
Advanced event analysis 
methods

Reinhard Schwienhorst

CPPM D0 Seminar, June 20 2008

CPPM



2Reinhard Schwienhorst, CPPM/Michigan State University

Outline
• Introduction
• Decision Tree
• Boosting
• Random Forest
• MiniBoone
• New developments
• Conclusions



3Reinhard Schwienhorst, CPPM/Michigan State University

Introduction
• I covered multivariate analysis techniques in my 

seminar talk here last year
• Today: Review and updates

– Decision Trees, 
– Boosting,
– Their application
– Recent developments

• Examples mainly from D0 



4Reinhard Schwienhorst, CPPM/Michigan State University

Monte Carlo Modeling
• In particle physics, we can calculate cross sections 

and differential cross sections for many processes
– Remember your field theory 101 course?

• We approximate differential cross sections through 
Monte Carlo techniques
– Rather than calculating full multi-dimensional differential 

cross section, we generate events  detector simulation

– Example: pp  HZ

pT(Z) [GeV] pT(Z) [GeV]

Differential cross section

MC simulation
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Bayesian limit

B(x) = 
_____L(S|x)

L(S+B|x)

Zbb

HZ (115GeV) S / (S+B)

ZH PDF

m(bb) [GeV] m(bb) [GeV]

• For each analysis, there exists a fully optimized signal-
background separation
– Target function, also called Bayes discriminant or Bayesian 

limit

• For a single discriminating variable, this ratio of signal 
and background likelihoods is easy to calculate
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Bayesian limit
• For each analysis, there exists a fully optimized signal-

background separation
– Target function, also called Bayes discriminant or Bayesian 

limit

• For a single discriminating variable, this ratio of signal 
and background likelihoods is easy to calculate

• Limited by MC statistics if 2d histogram
– Example: 

100 bins in the histogram for each variable
➔ 10000 bins in 2d
➔ To get ~10% MC modeling uncertainty in each bin, need 100 events per bin
➔ Require 1000000 MC events total
➔ In D0, this takes a while to generate...

B(x) = 
_____L(S|x)

L(S+B|x)
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Bayesian limit
• For each analysis, there exists a fully optimized signal-

background separation
– Target function, also called Bayes discriminant or Bayesian 

limit

• For a single discriminating variable, this ratio of signal 
and background likelihoods is easy to calculate

• In case of more than two variables, 
this isn't possible anymore
– 3 variables would require 108 MC events
– 20 variables require 1042 MC events

• More events than generated in total in the history of computers

B(x) = 
_____L(S|x)

L(S+B|x)
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Bayesian limit
• For each analysis, there exists a fully optimized signal-

background separation
– Target function, also called Bayes discriminant or Bayesian 

limit

• For a single discriminating variable, this ratio of signal 
and background likelihoods is easy to calculate

• In case of more than two variables, 
this isn't possible anymore
– Not enough MC statistic to compute a 

many-dimensional likelihood

  Curse of dimensionality  

B(x) = 
_____L(S|x)

L(S+B|x)
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The solution: Multivariate techniques
• Approximate the multi-dimensional likelihood
• Good methods do well even with finite MC statistics

– Typical MC sample sizes are 106 events
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Optimized event analysis

• Requires detailed understanding of signal and background
– Only applicable to searches for a specific signal or 

measurements of a specific process

Optimized = 

Optimize signal-background separation
Exploit full event information

Event kinematics, angular correlations, ...
Take all correlations into account

     Goal: Reach the Bayesian limit
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Optimized event analysis

• Requires detailed understanding of signal and background
– Only applicable to searches for a specific signal or 

measurements of a specific process
• Limited by background and signal modeling

– MC statistics, MC model, background composition, shape, ...

Optimized = 

Optimize signal-background separation
Exploit full event information

Event kinematics, angular correlations, ...
Take all correlations into account

     Goal: Reach the Bayesian limit
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Event analysis techniques

Many others: Kernel methods, support vector machines, ... 

Bayesian neural networksBoosted decision trees,
random forest

Matrix Elements

Cut-Based Neural networks Decision trees Likelihood
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Event analysis techniques

Many others: Kernel methods, support vector machines, ... 

Bayesian neural networksBoosted decision trees,
random forest

Matrix Elements

Cut-Based Neural networks Decision trees Likelihood
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Cut-based analysis

Lepton pT>41 GeV

Pass

Pass

Event Energy<65GeV

M(top) <352 GeV

Final Event Set

• Estimate background yield
• Compare to data
Nobs = Ndata – NB 

• Calculate signal acceptance
σ  = Nobs / (A*L)

In the final event set

Pass
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Including events that fail a cut

pT>41

PassFail

PF

pt>65

PF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
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Trees and leafs

PF

PFPF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
– A leaf          corresponds to an 

end-point
– For each leaf, calculate purity 

(from MC):
purity = NS/(NS+NB)

Leaf

pT>41

pt>65



17Reinhard Schwienhorst, CPPM/Michigan State University

Training a decision tree

PF

PFPF

M<352

– Create a tree of cuts
– Divide sample into 

“pass” and “fail” sets 
– Each node           corresponds 

to a cut (branch)
– A leaf          corresponds to an 

end-point
– For each leaf, calculate purity 

(and remember it):
purity = NS/(NS+NB)

– Train the tree by optimizing 
the Gini improvement: 

• Gini = 2 NS NB /(NS + NB)2 

• Each leaf will be either 
background- or signal-enhanced

Leaf

pT>41

pt>65
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After training is finished: send data through the tree

PF

PFPF

M<352

– Send one data event through the 
tree at a time

– Each event ends up in a specific 
leaf 

– Assign the purity value that was 
calculated during training to this 
data event
• Each leaf has a unique purity
• Leafs will either be high 

purity (lots of signal)
or low purity (lots of 
background)
or in between

– Also send separate samples of 
signal and background MC 
through the tree
• Background estimate

purity

pT>41

pt>65

Data event
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Decision tree output
• Train on signal and background models (MC)

– Stop and create leaf when NMC<100

• Compute purity value for each leaf
• Send data events through tree

– Assign purity value corresponding to the leaf to the event 

• Result approximates a probability density distribution

Purity           
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Boosting
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Boosting
• A general method to improve the 

performance of any weak qualifier
– Decision trees, neural networks, ...

• Linear combination of many filter functions 

–  ak: coefficient, typically result of minimization of error 
function

 F(x) = ∑ ak  fk(x) k
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Boosting procedure

Train filter function Train filter function ffkk

Find coefficient aFind coefficient akk  
minimize error functionminimize error function

Initial training sample TInitial training sample Tk=1k=1  

Modify training sample TModify training sample Tkk

 F = ∑ ak fk  
k
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Adaptive boosting

• In each iteration, update coefficient ak  
– From minimizing error function
– coefficients decrease at each iteration

• Update weight for each event in training sample Tk 
– Figure out which events have been misclassified

• Signal events should have purity ≥  0.5
• Background should have purity <0.5

– Increase event weight for those events that have been 
misclassified 
• Large weight to background events with large purity

and signal events with small purity
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Boosting performance

DØ single top 
search
with decision trees 

3 different sets of
discriminating variables
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Random forest
• Average over many 

decision trees
– Typically O(100)

• Each tree is grown using
m variables
– For N total variables, m<<N

• Very fast algorithm
– Even with large number of variables

• Very few parameters to adjust
– Typically only m
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Classifier Comparison

Signal efficiency

B
ac

kg
ro

un
d 

ef
fi

ci
en

cy
1

0
0 1

Random guess

Neural networks,
simple decision 
trees, etc

Boosted decision trees,
bayesian neural networks,
randomforests

Cut-based or likelihood



MiniBoone
• Short-baseline search for muon neutrino oscillation to 

electron neutrino
– Goal: confirm or rule out LSND result

• One of the first analyses to use boosted decision trees
• 300 variables

– Reconstructed objects, kinematic distributions, detector-
based objects

• In competition with a simple likelihood method
– Track-based likelihood, TBL
– Linear combination of variables, ignoring correlations



MiniBoone
• Short-baseline search for muon neutrino oscillation to 

electron neutrino
– Goal: confirm or rule out LSND result

• One of the first analyses to use boosted decision trees
• 300 variables

– Reconstructed objects, kinematic distributions, detector-
based objects

• In competition with a simple likelihood method
– Track-based likelihood, TBL
– Linear combination of variables, ignoring correlations

• The likelihood method was more sensitive



MiniBoone
• Short-baseline search for muon neutrino oscillation to 

electron neutrino
– Goal: confirm or rule out LSND result

• One of the first analyses to use boosted decision trees
• 300 variables

– Reconstructed objects, kinematic distributions, detector-
based objects

• In competition with a simple likelihood method
– Track-based likelihood, TBL
– Linear combination of variables, ignoring correlations

• The likelihood method was more sensitive

What happened?



MiniBoone BDT vs TBL
• The MiniBoone likelihood method was more sensitive 

than the BDT
– Even though they in principle had the same information, 

and the BDT should have been much more sensitive

• What happened?
• BDT was trained and likelihood was formed without 

systematic uncertainties
• Including systematic uncertainties at a later stage 

– BDT performance worsens significantly
– Likelihood not affected as much



MiniBoone BDT vs TBL
• The MiniBoone likelihood method was more sensitive 

than the BDT
– Even though they in principle had the same information, 

and the BDT should have been much more sensitive

• What happened?
• BDT was trained and likelihood was formed without 

systematic uncertainties
• Including systematic uncertainties at a later stage 

– BDT performance worsens significantly
– Likelihood not affected as much

Lesson: Include systematic uncertainties during
multivariate optimization
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Next generation multivariate analyses
– Deal with systematic uncertainties

• Or at least mitigate their effects
• Train without variables that are sensitive to systematics

– Strong dependence on systematic is reduced
– Performance is also reduced

• Train on shifted samples
– More stable with respect to systematics
– Overall performance reduced

– Neuroevolution (example: CDF single top combination)
• Train many neural networks, varying both the network parameters and 

the network structure
• Pick one network to use based on performance with systematics

– Use something other than Gini in the DT training and boosting
• Modern classifiers use event weights, flexible decision making
• Could use S/B or S/sqrt(B) or other variants (include systematics)
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Signal and background modeling
• All training uses signal MC

– Usually most backgrounds are also from MC

• Classifier performance depends critically on correct 
modeling of the data
– Signal MC must model signal present in the data
– Background MC must reproduce background in data

• Can usually test background modeling in cross-check 
samples
– Reverse one cut or sample with very loose cuts

• Cannot really test signal modeling

If signal model is wrong: search is not sensitive

If background model is wrong: find something that isn't there
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Modeling of variables
• All variables used in a multivariate filter must be 

modeled properly
– And their correlations

• Since MC is used heavily, this prevents us from using 
many classes of variables
– Most detector-variables are not well modeled

• Tracks, hits, calorimeter energy distribution, muon hits

– B-tagging is not well modeled
• D0 b-ID uses tag-rate-functions to give probability to each MC jet 

– Even reconstructed objects aren't necessarily well modeled
• Jet mass, MET significance, electron likelihood, muon quality, 

isolation, ...

– Can only use few high-level variables in training
• Jet and lepton pt, eta, phi, MET and their combinations
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Training on data vs data
• ZH nnbb is dominated

by QCD multijet background 
(before tagging)
– Estimated from data

• Train data vs data
– Signal data vs QCD

• Improve QCD rejection
• Allows use of looser b-tagging, looser cuts
• Thus gains signal

– Signal data vs Z+jets data where muons have been 
removed
• Signal-like sample
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Training data vs data
• Purpose:

– Effectively eliminate the largest backgrounds

• Procedure:
– Train on half of data and evaluate on other half
– Cut on classifier output
– Estimate cut efficiency for MC from data

• Advantages: 
– Can use all variables, including b-tagging, detector 

variables, isolation, tracks, etc.

• Disadvantage: 
– How to estimate effect on signal MC?
– How to guarantee training doesn't introduce bias



Conclusions
• Multivariate event analysis techniques are now a 

common tool in HEP
– In the past mostly neural networks, now also decision tree-

related methods
• Glast, MiniBoone, Atlas, Dzero

• Modern classification tools make life easy
– Very few parameters to adjust
– Can use many variables

• Ranking of variables automatically provided

– Implemented in several software packages

• Recently, experiments are taking the next step
– Adapting classifiers specifically for HEP needs



Resources
• PhyStat code repository

https://plone4.fnal.gov:4430/P0/phystat/

• PhyStat 2007 conference
http://phystat-lhc.web.cern.ch/phystat-lhc/

• Jim Linnemann's collection of statistics links:
http://www.pa.msu.edu/people/linnemann/stat_resources.html

• Statistical analysis tool R
http://www.r-project.org/

• TMVA (multivariate analysis tools in root)
http://tmva.sourceforge.net/

• Neural Networks in Hardware
http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html

• Boosted Decision Trees in MiniBoone
http://arxiv.org/abs/physics/0508045

• Decision Tree Introduction
http://www.statsoft.com/textbook/stcart.html

• GLAST Decision Trees
http://scipp.ucsc.edu/~atwood/Talks%20Given/CPAforGLAST.ppt
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