
CAF Tutorial 1

Common Analysis Format
Tutorial

D0 Collaboration Week
June 16th, 2005

Version 2

CAF Tutorial 2

Overview

● What is the Common Analysis Format (CAF) ?
● What is in CAF ?
● How do I use CAF ?
● Examples

CAF Tutorial 3

This talk is not...

● A C++ tutorial
● A ROOT tutorial
● An introduction to the D0 software or build

environment
● An introduction to the production of CAF trees

● See the TMBAnalyze tutorial on the CSG Howto page:
● http://www-d0.fnal.gov/Run2Physics/cs/howto/tmb_analyze/TMBAnalyze.html

● See Frederic's talk on some of these topics...

CAF Tutorial 4

What is CAF ?

● Technically: an
– object-oriented

– ROOT based

 data format, using TTree as its basic storage
mechanism

● For the user:
– A set of C++ classes which represent the D0

reconstruction/trigger/detector data.

CAF Tutorial 5

What is in CAF ?

● Content
– Reconstructed Objects

– Trigger Information

– Object ID information (like b-tagging)

– Detector Data (Calorimeter cells, FPS, CPS, ...)

● Structure
– A TClonesArray branch for multiple objects (e.g. Jets)

– One single object otherwise (e.g. Met)

CAF Tutorial 6

Structure of CAF Objects

● All objects which contain a four-vector inherit
from TMBLorentzVector which in turn inherits
from TMBVector3.
– These classes are taken from ROOT (TLorentzVector),

but have been modified in their structure for more
efficient storage.

– All methods of TLorentzVector are available.
● not quite true: L2 and L3 objects have their own base classes

● All other objects inherit directly from TObject.

CAF Tutorial 7

Content

● Global information
– Run/event number, magnetic field info, quality flags

for calorimeter and muons, event flags, history

● D0Reco Output
– EM, Jets, Track, IsoTrack, Missing ET, Muons, Taus,

Vertices, TrackCalJets

● Trigger
– L1, L2, L3, Global: AndOrNames, Trigger Bits/Names

● All from trigsimcert package

CAF Tutorial 8

Content (2)

● Monte Carlo Information
– Global event info, Particles, Vertices

● Detector
– Calorimeter cells (optional: CalT42, CalNada, full

chunk), FPSData, CPSDigi, FPD

● B-tagging
– CSIP, JLIP, SVT

● Format Document:

– http://www-d0.fnal.gov/Run2Physics/working_group/data_format/content.pdf

CAF Tutorial 9

Documentation

● New CAF web page (reachable from Common
Samples Group home page)
– http://www-d0.fnal.gov/Run2Physics/cs/caf/

● Mailing List:
– d0-caf-users@fnal.gov

– Subscribe yourself

– Archives available

CAF Tutorial 10

How do I use CAF ?

● Environment
– By setting up a D0 release.

– Stand-alone with ROOT
● Any Linux laptop with ROOT version >= 4.02/00
● Any Mac OS X >= 10.3 with ROOT version >= 4.02/00

● You can use the objects
– Interactively (TBrowser).

– CAF Environment (cafe).

CAF Tutorial 11

Where can I get it ?
● In a release:

– setup D0RunII p18.01.00

– setenv LINK_SHARED yes

– newrel -t p18.01.00 work

– cd work

– d0setwa

– addpg cafe_sam

– gmake

● Add this to your PATH variable:
– $SRT_PRIVATE_CONTEXT/shbin/$SRT_SUBDIR

This is important...!

This is needed for cafe, because we don't
have binaries with shared libraries in
our default builds.

CAF Tutorial 12

Stand-alone Mode

● Get the tar file from:
– http://www-d0.fnal.gov/Run2Physics/cs/caf/code/caf-18.01.00.tar.gz

– Assuming your ROOTSYS variable is set properly:
% tar zxvf caf-18.01.00.tar.gz

% cd caf-18.01.00

% source tmb_tree/tools/setup-standalone.[c]sh

% make

● Get a data file to play with from
– http://www-d0.fnal.gov/Run2Physics/cs/caf/data/

CAF Tutorial 13

Some Data Files to Play...

● For the moment some examples files are kept
here if you are on clued0:
– /prj_root/1143/csg/caf/data/

– SAM dataset definition: caf_tutorial_1

CAF Tutorial 14

How do I use it with ROOT ?

● In a D0 release:
● % autoroot.py tmb_tree cafe

– Creates a .rootmap file in your current directory
● If the above does not work:

– $SRT_PUBLIC_CONTEXT/tmb_tree/tmb_tree/scripts
/autoroot.py tmb_tree cafe

● % root input.root

– You should see no complaints about missing classes.
● root [0] TBrowser t;

– Browse as usual...

– Notice how methods are now available in the browser

CAF Tutorial 15

How do I use it with ROOT (3)

● Not all information is available as simple
variables. Some is calculated on the fly by
methods.
– Methods are available in the Ttree::Draw() method of

ROOT and in the browser:
● root[0] TMBTree->Draw(“Muon.Eta()”);

– This is deliberate design decision and not likely to
change, especially since it saves us a lot of disk space.

CAF Tutorial 16

How do you run your analysis ?

● People use a variety of ways to do their analysis.
– Most end up with

● Compiling everything they have
● Use a stand-alone main program and link against ROOT

libraries
● Use a hand-written Makefile
● Have some little framework to organize the code.

– The cafe framework is supposed to provide a common
way of doing this, so people can share their work.

CAF Tutorial 17

CAF Environment
● Do you like writing stuff like:

bMuons->GetEntry(entry); // read the muon branch

for(Int_t i = 0; i < fMuons->GetLast() + 1; i++) {

TMBMuon *muon = (TMBMuon *)fMuons->At(i);

myHisto->Fill(muon->Pt());

}

Don't forget to read the data you are going to access.

Dont forget to add + 1 to GetLast() !

Use the At() operator or do something like (*fMuons)[i]

Cast the TObject to the type that you know it really is

Have pointers to objects instead of just objects or references

Is this one better ? Or TIter ? Up to you...you can use whichever version you want.

TMBMuon& muon = *(TMBMuon *)(*fMuons)[i])

CAF Tutorial 18

CAF Environment (cafe) – Part 1

● A set of classes to give access to CAF objects
– Easier to use

– Typesafe

– Usable with other C++ code like the STL

– Stand-alone executable, extensible by user code
● Compiles and runs both in D0 release and non-D0

environment.
● Takes care of I/O and calls user written code

– => Framework in ROOT

CAF Tutorial 19

The cafe::Event class

% root input.root

root [0] using namespace cafe;

root [1] Event event;

root [2] event.setBranchAddresses(TMBTree);

root [3] TMBTree->LoadTree(0)

root [4] event.get<TAB>

For a list of methods that Event provides.

CAF Tutorial 20

The cafe::Event class (2)
Some simple stuff

root [] const TMBGlobal *global =
event.getGlobal();

root [] cout << “Run = “ << global->runno() <<
endl;

root [] cout << “Event = “ << global->evtno()
<<endl;

root [] event->getGlobal()->evtno();

root [] const TMBMet *missingET = event.getMet();

● Single objects are returned as a 'const T*' pointer
or NULL if the branch does not exist.

CAF Tutorial 21

The cafe::Event class (3)

Collection<TMBMuon> muons = event.getMuons();

muons.size(); // the number of muons in the event

muons[0].Pt(); // the pT of the first muon

muons[0].Eta(); // the eta of the first muon

for(int i = 0; i < muons.size(); i++) {

cout << muons[i].Pt() << endl;

myFunction(muons[i]); // if there is myFunction

}

const TMBMuon& m = muons[0];

m.Pt();

CAF Tutorial 22

The cafe::Event class (4)

● cafe::Event
– Has a getXXXX() method for every reco, trigger,

detector object that is in CAF:
● If you have a new branch and a non-standard object, you can

still use it with the more cumbersome syntax:
const MyObject * ptr =

event.get<MyObject>(“MyBranchName”)

Or, for a TClonesArray of objects:

Collection<MyObject> c =

event.getCollection<MyObject>(“MyBranchName”)

CAF Tutorial 23

The cafe::Event class (5)

● Data will only be read into memory when you ask
for it with one of the getXXX() methods
– You don't have to remember which branch that data

was in.

– You don't have to remember to either call GetEntry()
for that branch or for the whole event.

● This speeds up things tremendously, especially if you are
doing an event selection.

● E.g. a simple trigger selection runs over thousands of events
per second from a local file.

CAF Tutorial 24

Caveat: Autoloading of Branches

– If an object in a different branch is referenced, ROOT
should autoload this branch automatically.

– In 4.02/00 this works for single objects (stored as
TRef), but not for multiple objects (stored as
TRefArray)

const TMBVertex *vtx = obj.GetVertex(); // works

const TMBTrack *trk = obj.GetTrack(i); // does not work

– Fixed in newer ROOT versions (>= 4.04)

– Workaround: read the referenced branch explicitly
Collection<TMBTrack> tracks = event.getTracks();

const TMBTrack *trk = obj.GetTrack(i);

CAF Tutorial 25

The cafe::Collection<T> Class

● The Collection<T> class wraps a TClonesArray
(they way the data is stored internally) and makes
it look like an STL container
– Every branch that has more than one object is returned

as a Collection<T>

– operator[] returns a reference to the i'th object

– Iterator interface:
for(Collection<TMBMuon>::iterator it = muons.begin();

it != muons.end(); ++it) {
cout << (*it).Pt() << endl;

}

CAF Tutorial 26

The cafe::Collection<T> class (2)

● You can use it with standard algorithms
it = std::find(muons.begin(), muons.end(), ...);

● You can copy it, copying is cheap
Collection<TMBMuon> other = muons;

● You can append to it, delete items etc.
TMBMuons *m = ...

muons.push_back(*m);

muons.erase(it); // delete item you found

CAF Tutorial 27

And if you don't like it...

● You can also ask for the TClonesArray itself if
you prefer that:
const TClonesArray *muons =

event.getClonesArray(“Muon”);

if(muons->GetLast() + 1 > 0) {

const TMBMuon *m = (TMBMuon *)(*muons)
[0];

...

}

CAF Tutorial 28

A Typical Event Loop...
// Begin processing

// for every input file

while(const char *filename = nextFile()) {

TFile *file = new TFile(filename);

TTree *tree = (TTree *)file->Get(“TMBTree”);

event.setBranchAddresses(tree);

// for every event

for(Long64_t i = 0; i < tree->GetEntries(); ++i) {

tree->LoadTree(i);

// Use Event here

}

}

// Finish processing

CAF Tutorial 29

cafe Framework
● cafe provides the event loop for you

– It deals with single files, lists of files or SAM as input

– It calls your code for initialization, termination, when
new files are opened, closed, and for each event.

– It provides a way to specify configuration options

– It will load all the libraries and code that you need.

– It uses various existing ROOT services to implement
these tasks

● See cafe/doc for a more extended User's Guide that this
tutorial.

CAF Tutorial 30

An Example
● % ctnewpkg -l mypackage
● % (cd include; ln -s ../mypackage/mypackage)
● mypackage/LIBDEPS: root
● mypackage/src/myFunction.cpp:
#include “cafe/Function.hpp”

#include “cafe/Event.hpp”

#include <iostream>

bool myFunction(cafe::Event& event)

{

std::cout << event.getGlobal()->evtno() << std::endl;

return true;

}

CAFE_FUNCTION(myFunction)

● mypackage/src/COMPONENTS: myFunction
● % gmake

CAF Tutorial 31

Note:

● We didn't specify a binary, we'll use the existing
binary cafe

● So far there is not much magic involved except
for the CAFE_FUNCTION() macro.

● It took six slides to get the equivalent
functionality in the offline framework...

CAF Tutorial 32

Run the Example
% cafe Run: myFunction Packages: mypackage

● All arguments to the cafe executable are specified
like this:
– Name: Value

– or

– Name.Name: Value

● Alternatively, we could have written this into a
configuration file cafe.config and just typed 'cafe'
cafe.Run: myFunction

cafe.Packages: mypackage

CAF Tutorial 33

A More Realistic Example

● Sometimes simple functions are enough, but most
of the time we need some internal state.

● In this case we inherit from a base class
cafe::Processor and implement various virtual
functions.

● We need some more ROOT voodoo here, but
nothing that you don't have to use at some point
anyway.

CAF Tutorial 34

The Same Example

● mypackage/mypackage/MyProcessor.hpp
#include “cafe/Processor.hpp”

class MyProcessor : public cafe::Processor
{

public:

MyProcessor(const char *name);

bool processEvent(cafe::Event& event)

ClassDef(MyProcessor, 0);

};

// this is cafe related

// this comes from root

CAF Tutorial 35

The Source Code
● mypackage/src/MyProcessor.cpp

#include “mypackage/MyProcessor.hpp”

#include “cafe/Event.hpp”

MyProcessor::MyProcessor(const char *name)

: cafe::Processor(name) {}

bool MyProcessor::processEvent(cafe::Event& event)

{

 std::cout << event.getGlobal()->evtno() <<
std::endl;

return true; // false will end event processing

}

ClassImp(MyProcessor)

CAF Tutorial 36

The linkdef file

● mypackage/src/MyProcessor_linkdef.h
#ifdef __CINT__

#pragma link C++ class MyProcessor+;

#endif

● Add MyProcessor to src/COMPONENTS
● Type gmake
● mypackage/scripts/rootrc add as one line:

+Plugin.Processor: MyProcessor MyProcessor
 mypackage "MyProcessor(const char *)"

CAF Tutorial 37

Let's try again

cafe Run: 'MyProcessor,myFunction' Packages: mypackage

● Note the comma between the two names. You
can also use space, but make sure to quote the
argument then.

cafe Run: 'MyProcessor myFunction' ...

● Now both will be executed sequentially.
● The Run: argument takes a list of functions or

objects of type Processor and executes them.

CAF Tutorial 38

The Advantage of Objects

● Now we can have member variables and store
state between different events.

● There are more virtual functions we can override,
similar to what one has in TSelector:
void begin();

void finish();

void inputFileOpened(TFile *);

void inputFileClosing(TFile *);

bool processEvent(cafe::Event& event);

CAF Tutorial 39

Example

● Add a member variable of type TH1F *histo to
the class

● Initialize the histogram in begin()
● Fill the histogram in processEvent()
● Write the histogram in finish()

– Left as an exercise for the listener/reader...

CAF Tutorial 40

The Advantages over TSelector

● We don't have to write all our code in a single
method.

● We can split the functionality over multiple files
and tie the pieces together by specifying what we
want to execute via the 'Run: ' argument.

● We can have more than instance of an class.
– Run: 'MyProcessor,MyProcessor'

● But how can they be distinguished ?? And don't they create
the same histogram twice ???

CAF Tutorial 41

More about Processor Instances

● You can give each instance of a class a name:
– Run: 'MyProcessor(ProcA) MyProcessor(ProcB)'

● This is passed to the constructor as the name
argument, and you can access it inside the object
with the name() method:

cout << name() << “ : event <<

 event.getGlobal()->evtno() <<
endl;

CAF Tutorial 42

Uses of Names

● Of what use is the name ?
– In your messages you can refer to the correct instance.

– You can make e.g. the name/title of the histogram
dependent on the name of your object.

● This is still not very useful: what if you want to change a
parameter in your histogram and don't want to hardcode it ??

– You can access information from the configuration file
depending on your instance name

CAF Tutorial 43

The Configuration File

● Remember we said that the arguments to cafe can
also be put into a file (e.g. ./cafe.config)
cafe.Run: MyProcessor(ProcA) MyProcessor(ProcB)

cafe.Input: input.root

cafe.Packages: mypackage

● You can use the same file for configuring your
own objects with the same syntax:
ProcA.Title: Title of A Histogram

ProcB.Title: Title of B Histogram

CAF Tutorial 44

Accessing Configuration Information

● Here is how you access this information:
#include “cafe/Config.hpp”

MyProcessor::MyProcessor(const char *name)

: cafe::Processor(name)

{

cafe::Config config(name);

// this looks up 'name: someValue'

std::string histoTitle = config.get(“Title”,
“DefaultName”);

...

}

CAF Tutorial 45

Other Types

● For other types than strings, just pass a default
value of the appropriate type:
// MyProcA.Number: 10

int value = config.get(“Number”, 0);

// MyProcA.Real: 5.0

double dvalue = config.get(“Real”, 1.0);

// MyProcA.NameList: A list of strings

vector<string> s =

 config.getVString(“NameList”, “ ,”);

 // here, “, “ is the list of delimeters

CAF Tutorial 46

Syntax of Configuration File

● The syntax of the file is the same as for the root
configuration files, e.g. $(HOME)/.rootrc

● It consists of Name/Value pairs
● Comments begin with #

this is a comment in the config file

● See the TEnv documention in ROOT about more
details.

CAF Tutorial 47

Where does cafe look for the
configuration file ?

1.If $CAFE_CONFIG contains the name of a file,
it is used.

2.If the first argument on the command line is a
file, it is used.

3.If ./cafe.config exists, it is used.

4.If $SRT_PRIVATE_CONTEXT/cafe.config
exists, it is used.

CAF Tutorial 48

How do the configuration file and the
command line interact ?

● The configuration file is read first.
● Every entry on the command line replaces the

corresponding entry from the configuration file.
– So every command line entry consists of two words,

name: value.

● If the entry on the command line has no '.' in it,
then 'cafe.' is prepended. This is the only thing
that is special about the 'cafe....' entries.

● Cafe Run: 'MyProcessor(ProcA)' ProcA.Title: Test Input:
myfile.root cafe.Events: 100

CAF Tutorial 49

Multiple Configuration Files

● You can include configuration files recursively
+cafe.Include: file1.config file2.config

● You should always use the + in front of the line.
● Every file mentioned is included once.
● Included files can include other files etc.
● This allows you to structure your configuration

files instead of putting it all in one big pile and
then copy/paste into other files.

CAF Tutorial 50

Remark about the command line
arguments

● The preferred way is to put all your configuration
data into a file.

● The command line should be only used to
override one or two items if you play around with
different options.

● There are no other options to the executable
available, everything has to go through the
configuration database.
– As a bonus, you can write it out at the end to see what

you really did...

CAF Tutorial 51

Event Data Input

● The cafe executable provides the event loop for
you, including reading of data files
– Single files: file:/path/to/input.root

● (or any other root supported method, e.g.
rootd://host.fnal.gov/path/to/file.root)

– Lists of files: listfile:/path/to/listfile.lst
● Analog to framework, listfile.lst contains a list of path

names

– SAM: sam:MyDefinitionName
● Only when you are working in the D0 environment....

CAF Tutorial 52

Event Data Input (2)

● The cafe.Input: argument specifies what to read
(default is file:input.root)

● Examples:
– cafe Input: myfile.root ...

– cafe Input: listfile:mylist.lst ...

– cafe Input: sam:mydatasetdefinition ...

CAF Tutorial 53

What about SAM ?

● You can't use it interactively...
● Dataset definition: caf_tutorial_1

● ((DATA_TIER root-tree-bygroup and APPL_NAME
tmb_analyze) and VERSION caf00.00.01) and
FILE_NAME CSskim-%.
raw_p14.06.01_prod_p14.fixtmb2.02%.root

● Then you have to submit a batch job to run over
the data set
– On clued0, cabsrv1, cabsrv2, single/parallel jobs etc.

CAF Tutorial 54

caf_tools

● Soon:

% setup caf_tools

● Now (for tcsh):

% addpkg -h caf_tools

% setenv CAF_TOOLS_DIR \
$SRT_PRIVATE_CONTEXT/caf_tools

% set path = ($CAF_TOOLS_DIR/bin $path)

CAF Tutorial 55

% runcafe -h
usage: runroot [options] [-- arguments]
where options are:
 -help|-h|--help print this help
 -dest=<CLUSTER> submit job to destination [required]
 currently: clued0, cabsrv1, cabsrv2
 -clued0 short cut for -dest=clued0
 -cabsrv1 short cut for -dest=cabsrv1
 -cabsrv2 short cut for -dest=cabsrv2
 -def=<DEFINITION> SAM dataset definition [default: “”]
 -filelist=<LISTFILE.LST> File with filename list [default: “”]
 -project=<NAME> SAM project name [default: rhauser_[date]]
 -jobs=<NUMBER> number of parallel SAM jobs [default: 1]
 -exec=<EXECUTABLE> name of executable [default: cafe]
 -name=<NAME> name of job in batch system [default: run_jobs.sh]
 -outhost=<HOSTNAME> name of output host [default: hostname]
 -outdir=<DIRECTORY> name of output directory [default: pwd]
 -outfiles='...' list of files/directories to copy back as result
 -inputdir=<DIRECTORY> name of input directory [default: pwd]
 -tar=<TARFILE.tar.gz> alternative .tar.gz file for input directory.
 -infiles='...' list of input files/directories to copy in
 -queue=<QUEUE> name of queue in batch system
 -debug print out debug statements of script

 All command line parameter after the -- are assumed
 to be arguments to the executable.

runcafe

CAF Tutorial 56

runcafe - Examples

● From your work area:
% runcafe -clued0 -- test.config

% runcafe -cabsrv1 -outdir=/work/host/scratch -- test.config

% runcafe -cabsrv2 -def=caf_test_1 -- test.config

% runcafe -clued0 -tar=/path/my.tar.gz -- test.config

% runcafe -cabsrv2 -def=caf_test_1 -jobs=4 -- test.config

% runcafe -clued0 -- test.config myFlags.Any: 'SKIM_2MU'

CAF Tutorial 57

runcafe - Rules

● If neither -filelist=... nor -def=... is specified, the input spec is assumed to
be in the configuration file, but not SAM.

● If -def=... is specified, an additional argument

– Input: sam:definition

● Is automatically apppended to the command line.

● The default input dir is the current directory, same for output dir.

– Use -inputfiles='...' to get additional files/directories if necessary.

● The default is to copy back the stderr, stdout and all *.root files only.

– Use -outfiles='...' to copy back additional files/directories.

● % tarcafe can be used to create a small .tar.gz file with all necessary
pieces.

CAF Tutorial 58

Structuring Your Program

● Now you have written 25 different pieces of your
analysis and you want to play around with
different options.

● Many of the pieces don't change often. Some of
them belong together.

● It's tiresome to have these 20 entries to your Run:
variable.
– You can structure the execution of the program with

Groups

CAF Tutorial 59

Group Example

cafe.Run: Group(preselection) Group(trigger) \
Group(final_cuts)

preselection.Run: BadRunRejection SimpleCuts

trigger.Run: TriggerSelection

final_cuts.Run: PtCut MetCut DeltaPiCut

– Every Group() can have a Run: entry, just like the top
level.

– A Group executes all its children in sequence until one
returns false.

● You can leave out the 'Group' and just use parentheses
around the identifier as a short-cut...

CAF Tutorial 60

More about multiple instances

– What if you refer to the same instance twice in the
config file ?

– Two objects will be created with the same name and
use the same configuration parameters.

– But sometimes this is what you want.
● e.g you want to plot a pT distribution before and after a cut
● cafe.Run: Group(HistosBefore) MyCut Group(HistosAfter)
● HistosBefore.Run: PtHist EtaHist PhiHist
● HistosAfter.Run: PtHist EtaHist PhiHist

– It would be tiresome to duplicate all the parameters.

CAF Tutorial 61

Output Files

● So far we have not mentioned where histograms
and other objects are written to.

● Every Processor has a method getDirectory()
which tells it where it should write its output
– It is not required to follow this practice, though...

● You can modify the output file and “current
directory” via configuration options to every
Processor that has children (the most important
being 'Group').

CAF Tutorial 62

Example

cafe.Output: histos.root

HistosBefore.Directory: PlotsBeforeCut

HistosAfter.Directory: PlotsAfterCut

– The default output file will be histos.root

– All plots before the cut go into one directory, all after
the cut into another one (see next slide)

● There are no naming conflicts for histograms etc.
● We want them to have the same name, actually...

– So Groups (can) create a container (directory) for any
objects that its children produce.

CAF Tutorial 63

Event Data Flow

Imagine the list of executing Processors as a hierachical tree, where each
parent (Group) can define new directories which are used by all children.

cafe

trigger object output

Hist1DTrigger

Run: Group(trigger) Group(object) Group(output)
Input: file:input.root
Output: myhistos.root

Hist1DSelect Write

Run: Trigger Hist1D
Directory: TrigHisto

Run: Select Hist1D
Directory: SelectHisto

Run: Write

Event flow

CAF Tutorial 64

Before you go off and write all this
boilerplate code...

● How often have you written a histogram or a
simple selection ? Not yet tired of it ?

● cafe comes with a list of useful standard
Processors that do many of the things you usually
spend your time on.
– They are all parameterized via the configuration file.

– Examples are:
● Histograms (1,2,3D), Event selection, Triggers, Object

selection, event flags, customized event output

CAF Tutorial 65

Histograms

● Class Name: Hist1D, Hist2D or Hist3D
● Configuration example for 1D:

cafe.Run: Hist1D(myHisto)

myHisto.Draw: Muon.Pt()

myHisto.Select: abs(Muon.nseg() == 3)

myHisto.Bins: 100 0.0 100.0

myHisto.Title: Fancy Name for Histogram

– For 2D use in .Draw e.g.:
● myHisto.Draw: Muon.Eta():Muon.Pt()

CAF Tutorial 66

Event Selection

● Example:
cafe.Run: Select(MyMuons) ...

MyMuons.Select: Muon.Pt() > 15.0

● The selection criteria is the same as you can use
in the TTree::Draw() command. I.e. You can
refer to branches, member variables, methods,
functions etc.

● Here, only events with at least one muon pT >
15.0 GeV will pass the cut.

CAF Tutorial 67

Trigger Selection

● In principle you can ask for trigger names with
the method shown on the previous slide, but this
is more convenient and faster:
cafe.Run:Trigger(MyTrigger) ...

MyTrigger.Triggers:2MU_A_L2ETAPHI ...

● Only events with at least one of the given triggers
will pass the cut.

CAF Tutorial 68

Event Flags

● You can select on event flags from the skimming:

cafe.Run: EventFlags(myFlags) Passed

myFlags.All: SKIM_1MUloose HAS_1MU_15

● Or

myFlags.Any: SKIM_1MUloose SKIM_EMMU

CAF Tutorial 69

Object Selection

– Select objects from one branch and move them into a
new one.
cafe.Run: SelectObject(GoodJets)

GoodJets.From: JCCA

GoodJets.To: MyGoodJets

GoodJets.Select: JCCA.emfrac() < 0.1
&& ...

– You can use the 'GoodJets' branch later like any other
branch that was in the original file:
Collection<TMBJet> goodJets =

event.getJets(“MyGoodJets”);

CAF Tutorial 70

Customized Event Output

● The Write Processor will write every event it
encounters into a file. You can select specific
branches you want to write (default is all)
cafe.Run: Select(MySelection) Write(MyFile)

MyFile.File: myevents.root

MyFile.Branches: Global Track Muons JCCB
EMscone Met ...

MySelection.Select: Muon.Pt() > 15. && abs
(Muon.nseg() == 3)

CAF Tutorial 71

Combining Processors

● Use the existing Processor classes for quick
selections based on triggers, event flags, object
attributes.

● Write out the events you're interested in.
● Once you know what you need, customize the

branches as well, i.e. Write only the data you
really need.

● Add your own fancy code and run it wherever
appropriate in the chain.

CAF Tutorial 72

Final Words

● CAF provides a set of classes which should be
sufficient for a majority of all analysises.

● You are free to use as much of it as you want:
– Only the basic shared libraries

– Use cafe

CAF Tutorial 73

Additional Information

● The following slides have some more details on
other Processor classes.

CAF Tutorial 74

More about Groups

● Groups can be used to structure the execution in a
hierarchical way. But they are simple minded,
they just execute in sequence what you tell them.

● Sometimes you want a bit more:
– Some code should only be executed when some

condition is true

– Several code paths should be executed independently
● e.g. To try two different sets of cuts

CAF Tutorial 75

Fork

● The Fork Processor will execute all its children in
parallel and independently. In the example, both
the Cuts1 and Cuts2 are executed and don't care
if the other one returns true or false.
cafe.Run:... Fork(FinalCutOptions)

FinalCutOptions.Run: Group(Cuts1) Group
(Cuts2)

Cuts1.Run:

Cuts2.Run: ...

CAF Tutorial 76

If

● The Processor class named If will
– Execute the Processors in its .Select: variable

– If successfull, it will execute the Processors in the .
Then: variable

– Otherwise it will execute the .Else: variable:
cafe.Run: If(Choice)

Choice.Select: Muon.Pt() > 15.0

Choice.Then: HighPtMuon

Choice.Else: LowPtMuon

CAF Tutorial 77

More about Event

– You can store arbitrary information in the Event object,
with a string key to find it later:

Float_t myNumber = 3.141;

event.put(“myPi”,myNumber);

– Some other Processor:

Float_t myPiValue = 0.0;

if(event.get(“myPi”, myPiValue)) {

}

– Objects must be copy-constructable and will be
destroyed at end of event (or deleted in case of
pointers)

CAF Tutorial 78

Event & Histograms

● All histograms take an optional 'Weight'
parameter and will try to lookup a corresponding
float value in the Event object:
Float_t weight = complex_calculation_worthy_of_nobel();

event.put(“TriggerWeight”, weight);

● In configuration file

Run: calcTriggerWeight Hist1D(myHist)

myHist.Weight: TriggerWeight

CAF Tutorial 79

Example Session (1)
Initial Setup (done once)

● This assumes that you are on clued0, using tcsh.
setup D0RunII p18.01.00

newrel -t p18.01.00 work

cd work

setenv LINK_SHARED yes

d0setwa

addpkg cafe_sam

make cafe_sam.all

set path =
($SRT_PRIVATE_CONTEXT/shbin/$SRT_SUBDIR
$path)

CAF Tutorial 80

Example Session (2)
Create Configuration File

● emacs test.config &
cafe.run: EventFlags(flags)
Trigger(triggers) Group(plotBefore)
Select(mySelection) Group(plotAfter)
SelectObjects(goodEM) Group(plotEM)

cafe.Output: histograms.root

cafe.Progress: 1000

cafe.Input: listfile:emincl.lst

● Copy emincl.lst from
– http://www-d0.fnal.gov/Run2Physics/cs/caf/data/

CAF Tutorial 81

Example Session (3)
Selections

flags.Any: SKIM_EM1TRK

triggers.Triggers:

mySelection.Select: EMscone[0].Pt() > 25.0 &&
EMscone[1].Pt() > 15.0

goodEM.From: EMscone

goodEM.To: GoodEM

goodEM.Select: (abs(EMscone.id() == 10) ||abs
(EMscone.id() == 11)) && EMscone.emfrac() >
0.9 && EMscone.Pt() > 20.

CAF Tutorial 82

Example Session (4)
Groups for Plotting

plotBefore.Run: Group(basicHistos)

plotBefore.Directory: BeforeSelection

plotBefore.Branch: EMscone

plotAfter.Run: Group(basicHistos)

plotAfter.Directory: AfterSelection

plotAfter.Branch: EMscone

plotEM.Run: Group(basicHistos) Hist1D
(emfrac)

plotEM.Branch: GoodEM

plotEM.Directory: MyGoodEMPlots

CAF Tutorial 83

Example Session (5)
Plots

● basicHistos.Run: Hist1D(pt) Hist1D(eta)
Hist1D(phi)

● pt.Draw: %{Branch}.Pt()

● pt.Bins: 100 0.0 100.0

● pt.Title: pT Distribution

● eta.Draw: %{Branch}.Eta()

● eta.Bins: 80 -4.0 4.0

● phi.Draw: %{Branch}.Phi()

● phi.Bins: 64 0.0 63.0

CAF Tutorial 84

Example Session (6)
Plots and some remarks

emfrac.Draw: GoodEM.emfrac()

emfrac.Bins: 100 0.0 1.0

● In the Draw: line you can specify the branch
name explicitly (like GoodEM) or with a variable
%{NAME}. The histogram will search for an
entry with that NAME by traversing the hierarchy
of Processors, starting with its parent and using
the first one it finds

CAF Tutorial 85

Example Session (7)
Run it !

● cafe test.config
● Histograms will be in histograms.root

– Open them with ROOT and TBrowser

– Look at the directory structure
● i.e. which histogram went where

CAF Tutorial 86

Example II
Selecting Events and Branches

cafe.Run: EventFlags(flags) Trigger(triggers)
Select(mySelection) Write(myFile)

myFile.File: myevents.root

myFile.Branches: Global EMscone Track
PrimaryVertex Met

● Writes selected events into 'myevents.root', but
only the branches given...

● Caveats: using SelectObjects and Write at the
same time does not work !

CAF Tutorial 87

Example II
How fast is this ?

● Or: should you do your own skimming of
EM1TRK events ?
– on a 3GHz PC selecting by event flags runs at ~8000

events per second

– selecting by triggers runs at 6000 events per second

– selecting by an arbitrary expression runs at 500-1000
events per second (better in latest root version)

● Don't bother creating your own giant subskims
– Skim the whole inclusive dataset using your specific

criteria and write out those events !

