A,
//
///

g,
7™
Pt

s

e Central “coordination” process.

e Performs run control functions:

Users talk to COOR to use the system.

Configuration and run transition requests go
through COOR.

COOR sends commands to the other compo-
nents of the system.

COOR maintains a model of the current de-
tector configuration.

Users can allocate individual pieces of the de-
tector for readout and control.

*+ COOR ensures that requests don’t conflict
with each other.

COOR steps the various pieces of the system
through run transitions.

e Full documentation:
http://www-d0.fnal.gov/d0dist/dist/packages/
coor/devel/doc/coorover.ps

“s\s\\\\\\

4 s

Linux PCs

7 %

i)
7

o

%%

2

NT Level 3

s

o~

%,
s
g

%
P

Trigger and Readout

gy,
7%

7%
v 4
b

74
by
?

g
A
7%
L

oo

o

V.

Z

%,

AT

73 3 3
L S S W
T 5 m
Q Q 7
\ |
\ \
. .
7 7
. |
_ | |
. |
S - m W
B|IIBETT m
s B mmmmmy .
. \\\H\ smw \ \
7 = . ? ’ \
W \ o 7 \
ot \ a 7 |
W g \\w\\\ W S
. | € 7 3
o . - % 7
4 7 . 7
. = 7 < %7 7
ry : . § b | B
b 3 N 7

SRy
& 5

% 7
"//////
o
7

% H
%,

"//////
gy

///
7
//”"4
7

Taker

Resourece files

Config files

N\
CO0R [==

State dump

Level 1

Logger
4 Comics
Level 3
EPICS
devices

e Processes to which COOR sends information are
called downloaders. COOR initiates these con-
nections. Processes that connect to COOR to
request services or information are called clients.

N
§ S

PO
\\\\ :
N’ W

Setup:

— setup dOonline

Start:

— start_daq coor

Stop:

— stop_daq coor

Coor usually runs on dOolc. It appears in ps list-
ings as a process running coormain.x.

Log files:

— /online/log/coor/*.out

* Standard output/error. Stack tracebacks
will appear here in the event of a crash.

— /online/log/coor/YYYY/MM/*.log

x Daily log files. Contains detailed tracing of
activities.

e Reinitialize:
— idinitcoor

* (Will only work if no client has allocated
resources.)

— initcoor --force

x (Force all clients to give up resources they've
allocated.)

— Drops and reestablishes connections to all down-
loaders. Preserves all clients connections. Rereads
parameter and resource files.

e Request SCL init:

— sclinit

e Reinitialize L1 framework:
— initlifw

— (No need to redo downloads.)

e Declare store beginning and end:
— store_begin Store-number

— store_end

e Use ‘coorinfo type' to get information about:

clients — All connected clients.
crates — All crates owned by some clients.

downloaders — Status of COOR’s connections
to all downloaders (and SES).

itc — All of COOR’'s ITC connections.
11bits — All defined L1 trigger bits.
liegs — All defined L1 exposure groups.
13bits — All defined L3 trigger bits.
store — The current store.

streams — All defined streams.

%

s

,,,,,,,,,,
:
7
W

e Primary user interface for controlling COOR.

e Start with ‘taker’.

e Modify menu:
— Change Trigger...
— Free Trigger
— Revalidate
— Invalidate...
— Recording
— Change Prescales...
— Prescale Set...
— Run Parameters...
— Ask Begin/End Questions

— Reenable auto-disabled triggers

-
N

$
\\\\\« \\\\\§ \\\\v“

e Displays current state.
e Use View menu to control what's displayed.

e Click on an item to display internal attribute val-
ues.

\

e Control menu. (Caution: errors not reported.)
— Flush log
— Reconnect
— Reinitialize
— Force reinit
— L1FW init
— Force timeout
— Stop COOR

| Red Not connected.
— Yellow — Waiting for reply.
e Clients:
— Neutral — Connected, but no configuration
loaded.
— — Configuration loaded.
— — Running.
— Bkl — Paused.
— Yellow — Transition in progress.
s Cleaning up after abort or discon
nect.
e Items:
— Neutral — Not allocated.

. — Allocated and valid.

 Red Allocated and invalid.

MR

— Yellow — Download pending.

Detector modeled by a collection of objects, with
names of the form class:obj.

— Some are permanant, some are created as
needed.

Types of objects include connections, clients, and
items (everything else).

Items have attributes. (In the coormon display,
these start with ‘d_’" or ‘i_".) Object attributes
are specified when a configuration is loaded.

Items can be owned by clients. An item may be
owned by multiple clients, provided they specify
the same attribute values. A client may allocate
an item exclusively, meaning no other client can
allocate it. Some items are always allocated ex-
clusively (e.g., L1 bits).

Owned item states:

— Valid — Item has been programmed to the
requested state.

— Invalid — Item is not known to be in the re-
quested state; a download is required.

— Downloading — A download for this item is
pending.

10

To start a run, all items owned by a client must
be valid.

When a start run is requested, COOR attempts
to make all invalid items owned by the client valid.

To force this without starting a run, select ‘Reval-
idate’ from the taker menu.

Use the ‘Invalidate’ item from the taker menu to
inform coor that an item needs to be redown-
loaded.

If a downloader connection breaks, the items it
manages are marked as invalid.

— Implies that, for example, when L3 is reset,
you don’'t need to redownload the configura-
tion — just try to start it again.

11

e Simplified

N e

® 8 ®
N Y 1 PR . N
NI N W Y} Y N9) faY WY o

client state diagram.

o

done / startrun

Y
%

it

7 7

7

Wb

disco

config

start / revalidate

stop / disablelt

pause / disablel1

12

N
NN
NN

A

NI
NI

N\
NN

=
Yt

N e & g o sl
§ ¥ ¥ N
N LW LET LY

COOR/client communication uses text commands.

Coortalk allows sending those commands directly.

Start with ‘coortalk’. Exit with Control-D.

Some useful commands:

help — Get a list of commands.

info type — AS earlier.

disconnect dnl... — Drop connection to dnl.
reconnect dnl... — Reconnect to dnl.
force_invalidate pattern — Invalidate items

matching RE pattern.

scl_init — Generate a SCL init.

timeout — Force a download timeout.
broadcast text — Send a message to all clients.

exitcoor — Tell coor to exit.

force_free run/client nb ... — Force clients
to give up resources.

force_pause run/client nb ... — Pause runs.
force_stop run/client nb ... — Stop runs.
reinit — Reinitialize coor, but only if there

are no owned resorces.

force_reinit — Reinitialize coor.

13

/online/data/coor/coor.params

Read during startup and reinitialization.

Taker, coormon, coortalk read it too.

Format is Python source.

Host/port addresses used by coor are listed here.

List of hosts allowed to connect to coor is also
here.

Don’t change unless requested by experts.

14

7
i
i
2
2y

—n
3]

o,

77

2% 3
Yoo
s
s
7
(N
7 9
YA

[5
i
P o

g
%

77
77
%%
P,
%
"

PR
N

\ N
N

e Resource file.
— /online/data/coor/resources/coor_resources.xml
— Read during startup and reinitialization.

— Describes the available detector resources.

x Assignment of names to crates, L1 terms,
etc. is done here.

— Don’t change unless requested by experts.

e Trigger configurations.
— Live under /online/data/coor/configurations.

— Canned configurations that can be selected
from taker.

e Current run number.
— /online/data/coor/runnumber

— Don’t change!

15

;

////
7
J

v

oz
iy
(4
it

7
7

%,

)

%
v

%

N
L N

v
7

7
2
7%%
Wi
7

7
77

Can be used to check trigger configurations.

Run with

— coorsim_onl configuration

— configuration can be a file in the configuration
tree, or a path to a file somewhere else.

Will output the text that COOR would send back
to Taker.

Will create in the current directory a bunch of files
containing the text that COOR would send to the
downloaders, as well as logging information.

16

7
]
7

it
g
i’
s
2

7 7
J}
g
A
i

2
%,
g,
77

H
vt

Ve
% %
GAIIIII.
%
i)
16
ety

o,
77
4

e To force reinitialization of one of the processes
COOR talks to, start coortalk and:

— disconnect dnl
— reconnect dnl

— NoO need to free the trigger configuration —
the necessary commands will be automatically
resent when needed.

o If COOR is taking a long time to respond, look on
the first row of coormon. If something is vellow,
that means COOR is waiting for a reply from that
process — so if it stays yellow for a long time,
that process may be having problems. Check its
log file, etc.

o COOR will timeout after one minute if it doesn’t
get a response. However, there's often cleanup
that has to be done afterwards that involves send-
ing more messages — for which COOR will also
wait a minute before responding. Thus, if some-
thing isn’'t responding, COOR can sometimes take
a couple minutes to complete an operation. If you
know that there is no point in waiting (because
whatever COOR'’s waiting for will never complete
successfully) you can try connecting with coortalk
and issuing ‘timeout’. That will force coor to
time out immediately.

17

