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Abstract

A data sample corresponding to an integrated luminosity of 2.1 fb−1 collected by the DØ detector at the Fermilab Tevatron Collider was
analyzed to search for squarks and gluinos produced in pp̄ collisions at a center-of-mass energy of 1.96 TeV. No evidence for the production
of such particles was observed in topologies involving jets and missing transverse energy, and 95% C.L. lower limits of 379 GeV and 308 GeV
were set on the squark and gluino masses, respectively, within the framework of minimal supergravity with tanβ = 3, A0 = 0, and μ < 0. The
corresponding previous limits are improved by 54 GeV and 67 GeV.
© 2008 Elsevier B.V. All rights reserved.

PACS: 14.80.Ly; 12.60.Jv; 13.85.Rm
In supersymmetric models [1], each of the Standard Model
(SM) particles has a partner differing by a half-unit of spin.
If R-parity [2] is conserved, supersymmetric particles are pro-
duced in pairs, and their decay leads to SM particles and to the
lightest supersymmetric particle (LSP), which is stable. Cos-
mological arguments suggest that the LSP should be neutral
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and colorless [3]. The lightest neutralino χ̃0
1 , which is a mix-

ture of the superpartners of the neutral gauge and Higgs bosons,
fulfills these conditions. In the following, it is assumed that R-
parity is conserved and that χ̃0

1 is the LSP. Since this particle is
weakly interacting, it escapes detection and provides the clas-
sic missing transverse energy (/ET ) signature at colliders. In
pp̄ collisions, squarks (q̃) and gluinos (g̃), the superpartners
of quarks and gluons, would be abundantly produced, if suf-
ficiently light, by the strong interaction, leading to final states
containing jets and /ET . The most constraining direct limits on
squark and gluino masses were obtained by the DØ Collabo-
ration [4], based on an analysis of 310 pb−1 of data from pp̄

collisions at a center-of-mass energy of 1.96 TeV, collected dur-
ing Run II of the Fermilab Tevatron Collider. In the model of
minimal supergravity (mSUGRA) [5], the limits obtained were
mq̃ > 325 GeV and mg̃ > 241 GeV at the 95% C.L., for the set
of model parameters detailed below. In this Letter, an update of

mailto:verdier@ipnl.in2p3.fr
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the DØ search for squarks and gluinos in topologies with jets
and large /ET is reported, using a seven times larger data set
of 2.1 fb−1.

A detailed description of the DØ detector can be found in
Ref. [6]. The central tracking system consists of a silicon mi-
crostrip tracker and a central fiber tracker, both located within
a 2 T superconducting solenoidal magnet. A liquid-argon and
uranium calorimeter covers pseudorapidities up to |η| ≈ 4.2,
where η = − ln[tan(θ/2)], and θ is the polar angle with re-
spect to the proton beam direction. The calorimeter consists
of three sections, housed in separate cryostats: the central one
covers |η| � 1.1, and the two end sections extend the cover-
age to larger |η|. The calorimeter is segmented in depth, with
four electromagnetic layers followed by up to five hadronic
layers. It is also segmented in semi-projective towers of size
0.1 × 0.1 in the (η,φ) plane, where φ is the azimuthal an-
gle in radians. Calorimeter cells are defined by the intersec-
tions of towers and layers. Additional sampling is provided
by scintillating tiles between cryostats. An outer muon sys-
tem, covering |η| < 2, consists of a layer of tracking detectors
and scintillation trigger counters in front of 1.8 T iron toroids,
followed by two similar layers after the toroids. Jets were
reconstructed with the iterative midpoint cone algorithm [7]
with cone radius R = √

(�φ)2 + (�y)2 = 0.5 in azimuthal
angle φ and rapidity y = 1

2 ln((E + pz)/(E − pz)). The jet
energy scale (JES) was derived from the transverse momen-
tum balance in photon-plus-jet events. The /ET was calcu-
lated from all calorimeter cells, and corrected for the jet en-
ergy scale and for the transverse momenta of reconstructed
muons.

The DØ trigger system consists of three levels, L1, L2 and
L3. The 1.2 fb−1 of data recorded after 2006 (during the so-
called Run IIb) were collected using a significantly upgraded
system, in particular a new L1 calorimeter trigger [8] involv-
ing a sliding-window algorithm which improved the jet trig-
gering efficiency. In addition, /ET was used at L1 to select
events, which was not done during the previous data taking
period (Run IIa). Both improvements helped to keep a high trig-
ger efficiency despite the increased instantaneous luminosity in
Run IIb (up to 2.8 × 1032 cm−2 s−1, to be compared to 1.6 ×
1032 cm−2 s−1 in Run IIa). The events used in this analysis were
recorded using two categories of triggers [9]. The dijet triggers
selected events with two jets and /ET , while the multijet triggers
were optimized for events with at least three jets and /ET .

The SM processes leading to events with jets and real /ET

in the final state (“SM backgrounds”) are the production of W

or Z bosons in association with jets (W/Z + jets), of pairs of
vector bosons (WW , WZ, ZZ) or top quarks (t t̄ ), and of sin-
gle top quarks. The neutrinos from the decays Z → νν̄ and
W → lν, with the W boson produced directly or coming from
a top quark decay, generate the /ET signature. In this analysis,
most of the W boson leptonic decays leading to an electron or
a muon were identified, and the corresponding events rejected.
However, a charged lepton from W boson decay can be a tau de-
caying hadronically. It can also be an electron or a muon that es-
capes detection or fails the identification criteria. Such W + jets
events therefore exhibit the jets plus /ET signature. Finally, mul-
tijet production also leads to a final state with jets and /ET when
one or more jets are mismeasured (“QCD background”).

Events from SM and supersymmetric processes were simu-
lated using Monte Carlo (MC) generators and passed through
a full GEANT3-based [10] simulation of the detector geome-
try and response. They were subsequently processed with the
same reconstruction chain as the data. The parton density func-
tions (PDFs) used in the MC generators are the CTEQ6L1 [11]
PDFs. A data event from a randomly selected beam crossing
was overlaid on each event to simulate the additional mini-
mum bias interactions. The QCD background was not simu-
lated, but estimated directly from data. The ALPGEN generator
[12] was used to simulate W/Z + jets and t t̄ production. It was
interfaced with PYTHIA [13] for the simulation of initial and
final state radiation (ISR/FSR) and of jet hadronization. Pairs
of vector bosons and electroweak top quark production were
simulated with PYTHIA and COMPHEP [14], respectively. The
next-to-leading order (NLO) cross sections were computed with
MCFM 5.1 [15].

Squark and gluino production and decay were simulated
with PYTHIA. The masses of the supersymmetric particles were
calculated with SUSPECT 2.3 [16] from the set of five mSUGRA
parameters: m0, the universal scalar mass at the grand unifica-
tion scale ΛGUT; m1/2 the universal gaugino mass at ΛGUT;
A0, the universal trilinear coupling at ΛGUT; tanβ , the ratio of
the vacuum expectation values of the two Higgs fields; and μ

the sign of the Higgs-mixing mass parameter. The decay widths
and branching ratios of all supersymmetric particles were then
calculated with SDECAY 1.1a [17]. In order to allow for an eas-
ier comparison with previous results, the following parameters
were fixed to the same values as in Ref. [4]: A0 = 0, tanβ = 3,
and μ < 0. The production of scalar top quarks (stops) was ig-
nored, and in the following, the “squark mass” is the average
mass of all squarks other than stops. All squark and gluino
decay modes were taken into account, including cascade de-
cays through charginos or neutralinos which could additionally
produce electrons, muons, or taus. The NLO cross sections
of the squark and gluino pair production were calculated with
PROSPINO 2 [18].

The analysis strategy is the same as in Ref. [4] with
three analyses optimized for three benchmark regions of the
mSUGRA parameter space. A “dijet” analysis was optimized
at low m0 for events containing a pair of acoplanar jets, as ex-
pected from pp̄ → q̃ ¯̃q → qχ̃0

1 q̄χ̃0
1 and pp̄ → q̃q̃ → qχ̃0

1 qχ̃0
1 .

A “gluino” analysis was optimized at high m0 for events with
at least four jets, as expected from pp̄ → g̃g̃ → qq̄χ̃0

1 qq̄χ̃0
1 .

Finally, a “3-jets” analysis was optimized for events with at
least three jets, as expected from pp̄ → q̃g̃ → qχ̃0

1 qq̄χ̃0
1 . The

benchmark for this analysis is the case where mq̃ = mg̃ .
Each analysis required at least two jets and substantial /ET

(� 40 GeV). The acoplanarity, i.e. the azimuthal angle between
the two leading jets, was required to be smaller than 165◦,
where the two leading jets are those with the largest trans-
verse momenta. These leading jets were required: to be in
the central region of the calorimeter, |ηdet| < 0.8, where ηdet
is the jet pseudorapidity calculated under the assumption that
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the jet originates from the detector center; to have fractions
of energy in the electromagnetic layers of the calorimeter less
than 0.95; and to have transverse momenta greater than 35 GeV.
The best primary vertex (PV0) was selected among all re-
constructed primary vertices (PV) as the one with the small-
est probability to be due to a minimum bias interaction [19].
Its longitudinal position with respect to the detector center
was restricted to |z| < 60 cm to ensure efficient reconstruc-
tion. For each jet, CPF0 is defined as the fraction of track pT

sum associated with the jet which comes from PV0, CPF0 =∑
ptrack

T (PV0)/
∑

ptrack
T (any PV). The two leading jets were

required to have CPF0 larger than 0.75. Since jet transverse
momenta and /ET were calculated with respect to PV0, this cri-
terion reduced the background with large /ET due to an incorrect
PV0 selection.

Different selection criteria were applied in the three analy-
ses, as summarized in Table 1. Events passing a trigger for
acoplanar dijet events were used in the “dijet” analysis, while
a multijet and /ET trigger was required in the “3-jets” and
“gluino” analyses. In the “3-jets” and “gluino” analyses, a third
and fourth jet were required, respectively. In comparison with
the previously published analysis [4], the |ηdet| upper limit
for the third and fourth jet was increased from 0.8 to 2.5,
which considerably improved the signal efficiency at high m0.
These two jets also had to have their fraction of energy in
the electromagnetic layers of the calorimeter less than 0.95,
but no requirement was made on their CPF0. The third and
fourth jet transverse momenta were required to exceed 35 GeV
and 20 GeV, respectively. In all three analyses, a veto on iso-
lated electrons or muons with pT > 10 GeV was applied to
reject background events containing a leptonic W boson de-
cay. The azimuthal angles between the /ET and the first jet,
�φ(/ET , jet1), and the second jet, �φ(/ET , jet2), were used to
remove events where the energy of one jet was mismeasured,
generating /ET aligned with that jet. In the “dijet” analysis,
the minimum azimuthal angle �φmin(/ET , any jet) between the
/ET and any jet with pT > 15 GeV was required to be greater
than 40◦ to further suppress QCD background. This criterion
was not used in the “3-jets” and “gluino” analyses because of
the higher jet multiplicity in the signal events.

The two final cuts on /ET and on HT = ∑
jets pT , where the

sum is over all jets with pT > 15 GeV and |ηdet| < 2.5, were
optimized by minimizing the expected upper limit on the cross
section in the absence of signal. Here and in the calculation
of the final limits, the modified frequentist CLs method [20]
was used. The QCD background contribution was estimated by
fitting the /ET distribution below 60 GeV with an exponential
function, after subtraction of the SM background processes, and
subsequently extrapolating this function above the chosen /ET

cut value. The optimal cuts are given in Table 1. The /ET distri-
butions after applying all analysis criteria except the one on /ET

are shown in Fig. 1 for the three analyses.
Table 2 reports the number of data events and the expected

signal and background. The main background contributions are
from (Z → νν̄) + jets, (W → lν) + jets, and t t̄ → bb̄qq̄ ′lν.
The QCD background was evaluated from a fit to the /ET dis-
tribution as described above. The largest QCD contribution of
Table 1
Selection criteria for the three analyses (all energies and momenta in GeV); see
the text for further details

Preselection cut All analyses

/ET � 40
|Vertex z pos.| < 60 cm
Acoplanarity < 165◦

Selection cut “dijet” “3-jets” “gluino”

Trigger dijet multijet multijet
jet1 pT

a � 35 � 35 � 35
jet2 pT

a � 35 � 35 � 35
jet3 pT

b – � 35 � 35
jet4 pT

b – – � 20

Electron veto yes yes yes
Muon veto yes yes yes

�φ(/ET , jet1) � 90◦ � 90◦ � 90◦
�φ(/ET , jet2) � 50◦ � 50◦ � 50◦
�φmin(/ET , any jet) � 40◦ – –

HT � 325 � 375 � 400
/ET � 225 � 175 � 100

a First and second jets are also required to be central (|ηdet| < 0.8), with an
electromagnetic fraction below 0.95, and to have CPF0 � 0.75.

b Third and fourth jets are required to have |ηdet| < 2.5, with an electromag-
netic fraction below 0.95.

1.4 ± 0.8 event was estimated in the “gluino” analysis, but was
conservatively ignored when setting the limits. It was found to
be negligible in the “dijet” and “3-jets” analyses. The signal
efficiencies are given in Table 2 for the three benchmark sce-
narios, with the corresponding values of m0, m1/2, the squark
and gluino masses, and the NLO cross section.

The uncertainty coming from the JES corrections is typi-
cally (10–15)% for the SM backgrounds and (6–11)% for the
signal efficiencies. The uncertainties due to the jet energy res-
olution, to the jet track confirmation, and to jet reconstruction
and identification efficiencies range between 2% and 4%. All
these uncertainties on jet properties account for differences be-
tween data and MC simulation, both for signal efficiencies and
background contributions. The trigger was found to be fully ef-
ficient for the event samples surviving all analysis cuts with an
uncertainty of 2%. The uncertainty on the luminosity measure-
ment is 6.1% [21]. All of these uncertainties are fully correlated
between signal and SM backgrounds. A 15% systematic uncer-
tainty was set on the W/Z + jets and t t̄ NLO cross sections.
The uncertainty on the signal acceptance due to the PDF choice
was determined to be 6%, using the forty-eigenvector basis of
the CTEQ6.1M PDF set [11]. Finally, the effects of ISR/FSR on
the signal efficiencies were studied by varying the PYTHIA pa-
rameters controlling the QCD scales and the maximal allowed
virtualities used in the simulation of the space-like and time-
like parton showers. The uncertainty on the signal efficiencies
was determined to be 6%.

The nominal NLO signal cross sections, σnom, were com-
puted with the CTEQ6.1M PDF and for the renormalization and
factorization scale μr,f = Q, where Q was taken to be equal
to mg̃ for g̃g̃ production, mq̃ for q̃q̃ and q̃ ¯̃q production, and
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Table 2
For each analysis, information on the signal for which it was optimized (m0, m1/2, mg̃ , mq̃ , and nominal NLO cross section), signal efficiency, the number of events
observed, the number of events expected from SM backgrounds, the number of events expected from signal, and the 95% C.L. signal cross section upper limit. The
first uncertainty is statistical and the second is systematic

Analysis (m0,m1/2)

(GeV)
(mg̃,mq̃ )

(GeV)
σnom
(pb)

εsig
(%)

Nobs. Nbackgrd. Nsig. σ95
(pb)

“dijet” (25,175) (439,396) 0.072 6.8 ± 0.4+1.2
−1.2 11 11.1 ± 1.2+2.9

−2.3 10.4 ± 0.6+1.8
−1.8 0.075

“3-jets” (197,154) (400,400) 0.083 6.8 ± 0.4+1.4
−1.3 9 10.7 ± 0.9+3.1

−2.1 12.0 ± 0.7+2.5
−2.3 0.065

“gluino” (500,110) (320,551) 0.195 4.1 ± 0.3+0.8
−0.7 20 17.7 ± 1.1+5.5

−3.3 17.0 ± 1.2+3.3
−2.9 0.165

Table 3
Definition of the analysis combinations, and number of events observed in the data and expected from the SM backgrounds

Selection “dijet” “3-jets” “gluino” Nobs. Nbackgrd.

Combination 1 yes no no 8 9.4 ± 1.2 (stat.)+2.3
−1.8 (syst.)

Combination 2 no yes no 2 4.5 ± 0.6 (stat.)+0.7
−0.5 (syst.)

Combination 3 no no yes 14 12.5 ± 0.9 (stat.)+3.6
−1.9 (syst.)

Combination 4 yes yes no 1 1.1 ± 0.3 (stat.)+0.5
−0.3 (syst.)

Combination 5 yes no yes kinematically not allowed

Combination 6 no yes yes 4 4.5 ± 0.6 (stat.)+1.8
−1.3 (syst.)

Combination 7 yes yes yes 2 0.6 ± 0.2 (stat.)+0.1
−0.2 (syst.)

At least one selection 31 32.6 ± 1.7 (stat.)+9.0
−5.8 (syst.)
(mq̃ + mg̃)/2 for q̃g̃ production. The uncertainty due to the
choice of PDF was determined using the full set of CTEQ6.1M
eigenvectors, with the individual uncertainties added in quadra-
ture. The effect on the nominal signal cross sections, which
varies between 15% and 60%, is dominated by the large un-
certainty on the gluon distribution at high x. The effect of the
renormalization and factorization scale was studied by calcu-
lating the signal cross sections for μr,f = Q, μr,f = Q/2 and
μr,f = 2 × Q. The factor of two on this scale reduces or in-
creases the nominal signal cross sections by (15–20)%. The
PDF and μr,f effects were added in quadrature to compute min-
imum, σmin, and maximum, σmax, signal cross sections.

The numbers of events observed in the data are in agree-
ment with the SM background expectation in the three analy-
ses. Therefore, an excluded domain in the gluino–squark mass
plane was determined as follows. The three analyses were run
over signal MC samples generated in the gluino–squark mass
plane to compute signal efficiencies. Then, to take advantage of
the different features of the three analyses, seven independent
combinations of the three selections were defined as shown in
Table 3, which were combined in the limit computations. The
number of events passing at least one of the three analyses
is 31 while the SM expectation is 32.6 ± 1.7(stat.)+9.0

−5.8(syst.)
events. Fig. 2 shows the 95% C.L. observed and expected up-
per limits on squark–gluino production cross sections for the
three benchmark scenarios. Fig. 3 shows the excluded domain
in the gluino–squark mass plane.

The absolute lower limits on the squark and gluino masses
obtained in the most conservative hypothesis, σmin, are 379 GeV
and 308 GeV, respectively. The corresponding expected limits
are 377 GeV and 312 GeV. Table 4 summarizes these absolute
limits for the three signal cross section hypotheses. Limits were
Table 4
Absolute lower limits at the 95% C.L. on the squark and gluino masses (in GeV)
as a function of the choice of signal cross section hypothesis as defined in the
text. Numbers in parentheses correspond to the expected limits. These limits
are valid for the mSUGRA parameters tanβ = 3, A0 = 0, μ < 0

Hypothesis Gluino mass Squark mass

σmin 308 (312) 379 (377)
σnom 327 (332) 392 (391)
σmax 349 (354) 406 (404)

also derived for the particular case mq̃ = mg̃ . For σmin, squark
and gluino masses below 390 GeV are excluded, while the ex-
pected limit is 390 GeV. The observed limit becomes 408 GeV
for σnom, and 427 GeV for σmax.

The results of this analysis also constrain the mSUGRA pa-
rameters at the grand unification scale. Fig. 4 shows the ex-
cluded regions in the (m0,m1/2) plane for tanβ = 3, A0 = 0,
μ < 0. Although a detailed scan of the mSUGRA parame-
ter space is beyond the scope of this analysis, it was veri-
fied that similar results hold for a large class of parameter
sets. In particular, the fact that there is no explicit veto in this
analysis on hadronically decaying tau leptons mitigates the ex-
pected efficiency reduction at larger values of tanβ . It can be
seen in Fig. 4 that the limits from LEP2 chargino and slep-
ton searches [23] are improved for m0 values between 70 and
300 GeV and for m1/2 values between 125 and 165 GeV. How-
ever, the LEP2 Higgs search limits remain more constraining in
a purely mSUGRA scenario [23].

In summary, a search for squarks and gluinos produced in
pp̄ collisions at 1.96 TeV has been performed in a 2.1 fb−1

data sample. The results of three selections of events with jets
and large missing transverse energy are in agreement with the
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(a)

(b)

(c)

Fig. 1. Distributions of /ET after applying all analysis criteria except the

one on /ET for the “dijet” (a), “3-jets” (b), and “gluino” (c) analyses;
for data (points with error bars), for SM background (full histogram),
and for signal MC (dotted histogram on top of SM). The signal drawn
corresponds to (m0,m1/2) = (25,175) GeV, mq̃ = mg̃ = 410 GeV, and
(m0,m1/2) = (500,110) GeV from (a) to (c). The fitted QCD background con-
tribution is also shown.

SM background predictions. In the framework of minimal su-
pergravity with tanβ = 3, A0 = 0, and μ < 0, 95% C.L. lower
limits of 392 GeV and 327 GeV were set on the squark and
gluino masses, respectively, for the central choice of PDF and
for a renormalization and factorization scale equal to the mass
of the squark or gluino produced. Taking into account the PDF
(a)

(b)

(c)

Fig. 2. For tanβ = 3, A0 = 0, μ < 0, observed (closed circles) and expected
(opened triangles) 95% C.L. upper limits on squark–gluino production cross
sections combining the analyses for m0 = 25 GeV (a), mq̃ = mg̃ (b), and
m0 = 500 GeV (c). The nominal production cross sections are also shown, with
shaded bands corresponding to the PDF and renormalization-and-factorization
scale uncertainties.

uncertainties and allowing for a factor of two in the choice of
scale, these limits are reduced to 379 GeV and 308 GeV. They
exceed the corresponding previous limits [4] by 54 GeV and
67 GeV and are the most constraining direct limits on the squark
and gluino masses to date.
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