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1 Introduction

Establishing proper statistical procedure for limit-setting and quoting po-
tential signal significance is an important requirement for every experiment
involved in searches for physics beyond the standard model. Various pre-
scriptions exist and yet a number of papers appear every year claiming that
some of them are more applicable to a particular case than the other. These
paper often contradict each other and stem from the fact that several pre-
scriptions that exist use different definition of confidence interval and deal
with the physical boundary problem in different ways.

About a decade ago the Particle Data Group (PDG) has attempted to
clarify the situation and came up with the “PDG Prescription” on setting
limits in astro-particle experiments. Over the years this prescription evolved,
and currently the following methods are discussed by the PDG as the most
robust: the Bayesian method [1] and two variations of the Frequentist method



based on the ratio of likelihoods: the Feldman-Cousins [2] and CLg [3] meth-
ods. Each of the methods has its own advantages and drawbacks, as docu-
mented in [4]. Fortunately, despite different philosophy and sometimes even
definition of the confidence interval used in these three approaches, in most of
the cases when the observed number of events is reasonably consistent with
the background expectation numerical results of all three methods agree well,
although no strict mathematical proof of this fact exists. The difference be-
tween the results given by the various methods becomes pronounced either
when a large negative fluctuation of the background is seen (e.g., if it is more
than two standard deviations for the case when one is interested in 95%, or
~ 20 confidence level limit on signal hypothesis), or if the uncertainties in
background and acceptances are so large that a significant part of the re-
sulting distribution extends into non-physical regions of negative acceptance
and/or background expectation. It is not even clear that in these “patholog-
ical” cases proper confidence level limit can be derived unambiguously, so we
choose to leave the discussion of the “pathological” cases out of the scope of
this note.

In Run I the DO experiment established the Statistics Working Group
that analyzed various existing methods and recommended Bayesian prescrip-
tion for limit-setting [5]. CDF generally used a Frequentist approach in Run
I, but has switched to the Bayesian prescription since [6]; however they are
considering using the CLs method as well. LEP II experiments used the
CLs method in the Higgs searches [7]. Given the goal that our new results
can be combined with Run I results, old or new CDF results, and the LEP
results, depending on a particular analysis and channel, we felt that forcing
D@ to use a single limit setting method would be counterproductive. Conse-
quently, this group recommends that either the D@ Run I Bayesian
prescription or the LEP CLg method are used for limit-setting in
Run II. Both prescriptions are well-documented and have been implemented
in various tools. The following sections provide an overview of the two rec-
ommended techniques and their implementation.

Although two different prescriptions are recommended, there are some
guidelines for choosing which one to use. When comparing new D@ results to
existing results, the comparison is simpler if both the old and new results use
the same scheme. If the previously existing limits are Run I Tevatron results,



then the official DO Run I prescription [5] is the recommended choice. If the
previously existing limits use the CLs prescription [3] (or similar methods)
favored by the LEP working groups, then it should be used when computing
the limits for new D@ analyses. If neither was used, and there are no other
issues either of the two prescriptions can be used, depending on the authors’
preference and availability of tools most appropriate for the analysis at hand.

2 DO Bayesian Method

Inferences about a set of parameters (o, \) are made using Bayes’ theorem [1]:

B p(x|o, \) (o, \)
Plo, M%) = p(x|o, \) 7(a, \)dAdo (1)

where o is the parameter of interest, for example a cross section, and \
represents all other parameters such as acceptances and backgrounds, re-
ferred to collectively as nuisance parameters. The functions (o, A), p(x|o, \)
and p(o, A|x) are the prior, model and posterior densities, respectively. The
canonical model density for a cross-section measurement is

K
p(n|o, \) = [] Poisson(n;, aio + by), (2)

i=1

for K channels, each with n; observed events, a signal acceptance a; and
a background b;; A = a,b. The prior density 7(o,A) can be factorized as
follows:

m(0,A) = w(Ao) 7 (o), (3)

into a prior m(o) that involves the cross-section only and one that depends
on the nuisance parameters conditional on the value of the cross-section.
Usually, we assume w(Ao) = w(A). The prior w()\) is typically modelled
as a multivariate Gaussian with known mean m = 5\, where represents
estimates of the nuisance parameters \, and a covariance matrix 3 describing
how well we know these parameters. The Run I Statistics Working Group [5]
suggested, as a matter of convention, a flat prior for the cross-section in some



interval [0, 0yax|. Given the posterior density p(c|n), found by integrating
over the nuisance parameters, an upper limit o" is obtained by solving

CL= / p(on)d (4)
for o", where C'L is the desired confidence level.

Whatever prior is used, a Bayesian upper limit on the cross-section will be
most sensitive to the choice of prior precisely in “pathological” circumstances
in which the reporting of an upper limit is not a well-established procedure.
The upper limit can change by as much as 30% [8] over a plausible class of
priors when the data are insufficient to justify a definitive statement. Also,
any prior for a scale parameter a, such as an acceptance, that is non-zero
at a = 0 yields a posterior density for the cross-section that is singular at
o = 0 when such a prior is used in conjunction with the conventional choice
of a flat prior in cross-section. In particular, the common practice of using a
Gaussian prior for scale factors suffers from this problem. However, a careful
consideration of how an acceptance is arrived at shows that, in fact, one
expects its prior to go to zero at a = 0. For such priors the singularity does
not arise [8].

The Web-based readily available code [9] for the DO prescription works
only for single-channel counting experiments with uncorrelated signal and
background uncertainties. Nevertheless, it’s a powerful tool used in a num-
ber of D@ analyses and publications. There are natural generalizations of
the method to multi-channel counting experiments and to analyses which
use shape to separate signal and background. However, most of these gen-
eralizations have been done via private codes. There is not yet easily usable
code which has the extension(s). Because of this, if shapes (e.g., mass dis-
tribution of signal and all backgrounds) are explicitly used to determine the
limit, either a designated Bayesian program or the CLg-based MCLIMIT [3]or
TLimit [10] codes can be used.

The single top group has implementations [11] of both CLs and Bayesian
methods that handle correlations between parameters (acceptances and back-
grounds). This is done by assuming one can model the prior density by a
multivariate Gaussian. (If this assumption is unsatisfactory, the user can



supply her or his own prior as a “swarm” of points. That part is still under
development.) The code has been developed as a general utility, which is
intended to make use of shape information (i.e., histograms).

3 The CL; Method

The CLg method uses the estimated signal, s;, background, b;, and the num-
ber of candidates, n;, in each bin in the calculation of confidence levels. The
description of the CLg method follows closely the description in [7]. More
information can be found on [12].

Confidence levels are computed by comparing the observed data config-
uration to the expectations for two hypotheses. In the background hypoth-
esis, only the SM background processes contribute to the accepted event
rate, while in the signal+background hypothesis the signal from some form
of new physics (e.g., leptoquarks, Higgs, SUSY) adds to the background.
Each assumed test-variable (e.g. leptoquark mass, SUSY scale parameter A)
corresponds to a separate signal+background hypothesis.

In order to test the signal4+-background and background hypotheses opti-
mally with the data, a test statistic is defined which summarises the results of
the experiment with expectations of the signal4+background and background
hypotheses maximally different. An optimal choice [13] is the likelihood ratio
of Poisson probabilities.

Q= P, oiss(data|signal + background) (5)
P, oiss(datalbackground) ’
where
Mbins (g, 4} \Pip—(sit+bi)
P, oiss(data|signal + background) = H (si +b:) 'e , (6)
i=1 -
and

Mbins A\ni ,—b;
Pyoiss(datalbackground) = ] (bi)™e™

=1

(7)



The products runs over all bins of all distributions to be combined. The
signal estimation, s;, depends on the expected signal cross-section, the decay
branching ratios, the integrated luminosity and the detection efficiency for
the signal. The background estimation, b;, depends on the SM background
cross-sections, the integrated luminosity, and selection efficiencies. The num-
ber of observed events in bin ¢ is n;. The test statistic is more conveniently
expressed in the logarithmic form:

Mbins Mbins
—2InQ=2> -2 nIn(l+s/b;), (8)
=1 =1

which reduces to a sum of event weights, w = In(1 + s;/b;), depending on
the local s;/b; for each candidate event observed and on the test-variable.
For a given problem the ratio s;/b; should be kept finite either by generating
enough Monte Carlo statistics for signal and background or by rebinning
or smoothing. In this procedure an event-weight is assigned to each event.
These weights depend on the test-variable.

To test the consistency of the data with the background hypothesis, the
confidence level 1 — CLy, is defined as

1 — CLy, = P(Q > Qobs|background), 9)

the fraction of experiments in a large ensemble of background-only exper-
iments which would produce results at least as background-like as the ob-
served data.

To test the consistency of the data with the signal+background hypoth-
esis, the confidence level Clg,y, is defined as

CLstb = P(Q < Qobs|signal + background), (10)

the fraction of experiments in a large ensemble of signal+background exper-
iments which would produce results less signal-like than the observed data.
By definition a signal+ background hypothesis is excluded at the 95% confi-
dence level if ClLg.y, < 0.05.

Statistical downward fluctuations in the background can lead to deficits
of observed events which are inconsistent with the expected background and
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this can cause the signal+background hypothesis to be excluded even if the
expected signal is so small that there is little or no experimental sensitivity
to it. The confidence level CLy is defined to regulate this behaviour of CLg:

CL, = CLqy1y/CLe. (11)

There is some loss of sensitivity by using CLg rather than Clg.y,, but in
no case is a limit more restrictive than the one obtained by using CLg;y,.
We therefore consider a signal hypothesis to be excluded at the 95% CL
if CLg < 0.05. This is sometimes referred to as the ‘Modified Frequentist
Model’, since it reduces the dependence on the signal distribution.

Because all of the s;, the b; (in general), and the candidates in each
bin depend on the test-variable, CLj, CLgyp, and CLg all depend on the
test-variable. For the example of leptoquark production the limit on the
leptoquark mass is the smallest test-mass mpq such that CLg(mpq) > 0.05.

The sensitivity of the analysis can be expressed by the median CLg in an
ensemble of background-only experiments. It is used as the figure of merit
to optimise the analysis.

Several programs are using the CLg method to calculate limits. Two
FORTRAN programs, CONFL10 [14] and MCLIMIT [3] have been tested
using Run II data and have been found to give consistent results [15]. A
limit setting program similar to MCLIMIT can also be accessed directly
within ROOT [10].

Systematic uncertainties are taken into account using a generalisation of
the method by Cousins and Highland [16]. Systematic uncertainties are in-
corporated into the confidence level calculations by averaging over possible
values of the signal and background given by their systematic uncertainty
probability distribution. The probability distributions are assumed to be
Gaussian-distributed with a cut off so that negative s or b are not allowed [3].
Correlations between systematic uncertainties are taken into account. Re-
sults of different channels and different experiments (which are just treated
as different channels) can easily be combined.
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Conclusions

To conclude, we recommend that D@ analyses use either the Run I Bayesian
limit-setting procedure [5], or the CLg [3] approach, depending on the as-
pects of a particular analysis and the methods used in related analyses, to
be combined with the one at hand. Various tools for calculating confidence
intervals in both approaches exist; several of them are briefly reviewed in this
note and recommended for use in D). This does not imply that other imple-
mentations of the D@ Run I or CLg prescriptions can not be used; however
any non-standard code used in the analysis must be properly documented.
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