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Disclaimer: highlight general principles and guiding ideas

* Not necessarily mathematically rigorous
* Some of the same topics were addressed at PhyStat conferences
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Typical event analysis procedures

1) Cut-based event counting
2) Peak 1n a characteristic distribution
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Event counting

Apply cuts to variables
describing the event

— Object 1dentification

— Kinematic cuts on objects
— Event kinematics

Goal: cut until the signal
1s visible

— No background left

— Or large S/VB

Sensitive to any signal with
this final state

Requires understanding of
background
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Peak 1n a characteristic distribution

distribution for background
— Typically invariant mass >

Measure this distribution over a
large range of possible values i

Look for possible resonance peaks

Sensitive to any resonance with 3
this final state P

Background estimate for sidebands

"Bump Hunting"
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: : Example: b-quark
Find a variable that has a smooth di be. 5

iscovery at Fermilab




The energy frontier
* Colliding particles at the highest available energies

* Probe structure of matter at the most fundamental level

— Observe interactions at the smallest possible distances

— Produce never-before-seen particles

Pré‘: lva.oh Future: LHC
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Yield [counts]

Searches at the energy frontier
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Searches at the energy frontier

* Searches for new particles, phenomena, couplings

— Tevatron:

* Single top quark production
* Higgs boson search
* SUSY
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Searches at the energy frontier

* Searches for new particles, phenomena, couplings

— Tevatron:
* Single top quark production

* Higgs boson search LHC Higgs Sensitivity
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Searches at the energy frontier

* Searches for new particles, phenomena, couplings

— Tevatron:

* Single top quark production

* Higgs boson search

e SUSY
 Extra dim

— LHC:
* Higgs searches

e SUSY
 Extra dim
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Measurements at the energy frontier

— First measurements of properties, couplings
* With samples of limited size

* Example: Top quark mass
— 0 ~ 3 GeV with 1 bl
— Was the goal for 2 fb-1 g, 4

T T T ] | T I T T | I T T ] T I T T I ] T ]
experimental errors 68% CL:
LEP2/Tevatron (today)

lepton-+jets top mass, matrix element - Tevatron/LHC
i ikeli 80.60 - —— | c/Gigaz
Calibrated 2D Likelihood - I9a
DO Runll Preliminary i
7 § —
L i > B
- 1.1 1 © 80.50+
7 (@) =
1.08 — —
- =
1.06 — =
] 80.40
1.04 —
1.02
1= 80.30
E SM EETE
0.98 MSSM [
0.96 — 80.20 both models t
N Heinemeyer, Hollik, Stockinger, Weber, Weiglein '07 7|
0'94 _— 1 1 | 1 | 1 1 1 1 1 1 | 1 1 | 1 1 Il | | L]
:I T | TTTT TTTT | TTTT | TTTT | T TTT TTTT | TTTT | TTTT 1 60 1 65 1 70 1 75 1 80 1 85
150 155 160 165 170 1?5 180 185 mt [GeV]

M, (GeV)



Measurements at the energy frontier

* First measurements of properties, couplings
— With samples of limited size

— Example:

LHC SUSY particle >}
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Physics at the energy frontier

* Searches for new particles, phenomena, couplings
* First measurements of properties, couplings

* Multivariate techniques <> Adding more data

Making the most out of
small samples of events
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How to improve upon

Event counting
and
Bump hunting

Reinhard Schwienhorst, Michigan State University
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Bayesian limit

* For each analysis, there exists a fully optimized
signal-background separation

— Target function, also called Bayes discriminant or Bayesian
limait LGSk
L(B[x)

B(x)

* For a single discriminating variable, this ratio of
signal and background likelithoods is easy to calculate

— Monte Carlo procedure:

* Generate signal and background MC events
* Fill histograms for signal and background
* Divide the two histograms

Reinhard Schwienhorst, Michigan State University 15



Bayesian limit

* For each analysis, there exists a fully optimized
signal-background separation

— Target function, also called Bayes discriminant or Bayesian
limait LGSk
L(B[x)

B(x)

* For a single discriminating variable, this ratio of
signal and background likelithoods is easy to calculate

* In case of more than one variables,
this 1sn't possible anymore

— Not enough MC statistic to compute a
many-dimensional likelithood

Curse of dimensionality
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Optimized event analysis

Optimized =<

—

-

Optimize signal-background separation

Exploit full event information
Event kinematics, angular correlations, ...

Take all correlations into account

Goal: Reach the Bazesian limait I

* Requires detailed understanding of signal and background

— Only applicable to searches for a specific signal or
measurements of a specific process

Reinhard Schwienhorst, Michigan State University 17



Optimized event analysis

—

Optimize signal-background separation

- Exploit full event information
Optimized = < Event kinematics, angular correlations, ...

Take all correlations into account

Goal: Reach the Bazesian limit I

* Requires detailed understanding of signal and background

— Only applicable to searches for a specific signal or
measurements of a specific process

* Limited by background and signal modeling
— MC statistics, MC model, background composition, shape,

If signal model 1s wrong: search 1s not sensitive ‘
If background model 1s wrong: find something that 1sn't there @

Reinhard Schwienhorst, Michigan State University 18



Event analysis technigues

Cut-Based Neural networks Decision trees Likelihood

o =2> g I}

Boosted decision trees, Bayesian neural networks Matrix Elements
random forest

Many others: Kernel methods, support vector machines, ...

Reinhard Schwienhorst, Michigan State University 19



Event analysis technigues

Cut-based Neural networks Likelihood

decision trees Bayesian neural networks  Matrix Elements

Reinhard Schwienhorst, Michigan State University 20



Cut-based analysis

Lepton p,=41 GeV

P

* Estimate background yield
* Compare to data

Event Energy<65GeV
Nobs — Ndata _ NB

* Calculate signal acceptance
O = NObS / (A*L)

Fimal Evient Sct

Reinhard Schwienhorst, Michigan State University
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Including events that fail a cut

Reinhard Schwienhorst, Michigan State University 22



Trees and leafs

— Create a tree of cuts

— Divide sample into
“pass’ and “fail” sets

— Fach node ‘ corresponds
to a cut (branch)

— A leaf corresponds to an
end-point

— For each leaf, calculate purity
(from MC):
purity = N/(Ngt+Ng)

Reinhard Schwienhorst, Michigan State University 23



Decision tree

— Create a tree of cuts

— Divide sample into
“pass” and “fail” sets

— Each node ‘ corresponds
to a cut (branch)

— A leaf corresponds to an
end-point

— For each leaf, calculate purity
(from MC):
purity = N/(Ngt+Ng)

— Train the tree by optimizing
the Gini improvement:
 Gini = 2 Ng Ny /(Ng + Ng)

* Each leaf will be either
background- or signal-enhanced

Reinhard Schwienhorst, Michigan State University 24



Decision tree output

Train on signal and background models (MC)
— Stop and create leat when Ny ;<100

Compute purity value for each leaf

Send data events through tree
— Assign purity value corresponding to the leaf to the event

Result approximates a probability density distribution
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Boosting

Reinhard Schwienhorst, Michigan State University
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Boosting

* A general method to improve the
performance of any weak qualifier

— Decision trees, neural networks, ...

* Linear combination of many filter functions

F(x) = 2ray fi(x)

— a,: coefficient, typically result of minimization of error
function

Reinhard Schwienhorst, Michigan State University

27



Boosting procedure
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Adaptive boosting

 In each iteration, update coefficient a,

— From minimizing error function
— coefficients decrease at each iteration

« Update weight for each event in training sample T,

— Figure out which events have been misclassified

* Signal events should have purity = 0.5
* Background should have purity <0.5

— Increase event weight for those events that have been
misclassified

Reinhard Schwienhorst, Michigan State University
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Figure of merit

Boosting performance

3 different sets of
discriminating variables

] I 1 | ] ] I ] ] | 1 I ] ] ] ] I
10 20 30 40
Boosting cycle
D@ single top
search

with decision trees
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Random forest

Average over many
decision trees

— Typically O(100)
Each tree 1s grown using
m variables

— For N total variables, m<<N

Very fast algorithm
— Even with large number of variables

Very few parameters to adjust
— Typically only m

Reinhard Schwienhorst, Michigan State University
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Event analysis technigues

(}Vut-Based Neural networks Decision trees Likelihood

Boosted decision trees, Bayesian neural networks Matrix Elements
random forest
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D& Neural networks

Input Nodes: One for each variable x;
M_ (jet1,jet2)

M (alljets)
P, (jet1,jet2)
p; (notbest2)

p; (notbest1)

cos(L,Q(N)x 2) p,0p

M (W,best)

M (W,tag1) Output Node: linear
combination of hidden nodes

AR (jet1,jet2) . I N

5 f(x) = Z W, n(X,w,)

p, (tag1)

B S

Hidden Nodes: Each is a sigmoid
dependent on the input variables

) —>

nk(X)W ) =

1 +e-ZWikXi 0 )



Neural Network Training

— Find optimum NN parameters 0
X

on training signal/background x0.75 ——
events = e
: 0-7 Training Error
= Apply NN tO lndependent Set Minimum Testing Epoch
of signal and background 0.65
* Testing sample
.. 0.6f
— Stop training when error from :
testing sample starts 0.55[
Increasing :
* Overfitting 0 50 100 150 200 250

Epoch
D@ single top search
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Bayesian neural networks

* Bayesian 1dea:

— Rather than finding one value for each weight,
determine the posterior probability for each weight

* Form many networks by sampling from the posterior

* Typical case: ~100 individual neural networks
— Each network gets a weight based on training performance

* Avoids overfitting

* But: very slow due to integration required to
determine the posterior

Reinhard Schwienhorst, Michigan State University 35



Comparing multivariate methods

How optimal can an
optimal event analysis be?

Reinhard Schwienhorst, Michigan State University
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Classifier comparison, D@ single top

Classifiers are evaluated at fixed points, 25 variables, 10000 events
lines connect points for better visibility
5.5
¢ RLDA Likelithood analysis /
5 m SPR Boost w/bag

A DODT

/
% SPR LDA | / / // /
RN/
o PR / // Random forgst

Neural network

)
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o - N w
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Background Eff, %

o

Babar Muon ID

mu PID barrel low P
25 variables, 10000 events

-—BDT

-+ RF
LDA

== NN
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Signal Eff, %
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Background Efficiency
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Glast

background

GLAST background rejection

35 variables
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* Boosted decision tree
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Background efficiency

Summary

Neural networks,
simple decision
trees, etc

el il Al W W

Random guess

é/ Boosted decision trees,
bayesian neural networks,

randomforests

Signal efficiency
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Conclusions
* Multivariate event analysis techniques are now a
common tool in HEP

— In the past mostly neural networks, now also decision tree-
related methods

* (Glast, MiniBoone, Atlas, Dzero

* Modern classification tools make life easy
— Very few parameters to adjust

— Can use many variables
* Ranking of variables automatically provided

— Implemented in several software packages



Conclusions
* Multivariate event analysis techniques are now a
common tool in HEP

— In the past mostly neural networks, now also decision tree-
related methods

* (Glast, MiniBoone, Atlas, Dzero

* Modern classification tools make life easy
— Very few parameters to adjust

— Can use many variables
* Ranking of variables automatically provided

— Implemented in several software packages

Advanced event analysis

enables discoveries




Resources

PhyStat code repository
https://plone4.fnal.gov:4430/P0/phystat/

PhyStat 2007 conference
http://phystat-lhc.web.cern.ch/phystat-lhc/

Jim Linnemann's collection of statistics links:
http://www.pa.msu.edu/people/linnemann/stat_resources.html

Statistical analysis tool R
http://www.r-project.org/

TMVA (multivariate analysis tools in root)
http://tmva.sourceforge.net/

Neural Networks in Hardware
http://neuralnets.web.cern.ch/NeuralNets/nnwinHep.html

Boosted Decision Trees in MiniBoone
http://arxiv.org/abs/physics/0508045

Decision Tree Introduction
http://www.statsoft.com/textbook/stcart.html

GLAST Decision Trees
http://scipp.ucsc.edu/~atwood/Talks%20Given/CPAforGLAST.ppt




