Online Systems Tutorial

24-Jan-2003

S. Fuess
Contents

- Online subsystems
 - Complicated figure, but useful for reference
- Node, disk assignments
- Accounts
- Access controls
- Monitoring
 - Big Brother
- Web servers
- Control Room consoles
Assignments

- Node assignments
 http://www-d0online.fnal.gov/www/sys/operations/node_assignments.txt

- Disk assignments
 http://www-d0online.fnal.gov/www/sys/operations/disk_assignments.txt
Accounts

- Two important factors:
 - Authorization – that an account is present for a user on a node
 - Granted to any DO user with need
 - Access to group account may be sufficient
 - Authentication – that one can demonstrate knowledge of a password
 - The only allowed mode of access originating from outside of the Online system is by
 - Kerberos, for UNIX systems
 - NTLMv2 for Windows systems
 - eventually – Windows users should be aware of pending changes
Accounts

- On the “interactive” (Control Room, Monitoring, Host) systems
 - Authorization
 - Local accounts for system use only
 - NIS accounts for personal and group users
 - NIS domain server is d0olcluster
 - Personal accounts are “locked out” from non-Kerberos authentication
 - Authentication
 - Only root account has a local password
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
 - Group NIS accounts
 - NIS password only for local logins
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
 - Keytab Kerberos credentials (i.e. d0cap/d0/d0ol04.fnal.gov@FNAL.GOV)
 - Personal NIS accounts
 - Kerberos password for local logins (on most nodes)
 - Kerberos or .k5login access for remote logins
 - If a .k5login exists, then must include own credentials
Accounts

• On the “DAQ” (Readout, Level 2, Level 3) systems
 ♦ Authorization
 ▲ Local accounts for system, DAQ, and expert users
 ♦ Authentication
 ▲ Only root account has (should have) a local password
 – Kerberos .k5login access for remote logins
 • Personal Kerberos credentials (i.e. user@FNAL.GOV)
 ▲ DAQ local accounts
 – Kerberos .k5login access for remote logins
 • Personal Kerberos credentials (i.e. user@FNAL.GOV)
 • Keytab Kerberos credentials (i.e. d0run/d0/d0ol07.fnal.gov@FNAL.GOV)
 ▲ Expert user local accounts
 – Kerberos or .k5login access for remote logins
 • Personal Kerberos credentials (i.e. user@FNAL.GOV)
Accounts

- On the Controls systems
 - Authorization
 - Local accounts for expert users
 - Authentication
 - Expert user local accounts
 - Local password for local login

- No Kerberos! Remote logins are not allowed, and blocked by Online router
Some useful commands

- To check group account access, e.g.
  ```
  cat /home/d0cap/.k5login
  ```

- To see if a user has an NIS account, e.g.
  ```
  ypcat passwd | grep fuess
  ```

- To remotely log in to group account on an Online node, e.g.
  ```
  kinit fuess
  ssh -l d0cap d0ol04
  ```

- To log in to another node from a group account, e.g. as d0run
  ```
  setup d0online
  d0ssh -l d0cap d0ol04
  ```
Access controls

- Essential components of the computer security plan for the Online system are that:

 - The detector can operate with the Online system completely isolated from the external world
 - Well-defined isolation points
 - Can isolate from Offline, FCC, or both
 - Local versions of essential services
 - DNS server
 - KDC
 - Sufficient space to buffer event data for > 24 hours

 - Network access to the Online system is tightly controlled
 - Enforced by router module in Online switch acting as a “firewall”
 - Policy is “default deny”

 All this leads to functional limitations and operational confusion…
Access controls

Access lists are set for each VLAN (subnet) boundary *for each direction of network packets*

Format example:

[permit|deny] protocol source-host [eq port] destination-host [eq port]

“Incoming” examples:

permit tcp any any eq 22
permit tcp host odsoem host d0ola eq 1521

“Outgoing” examples:

permit ip any any reflect allow-231-out
• “Reflective” access
 ♦ Allowed outgoing packets create a temporary hole in the firewall, allowing return traffic between the specific node/port pairs
 ▲ Lifetime of 5 minutes
 ▲ Lifetime reset on each outgoing packet

 ♦ Normal example: Online access to Offline web page
 ▲ Web client on dynamically assigned port \(\rightarrow \) port 80 on web server
 – Opens hole for return traffic
 ▲ Port 80 from web server \(\rightarrow \) web client port
 ▲ Each new request “reopens” the hole
 – Note: automatically updating page will work, as tcp acknowledgement packet will reset timer
“Reflective” access (cont’d)

- Catch #1: telnet from Online to Offline
 - telnet client on dynamically assigned port → port 23 on Offline server
 - Opens hole for return traffic
 - Port 23 from Offline server → telnet client port
 - Allowed *within timeout period* for return traffic
 - If > 5 minutes inactivity, then initiate activity from Online client side
 - Works, opens new hole
 - If > 5 minutes inactivity, but then new activity from Offline server side
 - Blocked! Hole has expired
 - For example, output from long-running program on Offline server

Solution: there is none
• “Reflective” access (cont’d)
 ✭ Catch #2: telnet from Offline to Online
 ▲ Offline telnet client on dynamically assigned port → port 23 on Online server
 – Explicitly allowed in Access Control Lists (ACLs)
 ▲ Port 23 from Online server → Offline telnet client port
 – Explicitly allowed in ACLs
 ▲ Start X application on Online server:
 Online X client on dynamically assigned port → port 6000 on Offline X server
 – Works, opens new hole for return traffic
 ▲ Port 6000 from Offline X server → Online X client port
 – Allowed *within timeout period* for return traffic
 ▲ If > 5 minutes inactivity, then initiate activity from Offline (X server) side
 – Blocked! Hole has expired
 – For example, attempting input into GUI

Solution: tunnel X through an ssh connection
Access controls

- “Reflective” access (cont’d)
 - Recommendation: ssh from Offline to Online (configured to forward X!)
 - Offline ssh client on dynamically assigned port → port 22 on Online server
 - Explicitly allowed in Access Control Lists (ACLs)
 - Port 22 from Online server → Offline ssh client port
 - Explicitly allowed in ACLs
 - Start X application on Online server:
 Online X client on dynamically assigned port → port 6010 on Online
 Accepted by Online sshd daemon, forwarded to Offline ssh client port
 - Through explicitly allowed ssh hole already in use
 - Received by Offline ssh client, forwarded to Offline port 6000 (X server)
 - All subsequent X communication tunneled through open ssh hole
Online Tutorial 24-Jan-03

Access controls

- Some useful commands
 - To see if X forwarding is on by default (UNIX)
 cat /etc/ssh_config
 ▲ Should see
 ForwardX11 yes

 - To see if X forwarding is on for own account (UNIX)
 cat ~/.ssh/config
 ▲ Should see
 ForwardX11 yes

 - To check that X is forwarded:
 Echo $DISPLAY
 ▲ Should see the *remote* node with a server number 10 or higher
Monitoring – Big Brother

Big Brother main display

click buttons for more info

http://www-d0online/bb
Monitoring – Big Brother

Summary display

(click button)
Monitoring – Big Brother

Big Brother larrd display
CPU, memory, disk usage
Monitoring – Big Brother

Big Brother topp display

Warning: all BB updates are synchronized, so often report themselves as current major user!
Monitoring – Big Brother

Big Brother disk display

Local disk usage

See d0ola/b/c for cluster disks
Monitoring – Big Brother

Big Brother `procs` display

```plaintext
httpd >1 - not running
inetd >=1 - 2 instances running
missed >=1 - 1 instance running
afsd >=1 - 1 instance running
mounted >=1 - 1 instance running
ypserv >=1 - 1 instance running
update >=1 - 1 instance running
kioadsv >=1 - 1 instance running
init >=1 - 2 instances running
ibus >=1 - 12 instances running
xmt >=1 - 1 instance running
send >=1 - 0 instances running
sendmail >=1 - 1 instance running
smtpd >=1 - 1 instance running
smtp >=1 - 1 instance running
portmap >=1 - 1 instance running
blogin >=1 - 1 instance running
syslog >=1 - 1 instance running
```
Web Servers

- There are several “internal” and “external” servers
 - Internal: visible only from within Online system
 - External: visible from anywhere
- One strategy is to mount / display from *same* disks
 - NFS mounted from a central server
 - Read-only mount to external servers
 - Appropriate ACL holes in router
 - Internal server:
 - http://www-d0ol.fnal.gov (alias for d0ol01)
 - External server:
 - http://www-d0online.fnal.gov (alias for d0online2)
- Other strategy is for server to act as client of internal node
 - Appropriate ACL holes in router
 - External server:
 - http://www-d0l3mon.fnal.gov
Control Room consoles

- Linux provides, by default, 6 serial and 1 graphical sessions
 - Graphical session is default
 - Switch among them with CTRL-ALT-F1 through CTRL-ALT-F7 keys
 ▲ CTRL-ALT-F7 is the graphical session
- X is the windowing system for Linux
 - As opposed to Windows, where X has to be run “on top of” the native windowing system
 - The windowing system is the function of the “X server”
 ▲ /etc/X11/X
 - Configured by /etc/X11/XF86config-4
 ▪ Sets properties of graphics cards and monitors
 - Manages the DISPLAYs
 - Restart with CTRL-ALT-BACKSPACE – logs you out!
 - The X “display manager” runs to manage graphical logins
 ▲ /usr/X11R6/bin/xdm
 - The X “window manager” runs upon login; we use fvwm
 ▲ /usr/X11R6/lib/X11/fvwm2
 - Configured to set virtual windows, menus, etc
 - Restartable “hot” from menu