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Outline
• Introduction
• Fundamental Questions
• The Standard Model of Particle Physics

– The third generation of leptons and quarks

• The Energy Frontier
– Fermilab Tevatron
– Dzero Experiment

• Results
– B Quark and Top Quark Measurements

• Outlook
• Conclusions



3 Reinhard Schwienhorst, Michigan State University

Introduction
• The Standard Model of Particle Physics has been very 

successful in explaining our observations over the past 
20 years
Only recently have there been some real puzzles: 
– Neutrino Oscillations
– Large top quark mass
– Dark Matter, Dark Energy

• Run II at the Tevatron is well on its way
– Physics at the energy frontier

• We are exploring uncharted territory
– Top Physics as precision measurements

• Top mass measurements have large impact on Higgs expectation
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Fundamental Questions

What do we want to know?
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Daß ich erkenne, was die Welt
Im Innersten zusammenhält

So that I may perceive whatever holds
The world together in its inmost folds

Faust, Johann Wolfgang von Goethe
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Relax.
What is Mind?

No matter.
What is Matter?

Never mind!

Homer J Simpson
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Particle Physics Questions and Challenges
• What is the origin of mass?

– What is the origin of electroweak symmetry breaking?
– Is it really the Higgs Mechanism? 

• Particles acquire mass through interactions with the Higgs boson

– Does the Higgs boson exist?

particle

Feynman diagram for
Higgs Boson Interactions

Higgs boson
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Particle Physics Questions and Challenges
• What is the origin of mass?

– What is the origin of electroweak symmetry breaking?

• Is there an underlying symmetry?
– Supersymmetry?  –  String Theory? 
– Extra spatial dimensions?
– Technicolor?
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Particle Physics Questions and Challenges
• What is the origin of mass?

What is the origin of electroweak symmetry breaking?
– Is it the Higgs Mechanism? Does the Higgs boson exist?

• Is there an underlying symmetry?
– Supersymmetry?  –  String Theory? 
– Extra spatial dimensions?
– Technicolor?

• The Cosmological Connection:
– Why is there more matter in the universe 

than anti-matter?
• Why does anti-matter not behave like matter?

– What is dark matter?
– What is dark energy?
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Experimental Particle Physics

Not asking general questions
and receiving limited answers,

but asking limited questions
and finding general answers!

Galileo
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This talk will be about 
those limited questions
and how we go about 

answering them
The minute particular
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State of the Art

What do we know already?
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The Standard Model of Particle Physics
• Three generations of 

spin-½ fermions
• They interact through 

the exchange of spin-1 
bosons force carriers

• SU(3)C×SU(2)L×U(1)Y 

gauge structure
• Plus Antimatter:

An anti-particle for 
each particle

• Plus the Higgs boson
giving mass to 
particles
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Interactions in the Standard Model

- Gives masses to particles

fermion
W boson 

other fermion

Charged Current Electroweak 
Interactions

Z boson

fermion

Neutral Current Electroweak 
Interactions

gluon

quark

Strong Interactions

fermion

Higgs boson

fermion

Yukawa Coupling

fermion

- and electro-magnetism

- Holds atomic nuclei together- Responsible for nuclear beta decay

quark
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What matter is made of: The 1  st Generation

Electrons Up and Down Quarks
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How a High-Energy Experimentalist sees 
the 1  st Generation Fermions

• Electrons:

– Stable, charged ( deflected in a magnetic field)
– Produces electromagnetic shower in matter

• Synchroton radiation of photons which convert to electron-positron 
pairs which emit synchroton radiation which.....

detector materialvacuum
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How a High-Energy Experimentalist sees 
the 1  st Generation Fermions

• Up or Down Quarks:

– Free quarks don't exist (quark confinement)
• Quarks produced in interactions hadronize to mesons or hadrons
• These typically travel in the same direction  hadronic jet

– Jet produces a hadronic shower through interactions with nuclei

vacuum detector material
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• Particles at high energy

• Particles propagating in free space

• Particles interacting with matter
– In a detector

How a High-Energy Experimentalist sees 
the 1  st Generation Fermions

Use high-energy electrons and quarks
as experimental tools

quark jet

electron
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The 2  nd Generation
• Another set of leptons and quarks

– Muon and muon neutrino
– Strange and charm quarks

• Duplication of 1st generation, but at higher mass
• Subject of detailed measurements

• Very High Statistics Precision experiments
to probe details of the Standard Model

– Muon magnetic moment (g-2)
– CP-violation in the Kaon sector
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How most High-Energy Experimentalists 
see the 2  nd Generation Fermions

• Muon:

– Muons do not shower as they pass through matter
• They are charged, thus they loose energy through ionizing atoms as 

they pass through: Trail of ionization

vacuum detector material
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How most High-Energy Experimentalists 
see the 2  nd Generation Fermions

• Strange or Charm Quarks:

– Hadronic jet that produces a hadronic shower
– Strange and charm quarks look just like up or down quarks

vacuum detector material
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The 3  rd Generation
• Another set of leptons and quarks

– Tau and tau neutrino
– Bottom and top quarks

• Duplication of 1st generation, but at much higher mass
• Detailed investigations are just beginning

Focus of this talk
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The Third Generation of Leptons:
Neutrino Oscillations

• Neutrino mass Eigenstates are not weak interaction 
Eigenstates

• Consequence: neutrino oscillations
Production Propagation Interaction

m

nm n2 nt

t
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• Discovered 1977 at Fermilab
• Currently being studied extensively

 at e+e- colliders
– B-Factories

study decay of B0 mesons
– Detailed measurement of quark 

electroweak charged current Interactions
• Complex phase of CKM Matrix

The Third Generation of Quarks: 
Bottom Quark

q q'

W

CKM Matrix

V
qq'
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The Top Quark
• Discovered in 1995 at 

Fermilab by CDF and DØ
• Heaviest of all fermions

– 40 times heavier than b quark

• Couples strongly to Higgs 
boson
– Study electroweak symmetry 

breaking

• Only quark that decays 
before it hadronized
– Clean laboratory to study 

quark properties

King of Fermions
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Experimental Setup:
The Energy Frontier

Probe Physics at small distance scales 
by colliding particles at high energy 

proton anti-proton

u d

u

u d
u
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Experimental Setup:
Fermilab Tevatron in Run II
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Experimental Setup:
Fermilab Tevatron in Run II

• Proton-Antiproton Collider
• CM Energy 1.96TeV 

 Energy Frontier
• One interaction every 396ns

 Interaction Rate Frontier

CDF

DØ
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Experimental Setup:
Detector Configuration

Muon
Quark jet

ElectronTracking detector

Magnet

EM calorimeter

Hadronic
calorimeter

Muon detectors

Magnet

Beam pipe
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Experimental Apparatus: DØ Detector

 20 m/66 ft 

 1
4 

m
/4

6  
ft 
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Experimenters: The DØ Collaboration

➔ 19 countries 
➔ 80 institutions
➔ 670 physicists
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Particle Production at the Tevatron
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Storage 
tape

Collecting Interesting Events:
Trigger System

• Reduce rate of interactions (inelastic collision rate) to 
manageable level that can be written to storage tapes

• Record “interesting” events 
– Select events containing high-energy final state objects

• Electrons, muons, quark jets

2.5MHz 50Hz

Select interesting
events
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tape

Level 2Level 1

Level 3

2.5MHz 1.5kHz 800Hz
50Hz

Collecting Interesting Events:
Trigger System

• DØ experiment: three-level trigger system
– Reconstruct objects at every level

• Decreasing event accept rate
• Increasing time per decision
• Increasing level of sophistication
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Tevatron Physics Program
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Tevatron Physics Program
• Precision QCD Physics

– Detailed studies of strong interactions
– Jet production cross section and angular correlations

• Precision Electroweak Measurements
– Detailed studies of electroweak interactions
– W and Z boson (+ jets) production cross section
– W Boson mass measurement
– Angular correlations

• Direct Higgs Searches
– Search for the Standard Model Higgs Boson
– Detailed studies of background processes

• Direct Searches for New Physics
– Search for Supersymmetry, extra spatial dimensions, ... 
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Tevatron Physics Program
• Precision QCD Physics
• Precision Electroweak Measurements
• Direct Higgs Searches
• Direct Searches for New Physics
• B Quark Physics

Why is there more matter than antimatter in the Universe?
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B Physics
• Precision measurements of B meson lifetime and decay 

properties
– Does matter behave differently than anti-matter?

Early Universe Todays Universe
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Studying the Third Generation of Quarks
at the Tevatron

bottom quark pairs B Physics
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Interaction point
(“primary vertex”)

Beampipe

Silicon detector

B-Physics: 
Charged Particle Track Reconstruction

Charged particle tracks
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Interaction point
(“primary vertex”)

Beampipe

Silicon detector

B decay 
(“secondary 
vertex”)

Example: B0J/ K0

s
,  J/mm,  K0

s
p+p-

B-Physics: 
Precision Track Reconstruction
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B-Physics at the Tevatron
• B meson lifetimes, B

s
 lifetime differences

• Branching ratios, asymmetries

• B
s
 Mixing



43 Reinhard Schwienhorst, Michigan State University

Tevatron Physics Program
• Precision QCD Physics
• Precision Electroweak Measurements
• Direct Higgs Searches
• Searches for New Physics
• B Quark Physics
• Top Quark Physics
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Studying the Third Generation of Quarks
at the Tevatron

top quark pairs
single top quarks Top Physics
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Tevatron Top Pair Physics
• Top Pair Production at a Proton-Antiproton collider

• Top Pair Studies at the Tevatron
– Production cross section

• Many different final states
• Test of QCD 

– Top mass measurements
• Implications for Standard Model Higgs

– Probe Top Quark electroweak interactions
• Top spin and W helicity measurement

q g t

q t

g t

tg

g

~85% ~15% 

t

W +

b

Top quark decay
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Top Pair Physics
• Unique final state:

t

t

W+

W-

b

b

proton antiproton

m+

nm

q
q'

lepton
b-quark jet

b-quark jetlight quark jet

light quark jet

Neutrino
(missing energy)
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• Identification of b-quark jets
– Soft-lepton-tag

• Reconstruct muon inside 
jet

– Secondary Vertex Tag
• Reconstruct b-meson 

decay vertex
– Impact Parameter Tag

• Identify tracks from 
b-decay
– lifetime probability

secondary
vertex

impact parameter

muon-
in-jet

primary
vertex

B-Quarks as a Tool: b-tagging

Probability to tag a jet 
 in a top event:
● b-quark jet:      ~55%
● light-quark jet: ~0.5% 



48 Reinhard Schwienhorst, Michigan State University

Top Quark Mass
• Reconstruct both top quarks from decay products
• Main measurement in lepton+jets mode

– Top 1: l+n+jet   Top 2: jet+jet+jets
– Many possible jet permutations

• Several measurement techniques
– Identify proper permutation
– Use all, give weight to each
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Implications for Higgs Boson Mass
• W boson mass has virtual corrections due to 

top quark mass and Higgs boson mass

• W and top mass measurements constrain Higgs:
W

Higgs boson

W W

top quark

W b quark
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Single Top Physics at the Tevatron
• Electroweak Production of Single Top Quarks

• Observe Single Top Production
• Measure Production cross section

– Confirm Standard Model Prediction
• CKM matrix element V

tb
 

• Look for Physics beyond the Standard Model
• Measure top quark spin

Tevatron Single Top in Run II:

  s-channel   t-channel q

q'

W t

b

u d

b
t

W
V

tb
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Path towards Single Top Observation
• Cross Section is small in 

the Standard Model 

• Backgrounds are large
• Need to use advanced  signal-

background separation techniques
– Require b-jet tag
– Multivariate analysis

<23pb       <17.8pb  s+t channels)

<25pb         <5pb       <10.1pb  t-channel)          1.98pb

<19pb         <6pb<13.6pb  s-channel)          0.88pb

DØ (160pb-1)    DØ (new)       CDF95% C.L. Limits  Theory
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Outlook: Tevatron Future
• Luminosity expected to increase by a factor of ~10

– Collect 4-8fb-1 by 2009
– Keep running until the LHC produces Physics results

• B Quark Physics:
– Many precision measurements

– Observe B
s
 mixing

• Top Quark Physics:
– Measure top quark mass → further constrain Higgs mass
– Discover single top quark production

• Measure CKM matrix element V
tb
 

• Measure top quark spin
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Outlook: The Energy Frontier
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Outlook: The Energy Frontier
• The LHC at CERN is scheduled to start up in 2007

– Proton-Proton collisions at 14TeV 
– Bunch crossing every 25ns (40 MHz)

• Main Goals:
– Study origin of electroweak symmetry breaking
– Find the Higgs boson (if it exists)
– Discover supersymmetric particles (if they exist)

• Collect large samples of B quarks
– Precision B measurements

• Collect large samples of Top Quarks
– Precision Top Mass Measurement
– Precision Single Top measurements
– Top Quarks as tools
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Conclusions/Outlook
• This is an exciting time in Particle Physics

– On the threshold of a whole new regime of understanding

• The third generation fermions is at the heart
– Origin of mass, matter vs anti-matter, neutrino oscillations 

• The Tevatron and detectors are performing well
– We are collecting a large dataset at the energy frontier

• The LHC will turn on in a few years
– Extend energy frontier by a factor of 10

A decade of discovery ahead!A decade of discovery ahead!
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Resources
• Quantum Universe

http://interactions.org/quantumuniverse/

• Quarks Unbound
http://www.aps.org/units/dpf/quarks_unbound/index.html

• Particle Adventure
http://particleadventure.org/particleadventure/index.html

• Fermilab
http://www.fnal.gov

• Cern
http://www.cern.ch


