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We present a search for the standard model Higgs boson (H) in pp̄ collisions at
√

s = 1.96 TeV
in events containing a charged lepton (ℓ), missing transverse energy, and at least two jets, using
5.4 fb−1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider.
This analysis is sensitive primarily to Higgs bosons produced through the fusion of two gluons or two
electroweak bosons, with subsequent decay H → WW → ℓνq′q̄, where ℓ is an electron or muon. The
search is also sensitive to contributions from other production channels, such as WH → ℓνbb̄. In the
absence of signal, we set limits at the 95% C.L. on the cross section for H production σ(pp̄ → H+X)
in these final states. For a mass of MH = 160 GeV, the limit is a factor of 3.9 larger than the cross
section in the standard model, and consistent with expectation.

PACS numbers: 13.85.Rm, 14.80.Bn

The Higgs mechanism [1–4] accommodates the ob-
served breaking of electroweak (EW) symmetry in the
standard model (SM). In addition to generating masses
for the EW W and Z bosons, as well as for fermions,
the theory predicts a new scalar Higgs boson (H) with
well-determined couplings, but unknown mass (MH).
Confirmation of the existence and properties of the H
boson would be a key step in elucidating the origins
of EW symmetry breaking. For a Higgs boson with
mass MH

>∼ 135GeV, the dominant decay mode is

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cSLAC, Menlo Park,
CA, USA, dICREA/IFAE, Barcelona, Spain, eCentro de Investiga-
cion en Computacion - IPN, Mexico City, Mexico, f ECFM, Uni-
versidad Autonoma de Sinaloa, Culiacán, Mexico, and gUniversität
Bern, Bern, Switzerland.

H → W+W−, where at least one W boson must be vir-
tual when MH < 2MW . Previous searches [5–7] for this
process were based on events with two charged leptons (ℓ)
and large missing transverse energy (6ET ) from the decay
H → W+W− → ℓ̄νℓ′ν̄′ (ℓ = e, µ). This Letter presents
the first search for production of Higgs bosons with sub-
sequent decay to WW having only one charged lepton
in the final state. The data sample is 5.4 fb−1 of in-
tegrated luminosity in pp̄ collisions at

√
s = 1.96TeV

recorded with the D0 detector at the Fermilab Tevatron
Collider. The largest SM contributions to the inclusive
cross section for producing H bosons in pp̄ collisions are
from mechanisms involving the fusion of two gluons or
two weak vector bosons into an H boson, and associated
production of H and a weak vector boson (V = W or Z).
In the following we will not distinguish between par-
ticles and antiparticles. The most striking signatures
from H → V V decays are in the purely leptonic final
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states, but these account for only 5% of such decays. Fi-
nal states containing a single charged lepton have larger
backgrounds, but their branching fractions are a factor
of ≈ 6 larger than for the all-leptonic modes.

A recent calculation of the differential width for
H → WW → ℓνq′q decays [8] supports the important
role of these mixed modes for characterizing a potential
SM Higgs-boson signal. Our analysis is most sensitive to
final-state topologies with a single lepton (e or µ), two
or more jets, and 6ET , arising from H → WW → ℓνq′q
decays. For MH

<∼ 140GeV, significant sensitivity is
gained from WH → ℓνbb, where we do not attempt to
identify the b quark flavor. Smaller signal contributions
from H → ZZ → ℓ/ℓqq, where /ℓ represents an unidenti-
fied lepton, and H → WW → τνq′q with τ → ℓνν are
also included. For MH ≥ 160GeV, assuming that the
observed 6ET is due to the neutrino from the decay of a W
boson, it is possible to reconstruct the longitudinal mo-
mentum (pν

z ) up to a twofold ambiguity, and thereby ex-
tract the mass of the H decaying to WW [9]. We choose
the solution with smallest |Re(pν

z)| to calculate MH . The
primary backgrounds are from V +jets, top quark, dibo-
son production, and multijet (MJ) events containing a
lepton or lepton-like signature with 6ET generally arising
from mismeasurement of jet energies.

The D0 detector [10] consists of tracking, calorimetric
and muon detectors. Charged particle tracks are recon-
structed using silicon microstrip (SMT) detectors and a
scintillating fiber tracker, within a 2 T solenoid. Three
uranium/liquid-argon calorimeters measure particle en-
ergies that are reconstructed into hadronic jets using an
iterative midpoint cone algorithm with a cone radius of
0.5 [11]. Electrons and muons are identified through as-
sociation of charged particle tracks with clusters in the
electromagnetic sections of the calorimeters or with hits
in the muon detector, respectively. We obtain the 6ET

from a vector sum of transverse components of calorime-
ter energy depositions and correct it for identified muons.
Jet energies are calibrated using transverse momentum
balance in photon+jet events [12], and the correction
is propagated to the 6ET . The data are recorded using
triggers designed to select single electrons or muons and
combination of electron and jets. After imposing data
quality requirements, the total integrated luminosity is
5.4 fb−1 [13], where the first 1.1 fb−1, Run IIa, precedes
an upgrade to the SMT and trigger systems. The re-
maining 4.3 fb−1 is denoted as Run IIb. The four data
sets using e or µ for the two run epochs are analyzed
separately and combined in the final result.

Background contributions from most SM processes are
determined through Monte Carlo (MC) simulation, while
multijet background is estimated from data. The dom-
inant background is from V +jets processes, which are
generated with alpgen [14]. The transverse momentum
(pT ) spectrum of the Z boson in the MC is reweighted
to match that observed in data [15]. The pT spectrum of

the W boson is reweighted using the same dependence,
but corrected for differences between the pT spectra of
Z and W bosons predicted in next-to-next-to-leading or-
der (NNLO) QCD [16]. Backgrounds from tt̄ and elec-
troweak single top quark production are simulated us-
ing the alpgen and comphep [17] generators, respec-
tively. Vector boson pair production and H boson signals
are generated with pythia [18]. All these simulations
use CTEQ6L1 parton distribution functions (PDF) [19].
Both alpgen and comphep samples are interfaced with
pythia for modeling of parton evolution and hadroniza-
tion.

Relative normalizations for the various V +jets pro-
cesses are obtained from calculations of cross sections at
next-to-leading order using mcfm [20], while the absolute
normalization for the total V +jets background is con-
strained through a comparison to data, following the sub-
traction of other background sources. This increases the
normalization for V +jets background by about 2%, com-
pared with the expectation from alpgen normalized us-
ing total cross sections calculated at NNLO [21] with the
MRST2004 NNLO PDFs [22]. Cross sections for other
SM backgrounds are taken from Ref. [23], or calculated
with mcfm, and those for signal are taken from Ref. [24].
The pT spectra for diboson events in background are cor-
rected to match those of the mc@nlo generator [25]. The
pT spectra from the contribution of gluon fusion to the
H boson signal, generated in pythia, are modified to
match those obtained from sherpa [26].

Signal and background events from MC are passed
through a full geant3-based simulation [27] of detector
response, then processed with the same reconstruction
program as used for data. Events from randomly selected
beam crossings with the same instantaneous luminosity
profile as data are overlaid on the simulated events to
model detector noise and contributions from the pres-
ence of additional pp̄ interactions. Parameterizations of
trigger efficiency for leptons are determined using Z → ℓℓ
decays [28]. Any remaining differences between data and
simulation in the reconstruction of electrons, muons, and
jets are adjusted in simulated events to match those ob-
served in data and these corrections are propagated to
the MET.

Events are selected to contain candidates for W → ℓν
decay by requiring 6ET > 15GeV and the presence of
a lepton with pT > 15GeV that is isolated relative to
jets, namely located outside jet cones ∆R(ℓ, j) > 0.5,
with (∆R)2 = (φℓ − φj)2 + (ηℓ − ηj)2, where φx and
ηx are the azimuth and pseudorapidity [29] of object x.
The pp̄ interaction vertex (PV) position along the beam
direction (zPV) is required to be reconstructed within
the longitudinal acceptance of the SMT, |zPV| < 60 cm.
The lepton is required to originate from the PV and to
pass more restrictive isolation criteria based on tracking
information and energy deposited near the lepton in the
calorimeter. Electrons must also satisfy criteria for the
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TABLE I: Number of signal and background events expected after selection requirements. The signal sources include gluon-
gluon and vector-boson fusion, and associated production WH . The three numbers quoted for the signals correspond to
MH = 130, 160, and 190 GeV. For backgrounds, “top” includes pair and single top quark production and “V V ” includes all
non-signal diboson processes. The overall background normalization is fixed to the data by adjusting the V +jets cross sections.

Channel gg → H qq → qqH WH V +jets Multijet Top V V Total Background Data
Electron 11.2/46.3/27.8 2.1/6.4/4.2 7.2/0/0 52158 11453 2433 1584 67627 67627
Muon 9.5/34.7/20.4 1.5/4.4/2.9 5.7/0/0 47970 2720 1598 1273 53562 53562

spatial distribution of the shower, and timing information
is used to reject cosmic ray background in events with
muons. All lepton selections are described in Ref. [30],
except that this analysis requires both the scalar sum of
track pT and calorimeter energy in the vicinity of the
muon be less than 2.5GeV. Electrons and muons are
required to be located within |ηdet| < 1.1 and < 1.6,
respectively, where ηdet is the pseudorapidity assuming
the object originates from the center of the detector. To
reduce background from Z → ℓℓ, top quark, and diboson
events, and to assure selected events do not overlap with
those used in the WW → ℓνℓ′ν′ analysis channels, we
veto any event containing an additional lepton satisfying
less stringent identification criteria. We also require at
least two jets with |ηj | < 2.5 and pT > 20GeV that
contain associated tracks originating from the PV. The
jet pT requirement is 23GeV when the second-leading jet
(ordered in pT ) has 0.8 < |ηdet| < 1.5 [10]. The leading
two jets are used to reconstruct the W boson decaying
to q′q. To suppress background from MJ events [31],
we require events to have MW

T (GeV) > 40 − 0.5 × 6ET ,
where MW

T is the transverse mass [32] of the W boson
candidate.

To estimate the MJ background, we use data sam-
ples orthogonal to our signal sample. For the electron
channel, we form a “loose” category for which the selec-
tion on a likelihood discriminant used to select a “tight”
electron, based on calorimeter and track variables [31],
is reversed. Following the method of Ref. [33], the MJ
background is evaluated from independently-determined
probabilities for loose electrons or jets to pass the tight
signal selections. For the muon channel, we reverse re-
quirements on muon isolation in both the tracking de-
tectors and the calorimeters, and subtract contributions
arising from SM processes containing a true muon from
W or Z decay. The normalization is obtained from fits
to both the V +jets and MJ contributions using observed
distributions of pµ

T and 6ET . Event yields in data and
those expected for signal and background are shown in
Table I.

We use a random forest (RF) of 50 decision trees (DT)
to separate signal from background [34, 35]. Each DT is
trained on a randomly selected collection of signal and
background MC events as well as MJ events from data.
The DTs examine a random set of about 30 discriminat-
ing variables formed from particle 4-vectors, angles be-

tween objects, and combinations of kinematic variables
such as reconstructed masses and event shapes. An RF is
trained separately for each data set, using signal hypothe-
ses 115 < MH < 200GeV in steps of 5GeV. The outputs
of the final RF discriminants for the four data sets com-
bined, background, and signal for MH = 160GeV are
shown in Fig. 1 . Agreement is observed with expecta-
tions from SM background, and the RF-output distribu-
tions are therefore used to set upper limits on the cross
section for SM Higgs production.
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FIG. 1: The output of RF discriminants for data, different
backgrounds, and signal for MH = 160 GeV for the combined
data sets.

Systematic uncertainties affect the normalizations and
distributions of the final discriminants and are included
in the determination of limits. These arise from a vari-
ety of sources, and their impact is assessed by changing
each input discriminant to the RF by ±1 standard devi-
ation. The most significant uncertainties are from cali-
bration of jet energies (0.7–6)%, jet resolution (0.5–3)%,
jet reconstruction efficiency (0.5–4)%, lepton identifica-
tion and modeling of the trigger (4%), estimation of the
multijet background (6.5–26)%, and integrated luminos-
ity (6.1%). Theoretical uncertainties on cross sections for
backgrounds are taken from Ref. [20, 23]. The uncertain-
ties on cross sections for signal are taken from Ref. [24].
Because the overall cross section for V +jets production is
constrained by data, the uncertainty on its normalization
is anti-correlated with the MJ background. The impacts
of theoretical uncertainties on distributions of the final
discriminants are assessed by varying a common renor-
malization and factorization scale, by comparing alpgen

interfaced with herwig [36] to alpgen interfaced with
pythia for V +jets samples, and by varying PDF pa-
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rameters using the prescription of Ref. [19] for all MC
samples.

Upper limits on the production cross section multiplied
by branching fractions are determined using the modified
frequentist CLS approach [37]. A test statistic based on
the logarithm of the ratio of likelihoods (LLR) [37] for the
data to represent signal+background and background-
only hypotheses is summed over all bins of the final dis-
criminant in each set. To minimize degradation in sensi-
tivity, scaling factors for the systematic uncertainties are
fitted to the data by maximizing a likelihood function
for both the signal+background and background-only hy-
potheses, with the systematic uncertainties constrained
through Gaussian priors on their probabilities [38]. Cor-
relations among systematic uncertainties in signal and
background are taken into account in extracting the fi-
nal results. Figure 2 shows the combined background-
subtracted data and the uncertainties on the RF discrim-
inant after they are fitted to the data.
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FIG. 2: The combined background subtracted data and one
standard deviation (s.d.) uncertainty on total background af-
ter applying constraints on systematic uncertainties by fitting
to data. The expected SM Higgs signal for MH = 160 GeV,
shown by the line, is scaled up by a factor of 5.

The resulting limits on standard model Higgs boson
production are given in Table II. The LLROBS values
shown in Fig. 3 as functions of MH are within ∼ 1.5
standard deviations of the expected median for LLRB,
the background-only hypothesis, as calculated from sta-
tistical fluctuations and systematic uncertainties.

In conclusion, we have determined the first limits on
standard model Higgs boson production examining de-
cays of the Higgs boson to two vector bosons, one of
which decays leptonically and the other into a pair of
quarks. For MH = 160GeV, the observed and expected
95% C.L. upper limits on the combined cross section
for Higgs production, multiplied by the branching frac-
tion for H + X → ℓ + /ℓ/ν + qq, are factors of 3.9 and 5.0
larger than the SM cross section, respectively.

Supplementary material, including a list of variables
used in the RF, samples of input distributions, and a
table of systematic uncertainties, is available from [39].
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