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We present a measurement of the mass of the top quark (mt) in eµ + 2 jets final state using
data corresponding to 5.3 fb−1 collected by the DØ experiment at the Fermilab Tevatron. The
mass is extracted from an analysis of tt̄→ bW+b̄W− →bb̄e±µ∓νeνµ candidate events. We employ a
comparison of expected properties of the two unobserved neutrinos with the imbalance in transverse
momentum in data, as a function of mt.

We measure mt = 173.3 ± 2.4 (stat.) ± 2.1 (syst.) GeV by combining a Run2b top quark mass
measurement with 4.3 fb−1 and a Run2a measurement with 1.0 fb−1.
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I. INTRODUCTION

In the standard model (SM), the masses of vector bosons are generated from spontaneous breaking of electroweak
symmetry, and masses of fermions arise from their Yukawa couplings to the scalar Higgs field [1]. In SM , we can use
top quark mass, and W boson mass to constraint the Higgs boson mass.

In this analysis, we measure mt in eµ+jets decays of tt̄ pairs. Each top quark decays to Wb with a branching
fraction close to ∼ 100%, and each W boson decays into either a lepton and a neutrino, or two quarks. In the present
analysis, we consider just those final states with one electron and one muon. They can arise from either W → e(µ)ν,
or from W → τν → e(µ)νν decays.

The value of mt is measured in 4.3 fb−1 of data collected at DØ in Run 2b of the Tevatron. The DØ detector is
described in Ref. [2]. The presented analysis is based on the Neutrino Weighting method used for mt measurement in
1 fb−1 of Run 2a data [3]. Assuming various top quark masses, the consistency of the observed event kinematics can
be used to obtain weights for each event versus top quark mass using simulated neutrino pseudo-rapidity distributions.
Weights are calculated for a range of assumed top quark masses based on the consistency of these momenta with the
measured event 6ET . We determine mt using histograms of probability density of the first two moments of the weight
distributions for different assumed mt.

II. SELECTION OF EVENTS

The event selection used for this measurement is similar to the one used to measure the tt̄ cross section in the
same final state [4]. Basic requirements include one isolated electron and one isolated muon of opposite charge and
transverse momenta of at least 15 GeV, exactly two jets that have transverse momenta of at least 20 GeV, and
significant HT , defined as the scalar sum of the transverse momenta of the two jets and the leading lepton. The
only other requirement is that the events must pass the kinematic reconstruction of Section III. Table I shows the
expected event yields for signal and backgrounds, as well as the number of events in data before and after kinematic
reconstruction. The uncertainties are statistical only except for an uncertainty on signal yield, where it arises due to
theoretical uncertainty on the tt̄ cross section. The expected yields differ from those from Ref. [4] due to a different
HT cut. For our measurement, the HT cut was slightly increased from HT > 110 GeV to HT > 115 GeV to reduce
the expected statistical uncertainty on mt.

The signal and Z → ττ background processes are generated with ALPGEN [5], followed by PYTHIA [6] for
showering and hadronization, the diboson samples (WW,WZ,ZZ) are generated with PYTHIA. Instrumental effects
can cause object misidentification, and mismeasurement of missing transverse energy. Instrumental background is
modeled using data.

TABLE I: Expected and observed eµ event yield for background and signal (σtt̄ = 7.45 pb for mt = 172.5 GeV), after applying
all selections. The numbers in the first six columns are given before the kinematic reconstruction.

tt → eµ Z → ττ diboson instrumental total observed after kinematic reconstruction

141.6+11.4
−11.4 10.9+1.3

−1.3 6.2+0.7
−0.7 10.8+4.0

−3.8 169.5+12.2
−12.2 202 197

III. METHOD OF ANALYSIS

The kinematic reconstruction is based on the fact that the final state consists of the following six particles: two
charged leptons, two jets from the b quarks, and two neutrinos. After the assignments of the mass to each particle in
the final state, a total of 18 independent kinematic quantities needed to fully measure the final state. Twelve of these
quantities – the momenta of the charged leptons and jets – are measured directly in the detector. Five additional
constraints are added by requiring that

(i) the two components of the observed imbalance in missing transverse momentum (6ET ) equal the sum of the
respective components of the two neutrinos;

(ii) the invariant mass of each pair of lepton and neutrino equals the W boson mass; and

(iii) the mass of the top quark equals the mass of the antitop quark.
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This leads to a total of seventeen constraints, which is one constraint short of providing a solution for the system.
A solution can be found by assuming a value of mt. We use the measured 6ET in each event to assign a weight to

each solution. The weight is based on the agreement of the calculated transverse momentum of the neutrinos and the
observed 6ET :
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1
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x )2
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The calculated transverse momentum is found by ignoring the measured 6ET , and, instead, assuming a pseudorapidity
for each unobserved neutrino. From this input, the 3-momentum of each neutrino can be determined. This process
is called a kinematic reconstruction. Niter indicates a sum over all assignments of jets to leptons and solutions for
the kinematic reconstruction. An assigment of a jet to a lepton is an assumption that both of them are final decay
products of the same top quark. There are two such assumptions per event. The resolutions for the two components
of 6ET , σ 6Ex,y

, are parameters of the method, and taken to be 6 GeV [3]. The top quark mass dependence on this
parameter is very mild and does not create any systematic ncertainty. Integrating ω over the the distribution in η,
ρ(η), we obtain an overall weight W (mt) as a function of assumed mt:

W (mt) =

∫

ω(η1, η2)ρ(η1)ρ(η2)dη1dη2. (2)

The distributions in neutrino pseudorapidity are all modeled as Gaussians, with root-mean-square (rms) of 1.0.
To kinematically reconstruct an event, we have to solve a system of two quadratic equations. If none of the solutions

have real values, the event is said to fail kinematic reconstruction. The breakdown in efficiencies for kinematic
reconstruction for different event sources is given in Table II. The efficiencies are defined as the ratio of expected
event yield before the reconstruction and the yield after the reconstruction.

TABLE II: Efficiencies for kinematic reconstruction of events, with HT > 115 GeV cut.

sample tt̄ (172.5 GeV) Z→ ττ diboson data

efficiency,% 98.7 ± 0.05 96.6 ± 2.3 92.3 ± 2.4 97.5 ± 1.1

Weights calculated for different mt yield a weight distribution for each event, which depends significantly on the
number of sampling points used for each neutrino pseudorapidity distribution. In previous versions of this analysis,
we used 10 sampling points. We have tested the analysis using 10 to 200 sampling points of neutrino η, and find that
29 such points ensure the optimal performance of the method. This sampling results in the desired gain in kinematic
reconstruction efficiency and statistical uncertainty on mt while balancing against CPU requirements. The overall
weight W (mt) is calculated in 1 GeV increments for 80< mt <330 GeV by summing over all the weights for each
chosen neutrino η.

IV. PROBABILITY DENSITY HISTOGRAMS

For each event, W (mt) is obtained as a function of the assumed mt. Two parameters are chosen to characterize this
distribution for every event [3], namely the mean (µw) and root-mean-square (σw) of the distribution. The normalized
three-dimensional distribution of µw, σw, and input mt yields a signal probability histogram, hs(µw,σw,mt). The
background probability density histogram, hb(µw,σw) which is not a function of mt, is obtained as the two-dimensional
distribution of µw and σw of simulated background events. Weights are assigned to events of different background
sources that correspond to the their relative contributions. Probability density histograms scaled to expected event
yields for background hb(µw,σw) and signal hs(µw,σw, 175 GeV), and dependence of µw on mt for 25< σw <35 are
shown in Fig. 1.

V. MAXIMUM LIKELIHOOD

After having modeled the signal probability histogram, hs(µw,σw | mt), and background probability density his-
togram, hb(µw,σw), the top quark mass is extracted by maximizing the likelihood:

L(µω{1..N}, σω{1..N}, N | n̄b, n̄s | mt) =

N
∏

i=1

n̄shs(µωi
, σωi | mt) + n̄bhb(µωi

, σωi )

n̄s + n̄b

. (3)
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FIG. 1: The calculated probability density histogram scaled to expected event yields for (a) background, (b) signal with
m

t
= 175 GeV as a function of µw and σw, and (c) dependence of µw on mt for signal.

Here n̄s and n̄b are the expected event yields for signal and background respectively, and N is the total number
of selected events. The parameters of the likelihood are broken into three groups: measured, expected, and fitted
parameters. Uncertainties on the likelihood appear due to the finite statistics in our signal Monte Carlo samples. The
distribution of − logL vs. mt is fit by a parabola taking into account generated top mass values within an interval
of ±15 GeV around the likelihood point with the lowest value. The value of mt at the minimum of the parabola
defines our top quark mass estimate, m̂t. Half the width of the parabola where − logL rises to 0.5 units more than
its minimum value provides the statistical uncertainty, σ̂mt

.
The performance of the mass extraction technique is evaluated using ensemble testing techniques: the top quark

mass mt is extracted in ensembles of pseudoexperiments of 197 events. The events are chosen randomly from the
signal and background Monte Carlo samples so that the average number of background events per source matches
the expected yield. The actual number of events in a given pseudoexperiment is obtained according to a Poisson
distribution. The mean of the Poisson distribution is taken from a Gaussian distribution centered at the expected
event yield and with uncertainty equal to the total statistical uncertainty.

We employ two approaches for the ensemble tests. In the first approach, which is used for the measurement, we
use the information about signal cross section from theory in Table I for all mass points. We fluctuate signal in the
same way as the background processes and we select only those pseudoexperiments for which the total number of
events exactly equals those observed in data. We employ 1000 pseudoexperiments in an ensemble, and we correct
for the correlations among pseudoexperiments since the events are used in the pseudoexperiments more than once.
However, the expected signal cross section may not accurately reflect the actual number of tt̄ events in the selected
sample. Consequently, the number of tt̄ used for the ensemble tests can be incorrect. Also, this number depends
on the assumed mt. This might lead to a bias in the calibration of measured mt. Therefore, we use a second
approach [3] as a cross-check. We give up the information on the expected cross section, and the signal event yield in
a pseudoexperiment is taken as the number of data events minus the total background event yield. Both approaches
give consistent results.

Figure 2 shows a good agreement between the output and input top quark mass for the first approach and demon-
strates the validity of the statistical error estimation, with widths of pull distributions near their expected value of
1.0. The linear fits in Fig. 2 are used to calibrate the results from data, mapping the output minimum to an input
top quark mass. The results of the fits are summarized in Table III. The neutrino pseudorapidity distribution is mass
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FIG. 2: (a) shows the fitted top quark mass as a function of the generated MC input top quark mass with central value of the
signal cross section taken from theory and with a correction for resampling MC events, and (b) pull width distributions with
the same treatment.

dependent, and our analysis assumes a mass-independent Gaussian of width 1.0. We tested the sensitivity of our
analysis to this choice by repeating the analysis with a mass-dependent width fit in MC top samples with generator
masses of 130 GeV to 210 GeV. The estimated expected statistical uncertainty changed by only 0.03 GeV. We also
checked the stability of the result for variations in the range used in the fit, and the small dependence of the minimum
on the width of the window for the fit is included in the calibration uncertainty on the final result.

slope offset (GeV) 〈pull width〉

signal cross section from theory 0.99 ± 0.006 0.45 ± 0.09 1.0 ± 0.007

TABLE III: Slope and offset of the calibration curve in Fig. 2, and the pull width.

VI. RESULTS

The top quark mass is estimated by maximizing the likelihood for the selected data. The top quark mass estimate
and uncertainties are corrected to account for the calibration from ensemble tests (slope and offset, and pull widths)
by using the calibration curves of Fig. 2. The measured top quark mass after calibration yields mt = 172.73 ±
2.81 (stat.) GeV. The cross-check measurement is within 0.1 GeV of this result.

The negative log likelihood as a function of top quark mass before the calibration, together with the parabolic fit,
are shown in Fig. 3. The distribution of expected statistical uncertainties is shown in Fig. 4, overlaid with the value
observed in data.

VII. SYSTEMATIC UNCERTAINTIES

A summary of the systematic uncertainties is given below.

(i) Jet energy scale: We evaluate this systematic uncertainty by shifting the jet energy scale by +1σ and −1σ and
symmetrizing the errors. This uncertainty is found to be 1.35 GeV.

(ii) b/light jet response: The calorimeter response is different for the light quark and b- jets. To estimate this
difference, particle jets in a tt̄ l+jets sample were classified as b- or light quark jets. Single particle response
curves for both data and MC were then applied to the particle jets to predict the energy of a reconstructed jet
in the calorimeter. The double ratio of jet transverse momenta in data and MC is estimated to be 1.8%. We
found the b/light jet response systematic uncertainty by shifting the response down by 1.8% and remeasuring
the top quark mass. We symmetrize this error and assign a systematic uncertainty of ±0.8 GeV.
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FIG. 3: Negative log likelihood distribution for data before calibration.
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FIG. 4: Distribution of statistical uncertainties after correcting for the pull width and slope for m
MC
t =170 GeV. Arrow indicates

the measured statistical uncertainty on mt.

(iii) Jet resolution: The jet resolution in Monte Carlo is smaller than in data. Therefore, an additional oversmearing
is applied to the simulated jets. This additional oversmearing has some uncertainty. We evaluate the jet
energy resolution by shifting the jet resolution by +1σ and −1σ and symmetrizing the errors. This systematic
uncertainty is found to be 0.4 GeV.

(iv) Calibration uncertainty: The calibration uncertainty arises from the errors on the offset and slope of calibration
curve. Using error propagation, we get an uncertainty of 0.1 GeV for the top quark mass.

(v) Template statistics: The templates have finite statistics. Local fluctuations in these templates can cause local
fluctuations in the individual likelihood fits and the top quark mass. We obtain an uncertainty in mt by varying
the results of the negative likelihood fits from the data ensemble within their errors and repeating the fit to the
distribution. The width of the mt distribution provides the systematic uncertainty. It is found to be 0.35 GeV.

(vi) Initial state radiation (ISR) and final state radiation (FSR): We evaluate this systematic uncertainty by com-
paring Pythia with ISR and FSR parameters varied up and down [7]. After symmetrization of errors, we found
this to be 0.55 GeV.

(vii) Hadronization and underlying events: We evaluate this systematic uncertainty by comparing ALPGEN +
PYTHIA with HERWIG [8]. We conclude that hadronization and underlying event systematic uncertainty is
0.3 GeV.

(viii) Color reconnection: We evaluate this by comparing PYTHIA tuneACRpro [9] and tuneApro [10]. The uncer-
tainty is found to be 0.7 GeV.

(ix) Higher order effects: We evaluate this systematic uncertainty [9] by comparing ALPGEN + PYTHIA with
MC@NLO [11] + HERWIG. This is found to be 0.2 GeV.
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Source Uncertainty (GeV)

4.3 fb−1 1 fb−1 combination

Statistical ±2.8 ±4.4 ±2.4

Jet energy scale ±1.35 ±1.4 ±1.4

b-jet energy scale ±0.8 ±0.5 ±0.7

Jet resolution ±0.4 ±0.2 ±0.3

Signal fraction 0 ±0.1 0

Calibration uncertainty ±0.1 ±0.1 ±0.1

Template statistics ±0.35 ±0.7 ±0.3

ISR/FSR ±0.55 ±0.2 ±0.45

Hadronization and UE ±0.3 ±0.7 ±0.4

Color reconnection ±0.7 ±0.7* ±0.7

Higher order effects ±0.2 ±0.2* ±0.2

b fragmentation ±0.4 ±0.4 ±0.4

Background shape ±0.3 ±0.3 ±0.3

Sample dependent 0 ±0.2 ±0.2

Muon/track pT resolution ±0.2 ±0.2 ±0.2

Electron energy resolution ±0.2 ±0.2 ±0.2

Jet identification ±0.5 ±0.5 ±0.5

Total systematic uncertainty ±2.1 ±2.1 ±2.1

TABLE IV: Summary of uncertainties for the Run 2b analysis, the Run2a analysis, and their combination. Run 2a systematic
uncertainties marked with * are taken from Run 2b.

A list of all evaluated systematic uncertainties is shown in Table IV. The systematic uncertainties are dominated
by jet energy scale uncertainties. The combined systematic uncertainty is ±2.1 GeV.

VIII. COMBINATION WITH THE RUN 2A DILEPTON TOP QUARK MASS MEASUREMENT.

The DØ Collaboration has published a measurement in the dilepton channel [3] using data corresponding to an
integrated luminosity of 1 fb−1 from Run 2a yielding mt = 174.7 ± 4.4 (stat.) ± 2.0 (syst.) GeV. This sample is
statistically uncorrelated with the sample discussed in this note. The systematic uncertainties for MC calibration and
template statistics are also uncorrelated between the two measurements. All other systematic uncertainties are taken
to be 100% correlated. We do not assign a sample dependent systematic uncertainty in Run 2b because of improved
simulation. Color reconnection and higher order effects systematics have been estimated for the current measurement,
but not for the earlier one. We have applied the newer results to the older data. Combining the two measurements
[12] and accounting for correlations between uncertainties, we obtain mt = 173.3± 2.4 (stat.) ± 2.1 (syst.) GeV.

IX. CONCLUSION

In proton-antiproton collision data corresponding to and integrated luminosity of 5.3 fb−1, we have used the neutrino
weighting method to measure a top quark mass from tt̄ events in eµ final state. We measured the top quark masss to
be:

mt = 173.3± 2.4 (stat.) ± 2.1 (syst.) GeV,

by combining the Run2b 4.3 fb−1 result

mt = 172.7± 2.8 (stat.) ± 2.1 (syst.) GeV

with the Run2a 1.0 fb−1 [3] result

mt = 173.3± 2.4 (stat.) ± 2.1 (syst.) GeV.
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This is the most precise single measurement in the dilepton channel.
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