Observation of a narrow mass state decaying into $\Upsilon(1S) + \gamma$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Using data corresponding to an integrated luminosity of 1.3 fb$^{-1}$, we observe a narrow mass state decaying into $\Upsilon(1S) + \gamma$, where the $\Upsilon(1S)$ meson is detected by its decay into a pair of oppositely charged muons, and the photon is identified through its conversion into an electron-positron pair. The significance of this observation is 5.6 standard deviations. The mass of the state is centered at 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV/c2, which is consistent with that of the state recently observed by the ATLAS Collaboration.

PACS numbers: 12.38-t, 14.40.Pq, 14.65.Fy
Tracks are required to be loosely associated to the same site charge that form a good vertex are selected. These spaced mass states. Well-measured track pairs of opposite charge pass the muon selection criteria. The solid curve is a fit to the data assuming three Υ resonances and a combinatorial background. The relative contributions from the Υ(1S), Υ(2S), and Υ(3S) states are also shown.

The event selection for this analysis is chosen to maximize the signal significances of the known χ_{b}(1P) and χ_{b}(2P) states, as well as those of the charmonium χ_{c} states which are observed in the analogous J/ψ + γ decay mode. The search region above the χ_{b}(2P) mass and below the BB mass threshold (10.38 - 10.63 GeV/c^{2}) is not examined in this optimization procedure. Muon candidates are required to be reconstructed in both the inner and outer layers of the muon detector and must be matched to tracks in the central tracking system with p_{T} > 1.5 GeV/c. The tracks are required to originate from a common pP collision vertex. The resulting mass distribution for muon pairs of opposite charge is shown in Fig. 1. We select events in the mass range 9.1 GeV/c^{2} < M_{μμ} < 9.7 GeV/c^{2}, which contains approximately 275,000 Υ(1S) candidates after background subtraction.

Photons are detected via their conversions into electron-positron pairs. We use this technique instead of direct detection in the calorimeter because the energies of photons from quarkonia decay are typically too low to be precisely measured in the calorimeter, while the tracking system provides excellent resolution in this kinematic region. This allows for a separation of closely-spaced mass states. Well-measured track pairs of opposite charge that form a good vertex are selected. These tracks are required to be loosely associated to the same pP interaction vertex as the muon tracks, but since photons travel some distance before they are converted in the material of the detector, the electron-positron tracks are required to originate away from that vertex. The two tracks are combined to form a photon candidate. The resulting photon trajectory is required to intersect the beam axis within 0.8 cm of where each of the tracks intersect it. The momentum vector of the photon must also point back from its reconstructed conversion point to the pP collision vertex, and the invariant mass of the conversion pair must be M_{γγ} < 80 MeV/c^{2}. These selection criteria are confirmed by a study of double conversion pairs from π^{0} → γγ decays. The origin, in the plane transverse to the beam direction, of the track pairs passing these criteria is shown in Fig. 2, where the structure of the silicon tracker is clearly visible.

Converted photons passing these requirements are combined with muons passing the Υ(1S) selection. The photon and both muons must be consistent with coming from a common vertex, and both muon trajectories must intersect the beam axis within a distance of 1.2 cm from that of the photon. The Υ(1S)γ system is also required to have p_{T} > 5 GeV/c. The resulting distribution of ΔM = M_{μμγ} - M_{μμ} is shown in Fig. 3. Peaks corresponding to the χ_{b}(1P) and χ_{b}(2P) states are clearly seen at ΔM ≈ 0.4 GeV/c^{2} and ΔM ≈ 0.8 GeV/c^{2}, respectively. A third peak is also observed centered around ΔM ≈ 1 GeV/c^{2}, which is consistent with the recent observation of a new state by the ATLAS Collaboration. The mass resolution is not good enough to separate the hyperfine splitting of the known χ_{b} states, and we find no indication of substructure in the mass region of the new state. The mea-

FIG. 1: Dimuon invariant mass spectrum for opposite-charge pairs passing the muon selection criteria. The solid curve is a fit to the data assuming three Υ resonances and a combinatorial background. The relative contributions from the Υ(1S), Υ(2S), and Υ(3S) states are also shown.

FIG. 2: The vertex position in the x − y plane for photon conversion candidates passing the photon selection requirements. The x − y plane is perpendicular to the beam, with y pointing upwards and positive x pointing to the right when viewed in the anti-proton direction.
measured values $\Delta M_{\chi_c(1P)} = 0.418 \pm 0.005$ GeV/c^2 and $\Delta M_{\chi_c(2P)} = 0.760 \pm 0.014$ GeV/c^2 are shifted from their true values due to energy loss of the electron/positrons. A scale factor of 0.96 ± 0.01 is determined by comparing these measurements to their world average values assuming an equal mixture of $J = 1$ and $J = 2$ components for each χ_c state (the $J = 0$ components are suppressed in this decay mode) [10]. The measured masses of the χ_c states and the π^0 detected using photon conversions have a shift consistent with this scale factor.

The shape of the background distribution is determined from the data by combining $\Upsilon(1S)$ and photon candidates from different events. As seen in Fig. 3, this mixed event background model describes the data for a wide range of ΔM outside the region of interest. We also study the ΔM distributions for events with dimuons in the $\Upsilon(1S)$ mass sideband regions and for events with dimuons with the same charge in the $\Upsilon(1S)$ mass region. The resulting ΔM distributions for these selections show no peaking structure and have shapes similar to that of the mixed-event background model.

The mass distribution $M = M_{\mu\mu\gamma} - M_{\mu\mu} + m_{\Upsilon(1S)}$, where $m_{\Upsilon(1S)}$ is the world average value 9.4603 GeV/c^2 [10], is shown in Fig. 4 along with the results of an unbinned maximum likelihood fit with three signal peaks and a background shape determined from the mixed event model. Crystal Ball functions [11] are used to describe the signal mass shapes to take into account the radiative tails due to bremsstrahlung. We use single Crystal Ball functions to describe the mass of the $\chi_c(1P)$ and $\chi_c(2P)$ systems and that of the new state. The center for each χ_c mass function is fixed to its world average value corrected by the electron/positron energy loss scale factor. The widths of the signal functions are described by a single parameter scaled by the mass of each state, and the lengths of the radiative tails are the same for all three states. These constraints, determined from the data without consideration of the new structure, have also been verified using Monte Carlo simulations. The widths of all three peaks obtained in the fit are compatible with the D0 detector’s resolution. The fit yields 65 ± 11 events above background corresponding to the new state. A similarly good fit is also obtained by using an exponential function multiplied by a low-mass turn on curve to describe the background. The shape of the resulting background agrees well with that of the mixed-event model.

A significance of more than six standard deviations is determined from the difference in the log likelihood of the fits with and without the new state’s contribu-
tion. Considering the probability of an upward fluctuation of the background producing a signal of this width anywhere in the search region, reduces the significance to 5.6 standard deviations. The mass of the new state is corrected by the same scale factor used to fit the $\chi_b(1P, 2P)$ states and is measured to be 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV/c^2. The main sources of systematic uncertainty are due to the unknown mixture of χ_b spin states (13 MeV/c^2), the mass scale correction (10 MeV/c^2), and variations in the background model (5 MeV/c^2).

In summary, we present a search for new particles with masses below the $B\bar{B}$ threshold which decay into $\Upsilon(1S)+\gamma$. In addition to the known states $\chi_b(1P)$ and $\chi_b(2P)$, a third peak is observed at a mass consistent with the new state observed by the ATLAS collaboration. No other mass peaks are observed. The background distribution is well described over a wide mass range by a background model which mixes $\Upsilon(1S)$ and γ candidates from different events. A likelihood fit to the mass distribution results in a measured mass of 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV/c^2 for the new state with a width consistent with the D0 detector's mass resolution. Further analysis is underway to determine whether this structure is due to the $\chi_b(3P)$ system or some exotic bottom-quark state.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).