Contents

- Online functions
- Network view
- Event data flow
- Node, disk assignments
- Accounts
- Access controls
- Monitoring
- Web servers
- Control Room consoles
Online Functions

- **Infrastructure**
 - Network
 - Storage systems
 - Network file system (NFS)
 - User information
 - NIS / yp
 - Backup system
 - BRU

- **Control Room**
 - User environment

- **Monitoring**
 - Examine platforms

- **Event Data path**
 - From Level 3 to FCC
 - Including event metadata

- **Control System**
 - Hardware monitoring
 - EPICS
 - “SDAQ”
 - Alternative readout path

- **ORACLE Database**
 - Primarily “pass through”, with data propagated to Offline database
Online network view

- **Level 2**
 - Control Room
 - Monitoring
- **Level 3**
 - Control Room
 - Monitoring
 - Controls
- **Subnet Key**
 - Interactive
 - Level 2
 - Level 3
 - Event
 - SAM
 - Beams
 - Offline

- **Ethernet Switches**
 - s-d0-dabmchN
 - s-d0-dol-2
 - s-d0-dol-3

- **DAQ**
 - d0olc

- **ACNET X-terms**

- **ACNET gateway**
 - d0olgwNN

- **Level 3**
 - d0lxNNN

- **JBOD buffer disks**
 - /buffer/bufNNN

- **Direct Attached Or SAN disks**

- **RAID disks**
 - /home
 - /online
 - /projects
e tc

- **Online Tutorial 11-May-04**
Event Data Flow

Flow Control

No Flow Control

Collector / Router

Data Logger

Buffer Disk

SAM Interface

7 Collector / Router

Data Logger

Buffer Disk

SAM Interface

1 Distributor

EXAMINE

82 L3 nodes

Routing based on Stream ID

3 Collectors

Distribution based on Trigger type

Online Tutorial 11-May-04
Assignments

• Application / service assignments kept at

 /online/data/d0online_names/d0online_names.py

 If a node dies and the application is relocated, this file must be edited
 and the instructions within followed

• Node assignments

 http://www-d0online.fnal.gov/www/sys/operations/node_assignments.txt

 http://www-d0online.fnal.gov/www/sys/operations/group_assignments.txt

• Disk assignments

 http://www-d0online.fnal.gov/www/sys/operations/disk_assignments.txt
Two important factors:

- **Authorization** – that an account is present for a user on a node
 - Granted to any DO user with need
 - Access to group account may be sufficient
 - Check with “ypcat passwd” or “ls /home”
 - A null /home/<user>/.k5login file indicates the account is locked out!

- **Authentication** – that one can demonstrate knowledge of a password
 - The only allowed mode of access originating from outside of the Online system is by Kerberos
 - Almost… there are some Windows nodes with very restricted external access
Accounts

- On the “interactive” (Control Room, Monitoring, Host) systems
 - Authorization
 - Local accounts (e.g. root) for system use only
 - NIS accounts for personal and group users
 - NIS domain server is d0olcluster
 - Personal accounts are “locked out” from non-Kerberos authentication
 - Authentication
 - Only root account has a local password
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
 - Group NIS accounts
 - NIS password only for local logins
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
 - Keytab Kerberos credentials (i.e. d0cap/d0/d0ol04.fnal.gov@FNAL.GOV)
 - Personal NIS accounts
 - Kerberos password for local logins (on most nodes)
 - Kerberos or .k5login access for remote logins
 - If a .k5login exists, then must include own credentials
On the “DAQ” (Readout, Level 2, Level 3) systems

- Authorization
 - Local accounts for system, DAQ, and expert users

- Authentication
 - Only root account has (should have) a local password
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)

- DAQ local accounts
 - Kerberos .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
 - Keytab Kerberos credentials (i.e. d0run/d0/d0ol07.fnal.gov@FNAL.GOV)

- Expert user local accounts
 - Kerberos or .k5login access for remote logins
 - Personal Kerberos credentials (i.e. user@FNAL.GOV)
Accounts

- On the Controls systems
 - Authorization
 - Local accounts for expert users
 - Authentication
 - Expert user local accounts
 - Local password for local login

- No Kerberos! Remote logins are not allowed, and blocked by Online router
Accounts

- Some useful commands
 - To check group account access, e.g.
    ```
    cat /home/d0cap/.k5login
    ```
 - To see if a user has an NIS account, e.g.
    ```
    ypcat passwd | grep fuess
    ```
 - To remotely log in to group account on an Online node, e.g.
    ```
    kinit fuess
    ssh -l d0cap d0ol04
    ```
 - To log in to another node from a group account, e.g. as d0run
    ```
    setup d0online
    d0ssh -l d0cap d0ol04
    ```
Accounts

• Kerberos keytab files

How does this work?

setup d0online
d0ssh -l d0cap d0ol04

On each node there is a specific (perhaps empty) set of files of the sort
/var/adm/krb5/d0smt_keytab
accessible only by the named user

These contain the Kerberos key which allows the specific group (e.g. d0smt) account
on that node (e.g. d0ol44) to obtain a principal which is of the form
d0smt/d0/d0ol44.fnal.gov@FNAL.gov

This principal is then listed within the .k5login of any account for which access is
needed

The d0ssh script is only 2 lines: kinit and ssh
Access controls

• Essential components of the computer security plan for the Online system are that:
 ♦ The detector can operate with the Online system completely isolated from the external world
 ▲ Well-defined isolation points
 ▲ Can isolate from Offline, FCC, or both
 ▲ Local versions of essential services
 – DNS server
 – KDC
 ▲ Sufficient space to buffer event data for > 24 hours

 ♦ Network access to the Online system is tightly controlled
 ▲ Enforced by router module in Online switch acting as a “firewall”
 ▲ Policy is “default deny”

All this leads to functional limitations and operational confusion…
Monitoring – Big Brother

Big Brother main display
click buttons for more info

http://www-d0online/bb
Monitoring – Big Brother

Summary display

click button
Monitoring – Big Brother

Big Brother larrd display
CPU, memory, disk usage
Monitoring – Big Brother

Big Brother `topp` display

Warning: all BB updates are synchronized, so often report themselves as current major user!
Monitoring – Big Brother

Big Brother disk display
Local disk usage
See d0ola/b/c for cluster disks
Monitoring – Big Brother

Big Brother procs display
Web Servers

- There are several “internal” and “external” servers
 - Internal: visible only from within Online system
 - External: visible from anywhere
- One strategy is to mount / display from *same* disks
 - NFS mounted from a central server
 - Read-only mount to external servers
 - Appropriate ACL holes in router
 - Internal server:
 ▲ http://www-d0ol.fnal.gov (alias for d0ol01)
 - External server:
 ▲ http://www-d0online.fnal.gov (alias for d0online2)
- Other strategy is for server to act as client of internal node
 - Appropriate ACL holes in router
 - External server:
 ▲ http://www-d0l3mon.fnal.gov
Control Room consoles

- Linux provides, by default, 6 serial and 1 graphical sessions
 - Graphical session is default
 - Switch among them with CTRL-ALT-F1 through CTRL-ALT-F7 keys
 - CTRL-ALT-F7 is the graphical session
- X is the windowing system for Linux
 - As opposed to Windows, where X has to be run “on top of” the native windowing system
 - The windowing system is the function of the “X server”
 - `/etc/X11/X
 - Configured by `/etc/X11/XF86config-4`
 - Sets properties of graphics cards and monitors
 - Manages the DISPLAYs
 - Restart with CTRL-ALT-BACKSPACE – logs you out!
 - The X “display manager” runs to manage graphical logins
 - `/usr/X11R6/bin/xdm`
 - The X “window manager” runs upon login; we use fvwm
 - `/usr/X11R6/lib/X11/fvwm2`
 - Configured to set virtual windows, menus, etc
 - Restartable “hot” from menu
Useful tools

- Check usage

 top

P (default) to sort by CPU usage
M to sort by memory usage

 Overutilization of swap space may indicate a memory leak problem

- Files, sockets, etc

lsof

 -p <pid>

 -i [udp,tcp]:<port>

 Gives a lot of information on open files, network connections

 (Tru64 nodes (d0ola/b/c) first require a ‘setup lsof’)

- Check network connections:

 netstat –a

- Check processes

 ps [-lef]

 ps –lfu <user name>

- Check memory utilization

 vmstat [repeat period]

 Can see swap I/O, local disk I/O
Common alarms

- **Disk utilization**
 - **Questions to ask:**
 - Is it a cluster or local disk?
 - Shared mount on d0ola / d0olb / d0olc
 - Is it a critical disk?
 - Cluster disks tend to be more important
 - Who’s to blame?
 - “User disks” (/home, /mnt/group)
 - How fast is it filling?
 - Check periodically, or use “larrd” plots in Big Brother

- **Memory utilization**
 - Linux will try to utilize all the physical memory
 - Applications plus buffer cache
 - Use “free” to see the split
 - When physical memory exhausted, then swap space used
 - This can greatly degrade performance
 - Identify problematic applications