
DØ Note 6441-CONF

A Measurement of the Forward-Backward Asymmetry in the Production of B±

Mesons in pp̄ Collisions

The DØ Collaboration
URL http://www-d0.fnal.gov

(Dated: July 14, 2014)

We present a preliminary measurement of the forward-backward asymmetry in the production of
B± mesons, AFB(B

±), using B± → J/ψK± decays in 10.4 fb−1 of pp̄ collision data from Run II of
the DØ Experiment at the Tevatron Collider. A non-zero asymmetry would indicate a preference
for a particular flavor of b quark to be produced in the direction of the proton beam. AFB(B

±) is
extracted from a maximum likelihood fit to the difference between forward- and backward-produced
B± mesons, using a boosted decision tree to reduce background. Corrections are made for re-
construction asymmetries of the decay products. We measure AFB(B

±) = [−0.26 ± 0.41 (stat.)
±0.17 (syst.)]% which is consistent with zero. Standard Model predictions based on next-to-leading-
order Monte Carlo calculations are in preparation.
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I. INTRODUCTION

A forward-backward asymmetry in the production of heavy quarks can be caused by interference between next-
to-leading order processes, such as gluon radiation in qq̄ interactions and qg scattering [1]. Examples of interfering
diagrams are shown in Fig. 1. Over the past few years, there has been a great deal of interest in the the forward-
backward asymmetry in tt̄ production (Att̄FB) [2], especially since experimental results have been reported to be larger
than standard model predictions [3, 4]. The most recent DØ measurements agree with the standard model [5], as
do measurements at the LHC, where asymmetries are expected to be smaller since tt̄ production is dominated by
gluon-gluon fusion [6, 7]. Large tt̄ production asymmetries at the Tevatron prompted development of models which

could explain the excess. Abb̄FB has the same source as Att̄FB but is expected to have a smaller magnitude in the

standard model, making it an important probe of these new physics models [8]. Abb̄FB in b -jets has only recently been
measured at hadron collider experiments [9, 10]. These measurements are impacted by the need to correctly identify
the initial quark content of b jets and their flavor (b or b̄).

FIG. 1: Next-to-leading order diagrams which lead to a forward-backward asymmetry in heavy quark production through
interference.

At DØ we have chosen to use fully-reconstructed B± → J/ψK± decays, since reconstructing a B± allows for
direct quark flavor identification with no need to account for mixing and no ambiguity in quark flavor. We define
a forward-backward asymmetry as AFB = (NF − NB)/(NF + NB). In pp̄ collisions, the forward category indicates
a quark (or B− meson) with the longitudinal component of its momentum in the direction of the proton beam, or
an anti-quark (or B+ meson) with the longitudinal component of its momentum in the direction of the anti-proton
beam.
In each event we reconstruct a B± meson from one of the quarks and categorize it as forward or backward with

a “charge” qFB = −qB sgn(ηB), where sgn(x) is the sign function and ηB is the pseudorapidity of the B±, η =
− 1

2 ln[tan(θ/2)]. Figure 2 gives examples of the forward and backward categories. The forward-backward asymmetry
of the B± mesons is:

AFB(B
±) =

N(−qBηB > 0)−N(−qBηB < 0)

N(−qBηB > 0) +N(−qBηB < 0)
. (1)

II. THE DØ DETECTOR

The DØ experiment collected data at the Fermilab Tevatron pp̄ Collider at
√
s = 1.96 TeV from 2001 through the

shutdown of the Tevatron in 2011, a period referred to as Run II. The DØ detector is described in detail elsewhere [11].
For the purposes of this analysis, the most important parts of the detector are the central tracker and the muon system.
The inner region of the DØ central tracker consists of a silicon microstrip tracker (SMT) that covers pseudorapidities

|η| < 3. In the spring of 2006, an additional layer of silicon (Layer 0) was added close to the beam pipe [12]. Since the
detector configuration changed significantly with this addition, the DØ dataset is divided into two distinct periods,
Run IIa and Run IIb, with the analysis performed separately for each period. Run IIb is further divided into subsets
referred to as Run IIb1 − Run IIb4, with each period separated by several-week-long accelerator shut-downs.
Moving away from the interaction region, the next detector subsystem encountered is the DØ central fiber tracker

(CFT), which consists of 16 concentric cylinders of scintillating fibers, covering |η| < 2.5. Both the SMT and CFT
are located within a 2 T superconducting solenoidal magnet. The DØ muon system is located outside of the finely
segmented liquid argon sampling calorimeter.
The muon system consists of three layers of tracking detectors and trigger scintillators, one layer in front of 1.8 T

toroidal magnets and two additional layers after the toroids. The muon system has a large acceptance, with coverage
for |η| < 2. The muon system has minimal background from hadron punch-through, providing efficient reconstruction
of J/ψ → µ+µ− decays. Also, the regular reversal of solenoid and toroid magnet polarities allows for the cancellation
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FIG. 2: Diagrams illustrating the definitions of (a, b) forward particles with qFB = +1 and (c, d) backward particles with
qFB = −1.

of first-order detector-based asymmetries. The data used in this analysis were collected with a suite of single muon
and dimuon triggers.

III. THEORETICAL PREDICTIONS

Until lately, theoretical predictions of Abb̄FB were limited [1]. Based on the plethora of tt̄ asymmetry measurements
in recent years, new predictions for heavy-flavor production asymmetries have been published comparing the Standard
Model with new physics models. Inclusive predictions for Abb̄FB are on the order of 0.5% [8, 13], but the mass scales
of the bb̄ pairs considered are better suited to a jet-based analysis.
To make Standard Model predictions tailored to the kinematics and selections of this analysis, we produce next-

to-leading-order Monte Carlo (MC) samples for the process pp̄ → bb̄X . Monte Carlo events are produced using
MC@NLO for event generation, with parton distribution function set CTEQ6M1, and Herwig for parton showering
and hadronization [14–16]. Detector simulation was done using GEANT3 [17]. This prediction is in preparation; the
systematic uncertainties due to scale, fragmentation, and other effects need to be determined.
Because the definitions of forward and backward are tied directly to sgn(ηB), the ambiguous region near ηB = 0

must be considered. A resolution study of ηB at production and reconstruction shows that rejecting events with
|ηB| < 0.1 removes the ambiguity to a high degree, as shown in Fig. 3(a). This cut removes approximately 2% of the
data sample and has a negligible effect on the measured value of AFB(B

±). The difference between the direction of
the reconstructed B± and the initial b quark is shown in Fig. 3(b). In approximately 80% of events the value of qFB
for the B± matches qFB for the quark.

IV. EVENT SELECTION AND MONTE CARLO

Events containing B± → J/ψK± candidates are selected from the full DØ Run II dataset. Candidates are recon-
structed by identifying a pair of oppositely-charged muons (decay products of the J/ψ particle) that are produced
along with a charged track at a common vertex. Displacement of this vertex from the primary beam interaction vertex
due to the decay length of the weakly decaying B mesons is essential for identifying B± candidates.
All particles are required to lie within the pseudorapidity coverage of the muon and central tracking systems,

|η| < 2.1. Muons must have a minimum transverse momentum of 1.5 GeV/c, and the K± candidate must have a
minimum pT of 0.7 GeV/c. All three tracks must have at least two hits in both the silicon microstrip and central
fiber trackers. One muon must have hits in both inner and outer layers of the muon detector, and the other muon
must hit at least one layer. Both tracks in the muon system must match to tracks in the central tracking system [18].
J/ψ candidates with reconstructed invariant mass between 2.7 and 3.45 GeV/c2 are accepted, and the uncertainty

on the particle’s decay length must be less than 0.1 cm. The cosine of the J/ψ’s two-dimensional “pointing angle” (the
angle between the vector from the primary vertex to the J/ψ vertex and the dimuon momentum vector) is required
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FIG. 3: (a) ηB(produced) − ηB(reconstructed) for MC@NLO B± candidates. Events with |ηB | < 0.1 are rejected. (b)
η(quark)−ηB(reconstructed) in MC@NLO, showing the relationship between the direction of the b quark and the reconstructed
B± meson.

to be greater than zero. We correct the muon momenta to constrain the µ+µ− invariant mass to the world average
of the J/ψ mass in the calculation of the B± candidate mass [19].
B± candidates are accepted if their transverse decay length significance (defined as the transverse decay length

divided by its uncertainty) is greater than 3.0. The reconstructed µ+µ−K± vertex must have goodness-of-fit quantity
χ2 < 16, and the cosine of the B± pointing angle is required to be above 0.8. The selected B± mass range for this
analysis is 5.05 – 5.65 GeV/c2.
Background rejection is achieved using a boosted decision tree (BDT) trained on simulated signal from Monte

Carlo and background events from B± sidebands above and below the selected mass range (4.0 – 5.05 and 5.65 –
7.0 GeV/c2) [20]. Leading-order B± → J/ψK± MC events generated with Pythia are processed through the same
reconstruction code as used for data [21]. The Monte Carlo events are weighted to give optimal agreement between
data and simulation. The muon trigger efficiency in particular is not modeled during MC generation, so the transverse
momenta of both muons must be reweighted. A cut on the BDT discriminant of −0.002 is chosen to minimize the
uncertainty of AFB(B

±). Figure 4 shows the uncertainty in AFB(B
±) and the signal significance as a function of

BDT discriminant.
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FIG. 4: The BDT minimum value of −0.002 was chosen to (a) minimize the uncertainty on AFB and (b) provide a large signal
fraction in the final data sample. Errors represent the combination of five trials each with a different random seed to blind qFB

(see Sec. VII).
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V. MAXIMUM LOG LIKELIHOOD FIT

A maximum log likelihood fit incorporating a signal probability distribution function (PDF) and three background
PDFs is used to extract AFB(B

±). The PDFs are functions of the candidate B± mass mJ/ψK and the kaon energy
EK . The signal PDF S(mJ/ψK , EK) is modeled as a normalized double Gaussian function where both Gaussians have
the same mean (mB) but different widths (σouter, σinner). The fraction of the inner Gaussian is labeled f , and both
widths vary with EK . The form of the dependence was determined empirically by fitting in bins of EK ,

S(mJ/ψK , EK) =
1− f

σouter
√
2π

exp

(−(mJ/ψK −mB)
2

2σ2
outer

)

+
f

σinner
√
2π

exp

(−(mJ/ψK −mB)
2

2σ2
inner

)

, (2)

σouter = c0(1 + c1e
−c2EK ), (3)

σinner = c3σouter. (4)

The magnetic field of the DØ solenoid is not symmetric along the beam direction, but the reconstruction code uses
a simplified symmetric field map. This results in small differences in reconstructed invariant masses between the η < 0
and η > 0 regions. To allow for these mass shifts a unique set of signal parameters is used for events in each of these
regions.
The background PDF P (mJ/ψK , EK) describes B± → J/ψπ± events in which the pion is misidentified as a kaon,

resulting in an artificially high B± mass. The PDF is a reflection of S with the mean shifted to recover the accurate
pion mass and the widths shifted by a ratio of the means.
The background PDF T (mJ/ψK) describes all partially reconstructed B± candidates. If a B± decay has a final

state with four or more particles, the reconstructed candidate will be missing a portion of its mass. These decays are
modeled using a hyperbolic tangent function with an inflection point denoted t:

T (mJ/ψK) = 1− tanh[25(mJ/ψK − t)]. (5)

Finally, the background PDF E(mJ/ψK , EK) describes the combinatorial background. It is modeled using an
exponential function with a slope that depends on kaon energy:

E(mJ/ψK , EK) = es(mJ/ψK−5.05), (6)

s = s0(1 + s1e
−s2EK ). (7)

The unbinned fit minimizes the negative log of a likelihood function Ln over N events, each with weight wn
(Sec. VI). Ln is a function of the four PDFs described above. They are each assigned a sample fraction fi and
a forward-backward asymmetry Ai, which are all free parameters in the fit. The value of qFB determines if a B±

candidate is forward or backward. Ln, shown in Eq. 9, has 26 parameters and is normalized to 1.

LLH = −2

N
∑

n=1

wn ln(Ln), (8)

Ln = α[fS(1 + qFBAS)S(mJ/ψK) + fP (1 + qFBAP )P (mJ/ψK) + fT (1 + qFBAT )T (mJ/ψK)]

+ [1− α(fS + fP + fT )](1 + qFBAE)E(mJ/ψK), (9)

where α describes the dependence of fi on the energy, EK , of the K± [22].

VI. CORRECTIONS FOR RECONSTRUCTION ASYMMETRIES

Asymmetries in J/ψ or K± reconstruction between η < 0 (the “south” half of the detector) and η > 0 (the “north”
half) can result in an apparent AFB . Detector asymmetries have been measured from data samples with no expected
production asymmetries. Decays of φ→ K+K− are used to measure the north-south asymmetry ANS(K

±). Events
are selected in which two oppositely charged tracks form a vertex with a mass between 0.99 and 1.06 GeV/c2. The
tracks are selected using criteria which match the kinematic properties of the K± candidates in the B± → J/ψK±

sample. The kaon tracks must also have a minimum separation of ∆R =
√

(∆φ)2 + (∆η)2 > 0.15. The φ→ K+K−

signal is modeled by a relativistic Breit-Wigner resonance convoluted with a double Gaussian resolution. Background
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models are determined from Monte Carlo studies. A binned χ2 minimization fit is performed simultaneously on north-
and south-side data. ANS(K

±) (Fig. 5(a)) is binned by the charge and |η| of the leading kaon; it does not show a
significant dependence on pT .
Prompt J/ψ → µ+µ− decays are used to measureANS(J/ψ). The selection criteria are those described in section IV,

adding the requirement that the significance of the J/ψ decay length be less than 1.5, both to provide an orthogonal
control sample and to ensure there are few B mesons in the sample. We estimate that only 2% of the sample is
long-lived particles. Background events under the peak are removed with sideband subtraction, and ANS(J/ψ) is
calculated in bins of η and pT , (Fig. 5(b)).
The main source of large ANS(J/ψ) seen at low pT appears to be detector asymmetries, specifically near the

support structures at the base of the detector. A study of J/ψ occupancy shows that gaps in the region of the support
structure are not symmetric about η = 0, and the response of the reconstruction algorithms to these gaps is momentum
dependent (Fig. 6). The muon trigger system also contributes asymmetric effects which are time dependent. This
time dependence is accounted for since the data samples used to determine the detector asymmetries are taken from
the same dataset as the B± signal events.
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FIG. 5: Reconstruction asymmetries of (a) φ → K+K− decays in bins of leading kaon charge and |η| and (b) of prompt
J/ψ → µ+µ− decays in bins of |η| and pT .

The ANS values are used to equalize the relative reconstruction efficiencies on both sides of the detector. South-side
particles are assigned efficiency εS = 1, and north-side particles are weighted so that εN = εS.

ANS =
εN − εS
εN + εS

, (10)

εS = εN
1−ANS
1 +ANS

. (11)

Since the background distributions could contain events without real J/ψ or K± particles (e.g., B± → J/ψπ±

events), the value of ANS in the corrective weight is scaled by the expected signal fraction F of the event.

F (mB, EK) =
αfSS

α(fSS + fPP + fTT ) + [1− α(fS + fP + fT )]E
. (12)

The overall weight for each event is wn = wmagnetwJ/ψwK± , where wmagnet equalizes the number of events in each

setting of solenoid polarity, toroid polarity, and B± charge. These weights are all nearly equal to unity due to regular
magnet polarity reversal at DØ and the nearly equal numbers of B+ and B− candidates. Equalizing the number of
B+ and B− candidates eliminates the need to correct for the different K+ and K− cross sections with the detector
material. The corrective weights wJ/ψ and wK± are:

wX =

{

1 for south-side X = J/ψ, K±

[1− FANS(X)]/[1 + FANS(X)] for north-side X = J/ψ, K±
. (13)
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FIG. 6: J/ψ occupancy at (a) low transverse momentum (J/ψ pT < 5.5 GeV/c), and (b) high transverse momentum (J/ψ pT
11.5 – 13.5 GeV/c). Each bin of (η, φ) is normalized by the number of events in the corresponding (|η|, φ) bin. A value of 0.5
indicates that the events that bin are evenly distributed between the north and south sides, while values near 0 or 1 reflect a
large ANS .

The values of ANS are determined by the kinematic bins of the J/ψ and K±.
Applying these reconstruction asymmetry weights has an effect on AFB(B

±), labeled AFB(corr), which is calculated
by comparing uncorrected fits to weighted fits: AFB(corr) = AFB(uncorrected)−AFB(weighted). The event-by-event
weighting method is cross-checked using a weighted average of ANS(J/ψ) and ANS(K

±) over their kinematic bins [23],
with the number of signal events per bin extracted from binned fits of the B± → J/ψK± data. These two methods
of calculating AFB(corr) are consistent.

VII. FIT RESULTS

In the initial stages of this analysis, the value of AFB was blinded, either with an event-by-event randomization of
qFB or with an unknown random offset to the value of AFB. Before unblinding, a set of 1000 pseudo-experiments, each
with qFB blinded based on a new random seed, was used to confirm the statistical uncertainty of the fit (Fig. 7(a)).
There is an additional statistical uncertainty of 0.002% due to the uncertainties on ANS(J/ψ, K

±) which form the
corrective weights. This uncertainty is determined using 500 pseudo-experiments with Gaussian variations of the ANS
values (Fig. 7(b)). For each trial each of the corrective weights is randomized with a Gaussian distribution, with a
width determined by its error. The fit method was calibrated by injecting a series of fifty test asymmetries to the
blinded data. The test was repeated with five sets of fifty random seeds to blind qFB. Figure 8 shows that the fit
succeeds in returning the input asymmetry values.
After numerous systematic checks, the fits were unblinded. The B± → J/ψK± final fit, corrected for reconstruction

asymmetries, gives 88664 ± 517 signal events. The projection of the unbinned fit onto the (forward + backward)
invariant mass distribution is shown in Fig. 9. The fitted PDFs multiplied by their associated asymmetry parameters
are projected onto the (forward − backward) mass distribution (Fig. 10), where each data event is given a positive
or negative weight according to qFB .
Although the fit is unbinned, fit quality is estimated by creating distributions of residuals, shown in Fig. 11. The

quadrature sum of these residuals is taken as the χ2 value for the distribution. The full fit has 26 free parameters,
22 of which we consider constrained by the (forward + backward) distribution. This distribution has 120 bins and
98 degrees of freedom, for a χ2/ndf of 1.27. The residuals of the (forward − backward) distribution are shown in
Fig. 11(b). If we consider the 4 asymmetry parameters to be constrained by this distribution it has 116 degrees of
freedom, for a χ2/ndf of 0.96.
The fully corrected, unblinded fit gives a signal asymmetry consistent with zero.

AFB(B
±) = [−0.26± 0.41 (stat.)].% (14)

The background asymmetries are also consistent with zero: AP = (0.57 ± 11.67)%, AT = (−2.02 ± 3.58)%, and
AE = (0.44± 0.74)%.



8

FBA
-0.02 -0.01 0 0.01 0.02

N
um

be
r 

of
 tr

ia
ls

0

20

40

60

80

100

120

140

160

180

200

DØ Run II Preliminary

(a)

 (%)FBA
-0.141 -0.136 -0.131 -0.126 -0.121

N
um

be
r 

of
 tr

ia
ls

0

10

20

30

40

50

60

70

80

90

DØ Run II Preliminary

(b)

FIG. 7: (a) AFB(B
±) values from 1000 pseudoexperiments randomizing the sign of ηB . The mean value of all pseudoexperiments

is zero as expected, and the width of 0.42± 0.01 is consistent with the statistical uncertainty of 0.41% returned by the fit. (b)
500 Gaussian randomizations of the ANS corrective weights. Each trial uses the same random seed for the ηB blinding, giving
a mean value of -0.13%. The width of this distribution gives the statistical uncertainty of 0.002% from the corrective weighting
procedure.
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FIG. 8: Fitted values of AFB versus the input values, in data with qFB randomized. The data points combine five sets of fits
with unique random seeds for each input asymmetry. The best fit line has an offset consistent with zero and a slope consistent
with one, which shows the fit measures the expected asymmetries.

VIII. SYSTEMATIC UNCERTAINTIES

To determine systematic uncertainties numerous reasonable variations are made to the fitting method. Two alter-
native BDTs were considered, one with the minimum M(J/ψK) of the lower background sideband increased to 4.5
GeV/c2 to improve agreement of the background distributions with the background in the analysis range. A second
alternative was trained without isolation variables to test any bias against high momentum B mesons.
The mass range for the B± candidates in the fit is varied by 50 MeV/c2 in 10 MeV/c2 steps, on both edges (30

variations). The kaon energy dependences in the PDFs (σouter, s, and α) are removed in all possible combinations
(7 variations). The partial reconstruction PDF has a fixed slope parameter which can be allowed to float, while the
inflection point parameter either floats or is fixed (3 variations). The background asymmetry parameters are fixed to
zero, or AT is set equal to AE (6 variations). Finally, the number of events in each magnet weight setting is increased

or decreased by its statistical error
√
N (16 variations).

Multiple data samples were considered for deriving the reconstruction asymmetries. ANS(J/ψ) could be replaced
with ANS calculated for the individual muons, and ANS(K

±) could be replaced with ANS calculated from a sample
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FIG. 9: B± → J/ψK± invariant mass distribution of the final data sample with fitted PDF curves.
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FIG. 10: (Forward − backward) invariant mass distribution. The fitted PDFs are multiplied by the corresponding asymmetry
parameters.

of random charged tracks. These samples were rejected for degrading the agreement between AFB(B
+), AFB(B

−),
and AFB(B

±). The calculations of ANS(J/ψ, K
±) each have three versions, representing different selection cuts,

binning, or fit parameters.
The calibration of the fit, shown in Fig. 8, reveals small biases and non-linearities in the fit method. For the

observed AFB(B
±) of −0.26%, the calibration line indicates a true asymmetry of −0.264%. The shift of 0.004% is

negligible based on the precision of our measurement, so it is added as a systematic uncertainty.
For sets of less than eight variations, the uncertainty is assigned to be half the largest variation in the central value.

For larger sets the uncertainty is one standard deviation: σ =
√

(x− x̄)2/N . These variations give a total uncertainty
of 0.01% and are summarized in Tab. I.
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FIG. 11: [N(data) −N(fit)]/σN(data) for each bin of the (a) F + B and (b) F − B mass distributions. The even distribution
about zero reflects the lack of bias in the fits.

TABLE I: Summary and Combination of Uncertainties

Source Uncertainty
Statistical (Fit + ANS Weighting) 0.41%

Alternative BDTs (min. M(J/ψK) = 4.5 GeV/c2; no isolation variables) 0.14%
Mass Range Extensions (up to 50 MeV extensions of both edges) 0.01%
Fit Function (EK dependences on/off + fix/float T slope and inflection) 0.04%
Background Asymmetry Modeling (float/fix AP , AE, AT parameters) 0.07%

Magnet Weighting (vary each of 8 subsamples by ±
√
N) 0.0001%

Reconstruction Asymmetries (alternate samples + calculation revisions) 0.06%
Fit Calibration (input asymmetry test, Fig. 8) 0.004%
Systematic Uncertainty 0.17%
Total Uncertainty 0.44%
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FIG. 12: Stability of AFB(B
±) in different (a) Run II data epochs and (b) qB settings. Errors on split samples are statistical

only; the full sample shows the total uncertainty.
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IX. STABILITY TESTS AND BINNED MEASUREMENTS

The stability of the asymmetry measurement can be tested by dividing the data into subsets. Figure 12 shows the
consistency of the measurement over time and with B+ and B− samples fitted separately. Separate signal parameters
for the north and south sides of the detector were required to bring these values into agreement before unblinding
the data. Figure 13 shows that the measurement of AFB(B

±) in data is stable across the range of momenta and
pseudorapidity.
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FIG. 13: AFB(B
±) in bins of (a) |ηB | and (b) pT (B). Errors on split samples are statistical only; the full sample shows the

total uncertainty.

X. CONCLUSIONS

The forward-backward asymmetry in B± → J/ψK± decays is measured using a maximum log likelihood fit. The
asymmetry AFB(B

±) is shown to be stable over a diverse range of subsets of the data. The preliminary result for
the inclusive data sample is AFB(B

±) = [−0.26± 0.41 (stat.)± 0.17 (syst.)]%, which is the first measurement of this
quantity. Standard model predictions from MC@NLO are in preparation.
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