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We present a measurement of the top quark mass in dilepton final states of tt̄ events in pp̄ collisions
at

p
s = 1.96 TeV, using the full D0 Run II data corresponding to an integrated luminosity of 9.7 fb�1

at the Fermilab Tevatron. We extract the top quark mass by reconstructing event kinematics, and
integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range
of top quark mass hypotheses. The analysis features a comprehensive optimization to minimize
the expected statistical uncertainty. We also improve the calibration of jets in dilepton events by
using the calibration determined in tt̄ ! lepton+jets events, which reduces the otherwise limiting
systematic uncertainty from the jet energy scale. The measured mass is 173.3±1.4(stat)±0.5(JES)±
0.7(sys) GeV = 173.3± 1.6 GeV.

Preliminary Results for Spring Conferences
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I. INTRODUCTION

The standard model (SM) of quantum chromodynamics (QCD) and electroweak interactions involves three gen-
erations of leptons and quarks, several mediating gauge vector bosons, and one scalar Higgs boson. The top quark
stands out because of its large mass. Its Yukawa coupling to the Higgs boson, Yt =

p
2mt/v, where v is the vacuum

expectation, is of order unity. The precise measurement of mt will provide a strong test of the linear relationship
between fermion Yukawa coupling and mass in the SM once the LHC experiments deliver direct measurements of
Yt. In addition, mt is linked to the W and Higgs boson masses, MW and MH , via one-loop radiative corrections to
MW . Following the Higgs boson discovery [1, 2], precise measurement of mt facilitates a strong test of the electroweak
model and provides information on whether our universe resides in a stable or metastable region of that theory [3].
The short lifetime of the top quark prevents its confinement in the strong color field since top quarks tend to decay
before hadronization. The mass of the top quark provides a valuable probe of higher order QCD contributions via
comparison of the measured mt and determinations of the pole mass [4].

Assuming the SM branching ratio of t ! Wb ⇡ 100%, tt̄ decay yields three distinct final state categories according
to whether they have 0, 1 or 2 high pT leptons from W boson decays. Dilepton (2`) events are relatively rare but
have low background. Lacking a dijet signature from W ! qq̄0 for calibration, previous 2` analyses at the Tevatron
have reached the sensitivity limit imposed by standard jet calibration methods [5, 6]. Progress in calibrating jets in
the 2` channel [7] can provide improved cross checks across di↵erent channels and a more sensitive contribution from
2` channels to the average mt [8, 9].

We present a measurement ofmt with pp̄ collider data collected with the D0 detector, corresponding to an integrated
luminosity of 9.7 fb�1, in events with two leptons, electrons or muons, with large transverse momenta (pT ). Two
high pT jets must also be observed, one of which must be consistent with a b quark. In this analysis, we optimized
the method to maximize statistical sensitivity and substantially reduced the systematic uncertainties. Based on an
optimization of the operating parameters of this method, we minimize the substantial statistical contributions to the
uncertainties of the analysis. We control an otherwise dominant jet energy scale uncertainty using the methods of
Ref. [7].

II. DETECTOR AND DATA SAMPLE

A. Detector

The D0 detector [10] has a central-tracking system, consisting of a silicon microstrip tracker and a central fiber
tracker, both located within a 1.9 T superconducting solenoidal magnet, with designs optimized for tracking and
vertexing at pseudorapidities [11] |⌘| < 3 and |⌘| < 2.5, respectively. A liquid-argon and uranium calorimeter has a
central section covering |⌘| up to ⇡ 1.1, and two end calorimeters that extend coverage to |⌘| ⇡ 4.2, with all three
housed in separate cryostats. An outer muon system, covering |⌘| < 2, consists of a layer of tracking detectors and
scintillation trigger counters in front of 1.8 T toroids, followed by two similar layers after the toroids.

B. Event Reconstruction

We reconstruct the data to obtain momenta of charged hadrons and muons, and energies of electrons and jets.
Charged leptons must have their extrapolated track trajectories isolated from significant additional calorimeter energy.
We require electrons to satisfy an identification criterion based on Boosted Decision Trees [12] using calorimeter and
tracking information. Muons must satisfy requirements on wire and scintillator hits in the muon system matching
to a track in the central-tracking detector, which is required to have a small distance of closest approach to the
beam axis [13]. We require hits in the muon layers inside and outside the toroid. Muons must be isolated from
jets and nearby tracks adding to significant momenta. The electrons and muons must have pT > 15 GeV, and
|⌘| < 2.5 or |⌘| < 2.0, respectively. We reconstruct jets using an iterative, midpoint cone algorithm with radius
R

cone

=
p
��2 +�⌘2 = 0.5 [14]. We confirm jet identification in the independent hardware trigger readout. Muons

embedded in jets incur an additional correction to jet energy to account for their associated neutrino. Jets are
identified as originating from the hadronization of a hadron containing a b quark via a multivariate discriminant [15].
We define the event missing transverse momentum ( 6ET ), originating from the neutrinos from two W ! l⌫ decays
in tt̄ events, to be opposite of the vector sum of all transverse components of calorimeter cell energies (E sin ✓). We
correct this for measured muon track momenta and the response of the calorimeter to electrons. Details of the object
reconstruction are provided in Ref. [16].



3

C. Jet Energy Calibration

We calibrate jet energies reconstructed in the detector to the energies of matching particle jets [17]. Particle jets are
reconstructed using the same cone algorithm applied to hadronization products before they interact in the detector.
Jet energies are primarily a↵ected by the response of the calorimeter to the constituent particles. Charged hadrons,
in particular, have an energy dependent scale that is lower than electrons and photons, such that the electromagnetic
to hadronic response e/h > 1. We apply corrections from �+jet events to account for the net energy dependence
of jet response in the central |⌘| region. We also apply a relative correction dependent on the ⌘ of the jets that is
obtained from �+jet and dijet events. We employ the same methods to calibrate jets independently in the Monte
Carlo (MC) simulation and data to ensure agreement of these two energy calibrations. We incorporate a correction
for jets in the MC simulation that accounts for the di↵erence in single particle response between data and MC. This
procedure ensures that the flavor dependence of the jet response in data is replicated in MC. Other corrections are
also applied to account for multiple pp̄ interactions and to return to the full energy of only those particles directed
within the jet cone at particle level. We correct event 6ET for e↵ects in jet energy calibration (e.g., e/h) that lead to
undetected energy. The typical systematic uncertainty in the energy of each jet in the 2` sample is 2%. This precision
is limited by �+jet systematic uncertainties in the pT range of jets in tt̄ events. Details about this calibration can be
found in Ref. [17]. We require that the jets after calibration have pT > 20 GeV and |⌘| < 2.5.

III. EVENT SELECTION

Events are required to pass single lepton triggers in the ee and µµ channels. No explicit trigger requirement is
applied in the eµ channel. The nominal dilepton event selection is described in Ref. [16]. We then optimize the
selection to provide the smallest expected statistical uncertainty in mt. For all events, we require two isolated leptons
with opposite electric charge. We require at least two jets in the events. At least one of the two jets with highest
pT must be identified as a b jet using a multivariate discriminant which yields an e�ciency of 72% and light quark
mis-tag rate of 12% in the central region for eµ, and a few per cent lower e�ciency and 30% lower mis-tag rate for
the same-flavor channels (see Ref. [15]). We require events in the µµ channel to have 6ET> 40 GeV. This selection is
also applied to ee events but only when the dilepton invariant mass is between 70 GeV and 100 GeV to decrease the
Z ! ee background contribution. Additionally, the same-flavor 2` channels must satisfy a 6ET discriminant involving
a likelihood test that can be interpreted as the number of standard deviations (�) for the measured 6ET to di↵er from
0. The ee and µµ channels must have discriminant values corresponding to at least 3.5 and 4 �, respectively. We
require eµ events to have HT > 100 GeV, where HT is defined as the scalar sum of the pT of the two leading jets and
the lepton with highest pT . The 6ET , HT and b-tag requirements are optimized to minimize the expected statistical
uncertainty in each channel. The expected signal-to-background ratio (S/B) is about 7 for these channels. This yields
a 3% improvement in the mt statistical precision relative to the nominal selection. After the selection, we obtain 340,
115 and 110 events in the eµ, ee and µµ channels, respectively.

IV. MODELING SIGNAL AND BACKGROUND

The tt̄ events are simulated at 15 mass points over the range 130  mMC
t  200 GeV using the leading-order (LO)

alpgen 2.11 generator [18] and pythia 6.409 [19] for parton showering and hadronization. Here, mMC
t refers to

the input mass at the tt̄ generator level. An additional, higher statistics sample is generated at mt
MC = 172.5 GeV

to study systematic uncertainties. We use a tt̄ cross section of 7.24 pb [20], which is calculated to next-to-next-
to-leading order with next-to-next-to-leading logarithm soft gluon resummation. The main backgrounds arise from
three sources: Z/�⇤ and diboson (WW,WZ,ZZ ! 2`) process, and instrumental e↵ects. We model the former with
alpgen interfaced to pythia, while we employ pythia for the diboson background. The instrumental background
arises fromW+jets or multijet production where one or two jets are either mistaken as electrons, or where they contain
a hadron decaying to a non-isolated lepton that passes our selection. This background is estimated from data as in
Ref. [16]. We use a full detector simulation based on geant 3.14 [21] for all generated events. The expected sums of tt̄
and background yields are 298.1± 4.4 (stat)+21.7

�26.8 (syst), 106.5± 1.9 (stat)+10.2
�11.4 (syst) and 103.5± 0.8 (stat)+7.4

�9.1 (syst)
events for the eµ, ee and µµ channels, respectively.
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V. ABSOLUTE JET CALIBRATION FROM A W ! qq̄0 CONSTRAINT

As in Ref. [7], we apply a correction to the absolute normalization of the jet energy scale from the analysis of 9.7
fb�1 of `+jets events. The dijet mass from the W ! qq̄0 decays provides a constraint of 1.0250 ± 0.0046(stat) [22].
We apply this correction and uncertainty to jets in data to improve agreement of data with the MC. This reduces the
uncertainty on the absolute scale by a factor of about four relative to the standard jet energy scale, while retaining
the ⌘ and pT dependence of the standard correction. The mass measurement requires agreement between data and
MC within a given event topology. Since our current standard jet energy scale [17] uses single particle responses to
correct for data-to-MC di↵erences on a jet-by-jet basis, we ensure that b jets in 2` simulated samples look like b jets
in the 2` data sample. Therefore, we apply the `+jets absolute scale as a calibration.

VI. KINEMATIC RECONSTRUCTION

A. Neutrino Weighting

Due to the presence of two neutrinos in the tt̄ event, there are insu�cient kinematic constraints to extract a unique
mt measurement from each event. Given the measured leptons, jets and 6ET , and available SM constraints from the W
boson mass and mt = m

¯t, 2` events require one additional constraint to provide a full tt̄ reconstruction. To address
this challenge, we integrate over the phase space of neutrino rapidities for chosen values of fixed mt [23]. For each
event at a hypothesized mt, each chosen point of phase space provides solutions of the neutrino momenta. We compare
their vector sum to the observed 6ET to determine a level of consistency, or “weight”, within the 6ET resolution:

! =
1

N
iter

NiterX
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All combinatoric configurations with real quadratic neutrino solutions and any association of each of the leading two
jets to a lepton are summed. Doing this for a range of mt yields a distribution of weight vs. mt. Prior studies [24]
show that the first two moments (µw,�w) of this distribution extract most of the information about mt.

B. Optimization of Weight Calculation Parameters

Given the improvements in jet energy calibration, the statistical contribution becomes the dominant source of
uncertainty in the 2` channel. We therefore examine all parameters for the kinematic reconstruction of tt̄ events, and
for the maximum likelihood fit described below, to provide a reduction in expected statistical uncertainty. At each
step, we verify that the optimization does not increase the systematic uncertainty. A critical element of the analysis
concerns the range of mt scanned in the weight distribution. Although all neutrino solutions and jet assignments
yield mass estimators such as µw that are correlated with mt, the correlation is substantially greater and µw values
are less biased when the correct jet assignments and solutions are chosen. Considering a very wide range in mt

causes the incorrect configurations to overwhelm the correct contribution, thereby worsening the mass resolution.
Likewise, scanning over too narrow of a range biases the background and worsens the mass sensitivity by making
tt̄ and backgrounds look similar. Examination of a two dimensional grid of upper and lower choices of limit yields
the optimal mass range of 115 GeV to 220 GeV for an assumed mt= 172.5 GeV. The unclustered 6ET ( 6ET

unc) is
the magnitude of the vector sum of all energy deposits in the calorimeter that were not included in the lepton or jet
reconstruction. The resolution in 6ET

unc links the neutrino momentum solutions with the measured 6ET in the weight
calculation. We measured this resolution as a function of the unclustered scalar ET in data and in MC Z ! ``+jets
events, and found them to agree. To account for the full di↵erence between calculated and measured 6ET , including
e↵ects such as mismatches in neutrino pT from finite binning of the neutrino rapidity distributions, we optimized the
value of the 6ET resolution parameter. Combined, these optimizations improve the expected statistical uncertainty
on mt by 11% compared to the nominal parameters used in Ref. [7]. The kinematic reconstruction e�ciency is over
99% for tt̄ and 91% to 98% for the backgrounds. Events passing kinematic reconstruction total 336, 113 and 109
events in the eµ, ee and µµ channels, respectively. The distributions of µw before and after applying selections on
the optimization variables (b-tag, 6ET , 6ET significance and HT ) are shown in Fig 1. Evidence of a tt̄ is evident in the
background enriched sample. The mass dependence of the µw distribution is shown in the signal sample.
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FIG. 1. The distribution in the means of event weights, µw, for the combination of ee, eµ, and µµ channels before (a) and after
(b) the event selection using b-tagging, 6ET , 6ET significance and HT optimization variables. The MC events are normalized
separately to the number of observed events in data in each channel. The distributions in µw for input mt = 172.5 GeV, 165
GeV and 180 GeV in the combined ee, eµ, and µµ channels are compared in (b). The ratio shows the number of observed events
divided by the number of expected events in a given bin of µw. The band of systematic uncertainty includes contributions
from dominant sources: jet energy scale, lepton identification, lepton momentum scale, luminosity, b quark modeling, initial
and final state radiation, color reconnection, as well as hadronization and higher-order e↵ects for tt̄ events.

VII. EXTRACTING THE TOP QUARK MASS

A. Maximum Likelihood

We perform a binned maximum likelihood fit to the extracted distribution of moments [µw,�w] in data. Expected
probability densities are calculated for each of the 16 mt mass points, yielding a two dimensional probability density
hs(µw,�w|mMC

t ) distribution parametrized by mt. Background samples are used to construct a background template
for each channel, hb(µw,�w), with each background contributing according to its expected yield. Bins with no events
are given a weighted value expected for a single MC event. The binning of the templates is optimized in a two
dimensional grid allowing µw and �w bin sizes to vary over a wide range. Using pseudo-experiments, this yields a
10% improvement in statistical precision on mt. The likelihood is given by:

L(µw{1..N},�w{1..N}, N | ns, nb,mt) =
NY

i=1

nshs(µwi,�wi | mt) + nbhb(µwi,�wi)

ns + nb
, (2)

where N is the number of observed events, ns is the number of expected tt̄ events (for mt = 172.5 GeV) and nb is the
expected number of total background. We fit � lnL vs. mMC

t to a parabola, iterated to yield a stable minimum. We
fit in a window around the minimum that has been optimized to be 15 GeV, which yields a small improvement in the
µµ statistical precision. We take the minimum of this parabola to be the fitted top quark mass mfit

t . The uncertainty
on the most likely mt

MC is obtained by considering the mass range where the fit function rises by 0.5 units in � lnL
above this minimum. The optimization of the maximum likelihood fit improves the expected statistical uncertainty by
> 10% relative to the nominal parameters in Ref. [7]. Overall, optimizations in this analysis have improved statistical
sensitivity by 25% beyond the gains obtained from the doubling of integrated luminosity.

B. Ensemble Testing and Data Results

We check the relationship between mfit

t and the input mt by performing pseudo-experiments using all signal mass
points to obtain a linear relation between mfit

t and mMC
t . The events from the MC samples are randomly placed into

pseudo-experiments according to MC weights. The number of signal and background events is allowed to fluctuate
within their Poisson uncertainties around their expected values. We require that the total number of events matches
that observed in the data. To minimize the impact of statistical fluctuations on our systematic uncertainties, we
optimize the number of pseudo-experiments by dividing the MC sample into five subsamples, and measure most
systematic uncertainties with each subsample. We calculate the RMS of the five uncertainties, average over all
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TABLE I. Slopes, o↵sets and pull widths used to calibrate the fitted mt and expected statistical uncertainties in the mass (�mt)
for the ee, eµ, and µµ channels and their 2` combination.

Ch. Slope O↵set [GeV] Pull width �mt [GeV]
ee 0.984± 0.004 0.672± 0.038 0.994 2.98
eµ 0.985± 0.006 0.549± 0.064 0.998 1.72
µµ 0.989± 0.010 0.718± 0.100 1.005 3.31
2` 0.988± 0.006 0.617± 0.062 0.995 1.35
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FIG. 2. The � lnL as a function of mt
MC for the combination of ee, eµ, and µµ channels before calibration. A parabolic fit is

shown within ±15 GeV of the minimum value in mt.

systematic e↵ects, and divide by
p
4 to estimate the statistical component of our systematic uncertainties. The

average RMS decreases until we oversample, or reuse, the tt̄ MC events roughly three times. This corresponds to
3000 pseudo-experiments with the full MC samples. We linearly fit mfit

t vs. mt
MC to obtain a calibration slope and

o↵set for mfit

t where the origin is at mt = 170 GeV. We increase the statistical uncertainties in each mass point by the
oversampling factor appropriate to each. Likewise, we compute the pull width as the ratio of the average estimated
uncertainty over the RMS of mfit

t �mMC
t at each mass point. In general, the slope of mfit

t vs. mt
MC is close to

1.0, o↵sets are small, and pull widths are consistent with unity, as shown in Table I. We calculate the final mt by
correcting mfit

t from a given measurement by the slope and o↵set. We correct the statistical uncertainty by the slope
and the pull width. The expected corrected statistical uncertainties for each channel are given in Table I. In data, we
obtain corrected, fitted mt values of 171.9± 1.7(stat), 174.0± 3.0(stat) and 178.6± 3.6(stat) GeV for the eµ, ee and
µµ channels, respectively, and 173.3± 1.4(stat) GeV for the combined 2` channel. The 2` result is shown in Fig. 2.

VIII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties arise from jet energy calibration, tt̄ and background modeling, object reconstruction, and
the mass extraction method. The energies of jets are shifted up and down by the statistical uncertainty on the absolute
energy scale taken from `+jets events, providing thereby shifts in mt. This scale is appropriate to light-quark jets
whose kinematic distributions are di↵erent from those for b jets from tt̄. The systematic uncertainty on the standard
jet energy scale quantifies the range of potential dependences of energy scale on jet energy and ⌘. We calculate a
residual uncertainty due to the kinematic di↵erences between the `+jets calibration sample and 2` sample of b jets.
We use separate up and down estimates to extract the uncertainty. We cross-check this with the method applied
to b jets in the `+jets channel [22]. These methods agree, further validitating the use of the `+jets scale as a jet
calibration. To estimate the uncertainty corresponding to possible variations of the MC scale’s flavor dependence
relative to data, we vary the flavor uncertainties up and down by one standard deviation and obtain the shift in mt.
For possible variation of the MC b quark fragmentation, we replace the pythia b quark fragmentation function with
the Bowler scheme [25], where the Bowler free parameters are tuned to LEP (ALEPH, OPAL, and DELPHI) and
SLD data [26].

We evaluate the uncertainty associated with the modeling of initial and final state radiation by comparing alp-
gen+pythia with the renormalization scale in the CKKW scale-setting procedure in alpgen varied up and down by
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TABLE II. Systematic uncertainties on mt for the combined dilepton measurement in 9.7 fb�1 of data.

Source �m
t

[GeV]
Jet energy calibration

Absolute scale ±0.5
Flavor dependence ±0.3
Residual scale ±0.4
b quark fragmentation �0.1

Signal modeling
ISR/FSR ±0.2
Color reconnection +0.2
Higher order e↵ects +0.3
Hadronization +0.1
PDF uncertainty ±0.1
Signal fraction < 0.05

Object reconstruction
Electron pT resolution < 0.05
Muon pT resolution < 0.05
Electron energy scale < 0.05
Muon pT scale < 0.05
Jet resolution ±0.1
Jet identification < 0.05

Method
Calibration ±0.1
Template statistics ±0.2

a factor of 1.5 [22]. We evaluate the e↵ect of color reconnection by comparing mt measurements in alpgen+pythia
samples with two di↵erent pythia tunes: the Perugia2011 tune that incorporates an explicit color reconnection
scheme, and the Perugia2011 NOCR tune that does not [27]. Higher order contributions are omitted in the LO
alpgen of our standard tt̄ simulation. We therefore compare our ensembles using MC@NLO 3.4 [28] tt̄ events with
alpgen events, where both employ herwig 6.510 [29] for modeling of hadronization. Since the hadronization in our
default tt̄ sample is modeled with pythia, we estimate a hadronization uncertainty on mt by performing pseudo-
experiments using an alpgen+herwig sample. The uncertainty in the proton structure is obtained from the 20 sets
of CTEQ6L1 parton distribution functions (PDFs) reweighted to CTEQ6M, where the deviations for the 20 sets are
added in quadrature. We estimate the e↵ect of uncertainty on the signal fraction by varying the expected tt̄ event
yields (ns) up and down within its theoretical uncertainty.

The MC objects are smeared in energy to ensure that their resolutions reflect those in data. The uncertainties in
these parameters for electron and jet energies, and muon momenta, are applied independently to object resolutions
and the shifts in mt are extracted as uncertainties. Lepton energy or momentum scales and uncertainties are extracted
from Z ! 2` events in data. An additional uncertainty is estimated for jet identification, where scale factors in the
e�ciencies are employed to obtain better agreement between data and MC. The jet identification e�ciencies are
shifted by their uncertainties in the MC samples to estimate their impact on mt.

Our method of mt extraction relies on the correction of the fitted mt to the input MC mass. The uncertainties
from this calibration are applied to provide the uncertainty in mt. Our templates are constructed from MC samples
for tt̄, Z ! 2` background and diboson background, and from data samples for instrumental background, yielding
finite statistical uncertainties on their bin contents. We randomly modify our bin contents within their statistical
uncertainties to obtain 1000 new templates. We measure mt with these templates and the RMS of the measured mass
is taken as an uncertainty. All systematic uncertainties are provided in Table II.

IX. CONCLUSION

We extract a measurement of mt via a simultaneous fit to events across all dilepton channels, which yields a
combined result of

173.3± 1.4(stat.)± 0.8(syst.) GeV = 173.3± 1.6 GeV. (3)



8

This value is consistent with the current average [8] value of mt. Our measurement is the most precise 2` result from
the Tevatron, and is competitive with the best LHC dilepton measurements. The systematic uncertainty of 0.5% is
the lowest among all 2` measurements.
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