

—
10. H(alljets,lepton,E/T )

√
— — — —

11. H(alljets–tag1) — — — — —
12. MT (W ) — — —

√ √
13. M(alljets–tag1) — — — — —
14. M(W ,tag1) — — — — —

15.
√

ŝ
√

—
√

— —
16. ∆R(jet1,jet2) —

√
— — —

17. cos(jet1,lepton)tag1top — — — — —
18. cos(tag1,lepton)tag1top — — — — e
19. cos(jet1,lepton)lab e — — — —

Table 5.10: The final optimized set of neural network input variables for the double-tag analysis,

after the first and second round of selection. There are a total of 13 unique variables for all networks

combined. There were not enough statisticsc to train the multijet network, and so the final single tag

multijet filter function is applied to the double tag multijet sample. An “e” denotes the variable was

only used in the electron networks, a “
√

” for both lepton networks.
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t-channel, Electron Network Configurations
Single Tag filter Double Tag

Number of Hidden Best Number of Hidden Best
Network Variables Nodes Epoch Variables Nodes Epoch
tqb-Wbb 7 14 84 7 12 37
tqb-tt̄(`+jets) 6 12 81 4 8 68
tqb-tt̄(``) 7 12 83 6 6 66
tqb-Wjj 5 8 82 4 6 50
tqb-multijet 4 8 49 4 8 49

Table 5.11: The final optimized values of the t-channel electron networks for the number of variables,

number of hidden nodes, and number of training epochs. There were not enough statistics to train the

double tag multijet network, and so the single tag network is applied to the double tag analysis.

t-channel, Muon Network Configurations
Single Tag Double Tag

Number of Hidden Best Number of Hidden Best
Network Variables Nodes Epoch Variables Nodes Epoch
tqb-Wbb 6 11 69 6 10 27
tqb-tt̄(`+jets) 6 9 69 4 7 64
tqb-tt̄(``) 7 14 69 6 12 69
tqb-Wjj 4 4 24 4 6 68
tqb-multijet 3 4 61 3 4 61

Table 5.12: The final optimized values of the t-channel muon networks for the number of variables,

number of hidden nodes, and number of training epochs. There were not enough statistics to train the

double tag multijet network, and so the single tag network is applied to the double tag analysis.
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NEURAL NETWORK OUTPUT — EFFICIENCY

Single Tag Channels Double Tag Channels

Electron Muon Electron Muon
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Figure 5.15: The signal versus background acceptance curves based on cut points on the neural

network output distribution. Columns are organized by lepton and tagging channel. Rows are organized

by the background discriminated against. The figure of merit is defined as the integral of the area above

each of curve.
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NEURAL NETWORK OUTPUT — BACKGROUND SEPARATION
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Figure 5.16: The final optimized neural network output for each lepton and tagging channel is shown.

Each row shows the output for a specific background: Wbb, Wjj, tt̄ → ` + jets, tt̄ → ``, and multijet.

In each distribution, the background peaks around zero and the signal peaks around one.
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NEURAL NETWORK OUTPUT — BACKGROUND MODEL AND DATA
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Figure 5.17: The background model vs data is shown for each neural network. The columns are split

by tagging and lepton channel, and the rows by each background discriminated against: Wbb, Wjj,

tt̄ → ` + jets, tt̄ → ``, and multijet.
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5.8 Optimized Super Neural Network

The final step in our neural network approach is combining the discriminative power

of all five signal-background pair networks, into one so-called “super” neural network.

While our goal remains to derive the best cross section limit, we also seek clarity in

our approach and the results we share with others. With this aim, the primary goal

of the super neural network is not to gain new discriminative power, but to summarize

the sum total in a single distribution that can be used to derive limits. This is a

more comprehendable approach, though no more correct, than deriving limits in a five

dimensional neural network space.

In order to derive the best cross section limit, we optimize the set of networks used

as inputs to the super neural network, and use the expected limit as our figure of merit.

The final set of input networks was optimized in the electron channel, and then applied

to the muon channel, but both channels are still trained on their respective samples.

The final optimized network parameters are given in Table 5.13, and the final super

neural network output distributions for each signal and background are given in Figure

5.18. The background model compared to data for the super neural network output

distribution is given in Figure 5.19.

First looking at the optimized set of inputs, the single tag networks excluded the

use of the Wjj network. This is due to the poor discrimination power attained by

this network. As mentioned before, further studies with this network could enhance its

power, and thus enhance the final limit — this should be looked at in the future. In the

double tag channel, all five networks helped to improve the final limit, and were used in

the super neural network. For both tagging channels, the super network outputs show

that the larger backgrounds were correctly targeted during training, and the others are

either ignored, or discriminated against slightly. As expected, results in both lepton

channels are similar. The background model and data comparison shows the super
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neural network is still correctly modeling the data. The background model and the data

are similar in shape, with fluctuations due to the differences in the data and background

model yields (where the electron channel shows a deficit in the model, and the muon

channel shows an excess).

Electron Muon
=1 Tag =2 Tag =1 Tag =2 Tag

input variables 4 5 4 5
hidden nodes 8 8 8 8
training epochs 24 13 24 14

Table 5.13: The final optimized values of the super neural networks for the number of input variables,

number of hidden nodes, and number of training epochs. Results are shown for the electron and muon

channels for both single and double networks.

FINAL SUPER NETWORK INPUT VARIABLES

Single Tag Double Tag
1. Wbb

√ √
2. Wjj —

√
3. tt̄ → ` + jets

√ √
4. tt̄ → ``

√ √
5. multijet

√ √

Table 5.14: The final set of inputs used in the single and double tag super neural networks. The same

inputs are used for both lepton channels.
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SUPER NEURAL NETWORK OUTPUT — BACKGROUND SEPARATION

Single Tag Channel Double Tag Channel
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Figure 5.18: Super neural network outputs are shown for the final optimized networks. Each row

shows the output for a specific background: Wbb, Wjj, tt̄→ l+jets, tt̄→ ll, and multijet. The signal

distribution is identical for all distibutions in a given column. The columns are separated by lepton

and number of tags: Electron Single Tag, Muon Single Tag, Electron Double Tag, Muon Double Tag.

In each distribution, the background peaks towards zero and the signal peaks towards one.
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SUPER NEURAL NETWORK OUTPUT — BACKGROUND AND DATA
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Figure 5.19: Super neural network output distributions are shown, comparing data and the back-

ground model for each channel. The signal distribution is multiplied by a factor of 10 to clearly show

its distribution. In each histogram, the background model peaks towards zero and the signal peaks

towards one.
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Chapter 6

Setting Limits on Single Top Quark

Production

6.1 Introduction

Now we must venture deep into the seedy world of statistics and probabilities. Through

back doors, and down alley ways, we find the beady eyes of Frequentists and Bayesian-

ists, each trying to lure us in with their wares, and hypnotize us with their statistical

mystique. It is too late to turn back now. We have fought hard for the dataset at hand,

dabbled with the dark arts of Monte Carlo generation, and poured blood and sweat into

the final super neural network distributions we grip ever-so-tightly. And so we carry on.

We are ultimately after a single top quark production cross section measurement.

With a still-limited data set, and many uncertainties damping the power of our search,

we must refocus, and set our sights on a cross section limit. A typical first approach is

to derive a limit based on total event counts, using the observed count, the predicted

background yield, and predicted signal acceptance, to derive a 95% confidence level

cross section limit. Such an approach ignores the plethora of information contained in

the events themselves, and an improved approach takes into account the shapes of the
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data, background model, and signal in the distribution of a discriminating variable. We

have used neural networks to push the idea to an extreme, and conjured up our best

attempt at the ultimate discriminating variable, taking into account all features of the

signal and background phase space. Using the super neural network output distribution,

we derive cross section limits based on its shape. Limits are derived separately for each

lepton and tagging channel, with and without uncertainties, and finally combined.

6.2 Bayesian Approach to Limits

We are applying Bayesian statistics in our final analysis [114]. They are governed by the

fundamental theorem:

P (A|B) =
P (B|A)P (A)

P (B)
Bayes’ Theorem (6.1)

where the component probabilities are defined as:

• P (A|B) = the probability of event A occurring, given event B

• P (B|A) = the probability of event B occurring, given event A

• P (A) = the probability of event A occurring (the prior for A)

• P (B) = the probability of event B occurring (the prior for B)

We must now define the relevent parameters in our analsysis. The observed number

of events in our data sample D has been measured, and the predicted mean yield d for

all backgrounds and signal has been modeled:

d = s +
N
∑

i=1

bi (6.2)

= σ(AL) +
N
∑

i=1

bi (6.3)
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where s is the predicted signal yield, and bi is the predicted background yield for each

of the N backgrounds we expect. The predicted signal is expressed in terms of the cross

section (σ), signal acceptance (A), and integrated luminosity (L). For ease of notation,

we define the vector of backgrounds b = (b1, b2, ...), and the effective luminosity for the

signal, a ≡ AL. We assume that the likelihood for our measurement D is proportional

to the probabilitity of D modeled by a Poisson distribution about the mean count d:

L(D|d) ∝ P (D|d) =
exp(−d)dD

Γ(D + 1)
(6.4)

where the Gamma function Γ(D + 1) = D!. We can then use Bayes’ theorem as follows:

P (d|D) = P (σ, a,b|D) ≡ L(D|d)π(d)

N (6.5)

π(d) = π(σ)π(a,b) (6.6)

where the probability to measure a mean yield d given D, P (d|D), is a function of the

likelihood defined in Equation 6.4, the prior probability for d, P (d), and a normalization

factor N which facilitates unit probability,
∫

P (σ|D)dσ = 1. The cross section and yields

are assumed independent, and the prior is factored into two components. We assume a

flat prior for the cross section, where

π(σ) =
1

σmax

, 0 < σ < σmax (6.7)

= 0, otherwise (6.8)

and σmax is some value for which the posterior probability for σ > σmax is negligible. The

choice of prior implies a maximal ignorance of any preferred value for the signal cross

section, and is best regarded as a convention within our field. With these provisions,

the probability of measuring a cross section given the observed number of events is:
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P (σ|D) =
1

N
∫ ∫

L(D|σ, a,b)π(a,b) da db (6.9)

A Bayesian upper limit σCL at a confidence level CL is a solution of Equation 6.10, while

a cross section measurement is either the mode or mean of P (σ|D).

∫ σCL

0
P (σ|D) = CL (6.10)

In practice, the integral in Equation 6.9 is calculated numerically using Monte Carlo

importance sampling. The integral is transformed into a swarm of points (ak, bk) that

represent the prior density π(a,b), and we estimate the posterior using:

1

N
∫ ∫

L(D|σ, a,b)π(a,b) da db =
1

K

K
∑

k=1

L(D|σ, ak,bk) (6.11)

For each sampled set of points, (ak, bk), the likelihood is then directly calculated

(Equation 6.4). The most important step in this process is evaluating the prior, π(a,b),

correctly. Here we take into account the uncertainties on each yield from all sources.

Each point a and b is sampled from a multivariate Gaussian with a mean based on

the modeled yield, and a width based upon a covariance matrix from all associated

uncertainties, and taking into account all possible correlations.

The limit calculation described applies to total events and yields in the final sample.

The calculation is easily adapted to take into account the shape of a discriminant variable

distribution, by transforming the likelihood into a product of likelihoods calculated for

each bin in the distribution:

Lshape(D|d) =
M
∏

bin=1

L(Dbin|dbin) (6.12)
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The uncertainties in the multivariate Gaussians now take on two components — the

first being global uncertainties that apply to all bins equally, and the second being those

that alter the shape of the distribution, such as the jet energy scale, jet energy resolution,

jet identification, tag rate functions, and trigger modeling. The Gaussian sampling for

global uncertainties is handled as before, using the signal and background yields as

the mean, and uncertainties defining the width. The shape-altering uncertainties are

then taken into account one at a time. The jet energy scale, jet energy resolution, jet

identification, and so on, are each adjusted by plus or minus one standard deviation

with respect to their nominal value, and the signal and background yields are calculated

in each bin. Each systematic is then sampled from a Gaussian distribution with the

nominal yield as the mean, and plus or minus yield as the width (1 standard deviation).

If the random sampling gives a positive number, we use the plus yield as the width and

sample from it, and if the number is negative, we use the negative yield as the width and

sample from it. This is repeated for each shape-changing systematic, and the relative

shifts from the nominal yields are added linearly. This is repeated for each bin, and the

likelihood is then calculated, correctly taking into account all systematic uncertainties

throughout the distributions.

Extending the limit calculation once more, we can combine results from various

orthogonal channels through the product of their likelihoods:

Lcombined(D|d) =
Nc
∏

channel=1

Lshape(Dchannel|dchannel) (6.13)

6.3 Cross Section Limits

Expected and measured limits have been calculated for a variety of circumstances, pro-

viding evidence for the increasing discriminant power of our final analysis. An expected

limit provides a guage of the quality and discrimination power of an analysis. In calcu-
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lating the expected limit, one artificially sets the observed number of events D equal to

the background yield. This “ideal” experiment is then used to tell you how well you are

isolating your signal and how significant your signal is. For a measured limit, one sets D

equal to the observed number of events in the data sample, and calculates the limit. A

measured limit thus takes into account how well you have modeled your data sample in

addition to the significance of a signal. An observation or discovery is commonly claimed

when the peak of the measured posterior density probability distribution (Equation 6.9)

is found several standard deviations away from zero.

We have first derived count-based limits with and without systematic uncertainties,

as shown in Table 6.1. One will first notice the sizeable difference between the expected

and measured limits. This is a direct result of the excess (deficit) in data with respect

to the background model in the electron (muon) analysis, observed in both tagging

channels. It is also noted that limits in the double tag channel are significantly worst than

the single tag channel. This is expected, as t-channel single top only produces a second b-

quark jet in NLO diagrams, and this generally softer jet may not be reconstructed by the

detector. The tiny acceptance and overall available data in the double tag channel thus

leave much less information with which to derive a limit, but we still pursue this channel

as it enhances our final combined limits. A final observation one may make is that some of

the muon channel limits actually improve with the addition of systematic uncertainties.

This is found to be a feature of the jet-energy related systematics, particularly the

jet energy scale and jet energy resolution. A +(-)1σ shift in the systematic does not

necessarily denote an increase(decrease) in the number of events for a sample in the

output distribution, and so the limit can fluctuate either way.

Expected limits have also been derived based on the shape and separation power

of the single-background neural networks shown in Section 5.7. The results of this

binned likelihood calculation are shown in Table 6.2. Looking at the single tag electron

channel, the single background networks show a 1–2 pb gain over the 10.0 pb count-

168



based expected limit. The double tag electron channel shows a larger 3–9 pb gain over

the 32.7 pb count-based expected limit, and the muon channel shows similar results.

As a comparison to the previously published DØ single top paper [67] that used 230

pb−1, the expected limit with systematic uncertainties, derived from a combination of

the Wbb and tt̄ → ` + jets networks was 9.3 (10.1) pb in the single tag electron (muon)

channel and 61.2 (60.5) pb in the double tag electron (muon) channel. Both the increase

in integrated luminosity and further optimization of our neural networks have lead to

the improvments over the previous analysis.

Finally, we have derived expected and measured limits based on the shape of the

super neural network. The inputs to the super neural network were first optimized to

yield the best expected limit with systematic uncertainties included. Following this op-

timization, the corresponding measured limits were then calculated. We probed various

combinations of the five input background neural networks, and found that the use of

four (five) networks provided the best limits in the single (double) tag channel. Several

trials involving various combinations of super neural network inputs are shown in Table

6.4. The final binned likelihood calculation based on the shape of the super neural net-

works is performed, and final limits are shown in Table 6.3. Our final expected/measured

95% CL limit with systematics and both lepton and tagging channels combined is 3.5/8.0

pb. The posterior probability density distribution for the electron, muon and combined

channels, with and without systematic uncertainties, are shown in Figure 6.1. In light

of the higher signal to background ratio in the super network output distribution near a

value of one, we wondered if limits would be improved by first making a hard cut on the

super network distribution. Shown in Figure 6.2 is a plot of the expected limit in the

electron channel as a function of a cut on the super network. It is clear that it is better

to use all the information available in the shape of the entire distribution than just the

region with the highest signal to background ratio. Again, comparing to the previous

230 pb−1 analysis, our analysis has improved on the previous combined expected limit
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of 5.8 pb, but not the measured limit of 5.0 pb. This shows that the discrimination

power of our analysis has improved beyond that given by statistics alone, but we can

still improve our understanding of the background model.
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TOTAL COUNT-BASED LIMITS

95% Confidence Level Expected/Measured Cross Section Limits
Single Tag Double Tag Combined

No Uncertainties
Electron Channel 8.1/14.2 27.4/66.9 7.7/16.6
Muon Channel 8.8/6.3 30.7/23.5 8.4/5.7
Combined 5.9/7.2 19.6/34.9 5.6/8.2

With Uncertainties
Electron Channel 10.0/16.1 32.7/77.8 9.8/17.7
Muon Channel 8.4/6.1 31.0/24.0 7.9/5.4
Combined 6.1/7.1 22.4/38.9 5.9/7.8

Table 6.1: The 95% confidence level cross section limits for t-channel single top production, based on

totals counts only.

SINGLE BACKGROUND NETWORK SHAPE-BASED LIMITS

95% Confidence Level Expected Cross Section Limits
Electron Channel Muon Channel

Network Single Tag Double Tag Single Tag Double Tag
With Uncertainties

Wbb 7.8 27.8 8.9 28.7
tt̄ → ` + jets 8.7 23.9 8.2 26.6
tt̄ → `` 9.1 27.7 8.4 27.6
Wjj 8.5 29.4 8.4 29.7
multijet 8.1 29.0 8.1 27.7

Table 6.2: The 95% confidence level expected cross section limits for t-channel single top production

in the individual single background neural networks.

SUPER NEURAL NETWORK SHAPE-BASED LIMITS

95% Confidence Level Expected/Measured Cross Section Limits
Single Tag Double Tag Combined

No Uncertainties
Electron Channel 5.6/9.7 19.3/51.1 5.3/11.6
Muon Channel 6.5/10.9 22.8/20.2 6.1/9.7
Combined 4.1/8.5 13.5/27.2 3.8/9.0

With Uncertainties
Electron Channel 5.8/10.0 22.3/51.9 5.5/11.4
Muon Channel 5.9/8.1 24.8/22.1 5.7/7.5
Combined 3.9/7.3 16.1/27.6 3.5/8.0

Table 6.3: The 95% confidence level cross section limits for t-channel single top production, derived

from the shape of the super neural network output. The final, combined result of this analysis is

highlighted in bold.

171



1-D POSTERIOR DENSITY DISTRIBUTIONS
Expected Limit Measured Limit
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Figure 6.1: The posterior probability density distribution are shown for the combined tagging samples

in the electron, muon and combined lepton channels. All distributions include systematic uncertainties

and expected(measured) distributions are shown left(right). Limits derived on total event counts (above)

and the shape of the super network output (below) are shown.
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Figure 6.2: The 95% confidence level expected limit on the t-channel single top cross section as a

function of a cut on the super neural network output. This was a preliminary version of the analysis,

and not the final set, but the results still apply.

SUPER NEURAL NETWORK INPUT OPTIMIZATION

95% Confidence Level Expected Cross Section Limits (pb)
Order Limit Order Limit

Trial 1 Trial 2

Wjj — tt̄ → `` —
+ multijet 8.0 + Wbb 6.5
+ tt̄ → ` + jets 8.2 + tt̄ → ` + jets 6.4
+ Wbb 6.0 + multijet 5.8
+ tt̄ → `` 6.0 + Wjj 6.4

Trial 3 Trial 4

tt̄ → `` — tt̄ → ` + jets —
+ multijet 7.6 + tt̄ → `` 8.1
+ Wjj 6.5 + Wjj 6.7
+ Wbb 6.5 + Wbb 6.5
+ tt̄ → ` + jets 6.3 + multijet 6.0

Trial 5

tt̄ → `` —
+ multijet 7.6
+ Wbb 5.9
+ tt̄ → ` + jets 5.8
+ Wjj 6.5

Table 6.4: To optimize the super neural network inputs, the order and number of input networks were

varied. These trials are for the expected limits with systematics for the single tag electron channel,

and the results are applied to the muon channel. Each trial shows networks added consecutively, and

the corresponding expected limit. In Trial 1, networks are added by background fraction, largest to

smallest. Trial 2 probes the converse, smallest to largest. Trial 3 and Trial 4 show two other orders,

and Trial 5 is the optimized combination used in the final analysis, using four networks and yielding a

limit of 5.8 pb.
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Chapter 7

Summary

I have performed a search for the rare process of t-channel single top quark production.

This required an analysis of the electroweak production mechanism for single top, the

dominant backgrounds masking the channel, and accurately modeling each. I designed

an event selection criteria to maximize the acceptance of single top quark events col-

lected by the DØ detector, while reducing the background processes. To further isolate

our signal, artificial neural networks were designed and trained to counter each of the

dominant backgrounds and the discrimination powers of these neural networks were

combined into a single “super” neural network. The shape of the super neural network

distribution was used to set limits on the signal production. Limits were derived individ-

ually for the electron and muon channels in samples with one or two identified b-quark

jets, and were later combined. Searching a data set of 365 pb−1, I am reporting a final

expected/measured 95% confidence level limit for t-channel single top quark production

of 3.5/8.0 pb, to be compared with the standard model prediction of 1.98 ± 0.08 pb.

The fluctuations in data have left us with a measured limit slightly worst than our pre-

viously published analysis which had 5.0 pb [67], yet the expected limit is better than

any result published thus far (5.8 pb [67]) and demonstrates the improved sensitivity of

the analysis.
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Chapter 8

What’s to Come

8.1 Observation

Observation of single top quark production, as predicted by the standard model of

particle physics, is quickly approaching. While my analysis has moved us closer to the

theoretical boundary, only a limit has been set. A single top analysis is already in

progress with a dataset three times larger than my own, and by the end of RunII in

2009, we expect more than an order of magnitude increase, or about 4–8 fb−1 of data.

So when can we expect to observe single top quark production? To answer this, we

define the significance as the quantity of merit:

Significance =
σmax

∆σmax

where σmax is the maximum of the cross section posterior probability density (for ex-

ample Figure 6.1), and ∆σmax is the uncertainty on σmax. The significance becomes

of interest when it is greater than one, and can allow us to identify what integrated

luminosity will yield a cross section measurement three and five standard deviations

away from zero. To perform these tests, we create an imaginary data set that is equal
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to the background model and predicted signal for a given integrated luminosity. We

then calculate the measured limit as described in Section 6.2 at integer multiples of the

0.366 fb−1 integrated luminosity used in this analysis. A plot of the significance versus

the integrated luminosity is shown in Figure 8.1. One can see that our current analysis

would have a cross section measurement 1σ away from zero with a 1 fb−1 dataset and

2σ at 5 fb−1. While these values show a direct extrapolation of the discrimination power

of the current analysis, we can also expect improvements in several areas of the analysis

which will lower the necessary integrated luminosity for an observation. Among these

improvements are: better performance in the b-tagging algorithm, further optimization

of the neural networks or other signal-background separation technique, increasing signal

acceptance by adjusting our event selection criteria, and a general reduction in system-

atic and statistical errors in all Monte Carlo correction factors and the matrix method

scale factors. There is also a large portion of signal still available if one were to perform

an analysis using untagged events, include events with only one jet, or look at events

with forward electrons (η > 1.5). Although more difficult, one could also look for events

where the W boson (from the top quark decay) decays hadronically, or into a τ , which

then decays hadronically. Pursuing any of these options could lead to a 10% reduction in

the necessary integrated luminosity, and pursuing several of them could have a dramatic

effect. A 5σ observation of single top quark production seems well within reach during

the life of the Tevatron.

8.2 A New Window — The Large Hadron Collider

While we expect to observe single top quark production at the Fermilab Tevatron,

whether by the standard or non-standard model, there is a new collider on the hori-

zon that can greatly aid the search, or at least provide unprecedented precision – the

Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN).
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Figure 8.1: The cross section significance (σmax/∆σmax) is shown as a function of the integrated

luminosity for an extrapolation of the current analysis.

The LHC is a proton-proton collider being built in the existing tunnel of the famous

Large Electron-Positron (LEP) collider. It has been designed to accelerate each beam

of protons to 7 TeV, for a center of mass energy of 14 TeV [115]. In addition to an

order of magnitude increase in energy over the Tevatron, the instantaneous luminosity

will shatter current values by a 100-fold, reaching 1034 cm−2s−1. While the increased

energy and luminosity will greatly enhance the electroweak production of top quarks,

many competing processes will also increase, and isolating a signal may become an even

greater challenge than that posed by the Tevatron. Theoretical calculations for the t-

and s-channel production cross sections give 155.9 pb and 6.56 pb for t processes, and

90.7 pb and 4.09 pb for t̄ processes [116]. The difference in t and t̄ production values

stems from requiring an incoming valence quark versus an incoming sea anti-quark. The

tW process becomes significantly more important than at the Tevatron as more energy

is available to produce the final state W boson. The cross sections for both tW and

t̄W production are identical, calculated to be 31 pb each [117]. Within the first few
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months of running, the LHC will gather the same amount of data as collected in the

entire Tevatron data-taking period, and quickly gain an order of magnitude over that.

A simple Monte Carlo analysis by the ATLAS experiment based on two-jet events and

a top mass window cut predicts 7000 t-channel single top events to be collected with

a dataset of 30 fb−1 [118]. They further conclude a signal:background ratio of three

and a statistical uncertainty of
√

S + B/B = 1.4%. Obvious improvements in event

selection and multivariate signal isolation will result in even higher precision. With this

example analysis, and countless other possible analyses, we can expect single top quark

production to be experimentally measured and thoroughly understood in the years of

the LHC, scheduled to begin at the end of 2007.
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Appendix A

Physics Object Distributions

In this appendix, a more thorough selection of physics object distributions is shown,

comparing the background model with the data sample. Figures A.1–A.3 show object

distributions for the electron samples before tagging and after tagging in the single-tag

and double-tag channels. The same distributions are shown for the muon channel in

Figures A.9–A.11.

Figures A.4–A.8 show object distributions in a W+jets/multijet-enhanced sample

and in a tt̄-enhanced sample in the electron channel. The same plots are shown for the

muon channel in Figures A.12–A.16. The W+jets/multijet sample applies all cuts in

the event selection (Section 3.5) and further requires a cut on HT (jet1,jet2,lepton,E/T ) <

200 GeV and only two jets in the event. The tt̄ enriched sample also requires all event

selection cuts, as well as HT (alljets,lepton,E/T ) > 250 GeV and exactly four jets in the

event.
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Figure A.1: Electron channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for ET (jet1) (first row), ET (jet2)

(second row), ET (jet3) (third row), ET (e) (fourth row), and the E/T (fifth row).
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Figure A.2: Electron channel distributions before tagging (left), and in the single (middle) and

double (right) tag channels. The data and background model are compared for η(jet1) (first row),

η(jet2) (second row), η(jet3) (third row), and the η(e) (fourth row)
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Figure A.3: Electron channel distributions before tagging (left), and in the single (middle) and

double (right) tag channels. The data and background model are compared for φ(jet1) (first row),

φ(jet2) (second row), φ(jet3) (third row), φ(e) (fourth row), and the E/T (fifth row).
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Figure A.4: Electron channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for the Number of Jets (first row),

MT (W) (second row), M(W,jet1) (third row), and M(W,tag1) (fourth row).
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Figure A.5: Electron channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for ET (jet1) (first row), ET (jet2) (second row), ET (jet3) (third row),

ET (e) (fourth row), and the E/T (fifth row).

E/
T

E
T
(e

)
E

T
(j

et
3)

E
T
(j

et
2)

E
T
(j

et
1)

192



ELECTRON CHANNEL DISTRIBUTIONS

W+jets XCheck tt̄ XCheck

)1 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)1 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

)1 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)1 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

)2 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)2 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

)2 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)2 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

)3 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)3 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

)3 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

)3 (jetη
-4 -2 0 2 4

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

 (lepton)η
-2 -1 0 1 2

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20

 (lepton)η
-2 -1 0 1 2

Y
ie

ld

0

2

4

6

8

10

12

14

16

18

20
Data
s-channel
t-channel
tt

W+jets
fake-lepton

(lepton) [GeV]{\Eta}
-2 -1 0 1 2

ev
en

t 
yi

el
d

0

1

2

3

4

5

6

7

8

9

10
DØ Run II Preliminary

(lepton) [GeV]{\Eta}
-2 -1 0 1 2

ev
en

t 
yi

el
d

0

1

2

3

4

5

6

7

8

9

10

Data
s-channel
t-channel
tt

W+jets
fake-lepton

Figure A.6: Electron channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for η(jet1) (first row), η(jet2) (second row), η(jet3) (third row), and

the η(e) (fourth row).
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Figure A.7: Electron channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for φ(jet1) (first row), φ(jet2) (second row), φ(jet3) (third row), φ(e)

(fourth row), and the φ(E/T ) (fifth row).
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Figure A.8: Electron channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for the Number of Jets (first row), MT (W) (second row), M(W,jet1)

(third row), and M(W,tag1) (fourth row).

M
(W

,t
ag

1)
M

(W
,j
et

1)
M

T
(W

)
N

u
m

b
er

of
J
et

s

195



MUON CHANNEL DISTRIBUTIONS

Before Tagging Single Tag Double Tag

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld
0

5

10

15

20

25

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld
0

5

10

15

20

25 Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

) [GeV]1(jetTE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7
Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

200

400

600

800

1000

1200

1400

1600

1800

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

200

400

600

800

1000

1200

1400

1600

1800
Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

10

20

30

40

50

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

10

20

30

40

50 Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9

) [GeV]2(jetTE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9
Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

600

700

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

600

700 Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

5

10

15

20

25

30

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

5

10

15

20

25

30 Data
s-channel
t-channel
tt

W+jets
fake-lepton

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

2

4

6

8

10

12

) [GeV]3(jetTE
0 50 100 150

Y
ie

ld

0

2

4

6

8

10

12
Data
s-channel
t-channel
tt

W+jets
fake-lepton

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

600

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

600
Data
s-channel
t-channel
tt

W+jets
fake-lepton

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

5

10

15

20

25

30

35

40

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

5

10

15

20

25

30

35

40 Data
s-channel
t-channel
tt

W+jets
fake-lepton

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9

10

(lepton) [GeV]TE
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9

10
Data
s-channel
t-channel
tt

W+jets
fake-lepton

 [GeV]TMissing E
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

 [GeV]TMissing E
0 50 100 150

Y
ie

ld

0

100

200

300

400

500

Data
s-channel
t-channel
tt

W+jets
fake-lepton

 [GeV]TMissing E
0 50 100 150

ev
en

t 
yi

el
d

0

5

10

15

20

25

30
DØ Run II Preliminary

 [GeV]TMissing E
0 50 100 150

ev
en

t 
yi

el
d

0

5

10

15

20

25

30

Data
s-channel
t-channel
tt

W+jets
fake-lepton

 [GeV]TMissing E
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9

10

 [GeV]TMissing E
0 50 100 150

Y
ie

ld

0

1

2

3

4

5

6

7

8

9

10
Data
s-channel
t-channel
tt

W+jets
fake-lepton

Figure A.9: Muon channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for ET (jet1) (first row), ET (jet2)

(second row), ET (jet3) (third row), ET (µ) (fourth row), and the E/T (fifth row).
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Figure A.10: Muon channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for η(jet1) (first row), η(jet2)

(second row), η(jet3) (third row), and the η(µ) (fourth row)
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Figure A.11: Muon channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for φ(jet1) (first row), φ(jet2)

(second row), φ(jet3) (third row), φ(µ) (fourth row), and the E/T (fifth row).
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Figure A.12: Muon channel distributions before tagging (left), and in the single (middle) and double

(right) tag channels. The data and background model are compared for the Number of Jets (first row),

MT (W) (second row), M(W,jet1) (third row), and M(W,tag1) (fourth row).
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Figure A.13: Muon channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for ET (jet1) (first row), ET (jet2) (second row), ET (jet3) (third row),

ET (µ) (fourth row), and the E/T (fifth row).
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Figure A.14: Muon channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for η(jet1) (first row), η(jet2) (second row), η(jet3) (third row), and

the η(µ) (fourth row).
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Figure A.15: Muon channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for φ(jet1) (first row), φ(jet2) (second row), φ(jet3) (third row), φ(µ)

(fourth row), and the φ(E/T ) (fifth row).
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Figure A.16: Muon channel distributions in the W+jets and tt̄ enhanced samples. The data and

background model are compared for the Number of Jets (first row), MT (W) (second row), M(W,jet1)

(third row), and M(W,tag1) (fourth row).
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Appendix B

Calculation of Reconstructed

Physics Objects

To measure properties of the W boson and the top quark in our single top events, and

later use these to aid in isolating our signal, we must reconstruct the four-momentum

of each particle. The W boson is constructed from the lepton and neutrino from its

decay. The four-momentum of the lepton is completely measured by the detector, but

the noninteracting neutrino is measured through the missing transverse energy (E/T ) in

the event. This leaves an ambiguity in the z component of the neutrino momentum. To

recover this quantity, we constrain both four-vectors to reconstruct the W boson mass:

M2
W = E2

W − ~p2
W (B.1)

= (E` + Eν)
2 − (~p` + ~pν)

2 (B.2)

= 2(E`

√

p2
z,ν + E/T

2 − ~pT,` · E/T − pz,`pz,ν) (B.3)

Solving the quadratic equation for pz,ν, we find

pz,ν =
βpz,` ±

√

E2
` (β

2 − E/T
2
p2

T,`)

p2
T,`

and β =
M2

W

2
+ ~pT,` · E/T (B.4)
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There remain two difficulties: there are two solutions to pz,ν, and a non-trivial fraction

of events have no real solution (the value under the square-root is negative because the

E/T is too large and results in a MW greater than the known value). To deal with these

issues, we first force the measured transverse mass of the W , MT (W ), to be less than

or equal to the true W boson mass (MW = 80.43 GeV), scaling the components of the

transverse neutrino momentum as necessary. If the value under the square root still

remains negative, we set it to zero, and use the single remaining solution. Otherwise,

we choose the smaller of the two |pz,ν| solutions.

For completeness, the W transverse mass is defined as:

MT (W ) =
√

(El
T + Eν

T )2 − (~p l
T + ~p ν

T )2 (B.5)

=
√

2El
T Eν

T (1 − cos(φl − φν)) (B.6)

and one expects to see a kinematical edge or “Jacobian edge” in the MT (W ) distribution

at the true mass of the W boson, and this is indeed observed in our analysis (see Figures

A.4 and A.12).

To reconstruct the top quark in our events, we must use the W boson and the b-quark

jet from the top decay. Since we do not definitively know which jet is the correct b-quark

jet, we can reconstruct the top quark with the leading jet or the leading b-tagged jet,

and the W boson. The four-momentum and top quark mass are then defined as:

~ptop = ~pW + ~pjet (B.7)

Mtop =
√

(EW + Ejet)2 − (~pW + ~pjet)2 (B.8)
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Appendix C

Decision Trees

Another multivariate technique that can be used to discriminate between signal and

background in a data sample is the decision tree. While we do not apply this technique

for our final background discrimination, we do make use of its ranking feature for all

input variables. A basic description of how a decision tree works, and an explanation

of the ranking value that we use for neural network input variable optimization will be

given.

A decision tree starts with a single node that contains all signal and background

events. Selecting from the pool of input variables, this root node adds on a branch node.

The branch node represents an input variable, and an associated cut on that variable,

for example the “HT AllJets > 96.82” branch in Figure C.1. Events are passed through

this node, and if they pass the cut condition, they are sent to the right or “true” branch,

and if they fail it, they are sent to the left or “false” branch. After all events have

been passed through a branch node, the purity and the gini value for the true and false

branches can be calculated. The purity and gini value are defined as:

Purity = P =

∑

s Ws
∑

s Ws +
∑

b Wb

(C.1)

gini = Σ(Ws + Wb)P (1 − P ) (C.2)
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TransverseMass_Jet1Jet2 > 117.3 ?

HT_AllJets > 96.82 ?

TransverseMass_Jet1Jet2 > 150.7 ?

BestTopMass > 205.6 ?

0.72Jet2Pt_NotBest > 47.16 ?

Cos_LeptonQZ_BestTop > –0.1071 ?

0.770.43

Start

Test ?

Purity

truefalse

Branch
node

End node:
return purity

Key

Figure C.1: An example path through a decision tree. The root node is the start, and events are

successively passed through boolean conditions at each branch node until the desired purity is reached

in a leaf, or there are too few events left to continue further branching.

where Ws and Wb are the weight of the signal and background events respectively (the

sum of all signal events and background events are each normalized to unity for decision

tree training). The purity gives the fraction of signal events after a given branch node,

and the gini value takes both signal and background events into acount after a node,

and becomes smaller as discrimination power increases. The variable and cut value at

each branch node are thus chosen to yield the greatest improvement in the gini value.

Branch nodes are iteratively created until a branch either has a purity of 1.0 or there

are less than 100 events in the branch. The termination point thus becomes a leaf,

and the purity of this leaf is the output of a decision tree function. At each branch

node in the tree, all variables are available for use, and the same variable can be used

multiple times throughout the tree if it yields the greatest gini improvement. The

variable ranking values used for the neural network optimization (Tables 5.3–5.7) are

100 × (gini improvement) by that variable. As shown in our ranking tables, the first

variable has the largest gini improvement value from the starting value in the root node

of 0.5, and further variables provide incremental improvements. Further details of the
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decision tree algorithm can be found in the literature [119], and a current high energy

physics analysis applying the method at the MiniBooNE experiment [120].
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