
TMBAnalyze HOWTO

Reiner Hauser, rhauser@fnal.gov <mailto:rhauser@fnal.gov> v1.2, 16 June 2005

This document describes how to use tmb analyze to create TMBTrees. It is meant for releases p16.05.01 or

newer. Please report any mistakes, typos etc. back to me <mailto:rhauser@fnal.gov> .

Contents

1 Introduction 2

2 Getting Started 2

2.1 Which Release to use . 2

2.2 Setting up the Release . 2

3 Running TMBAnalyze x 2

3.1 Using d0tools . 2

3.2 Running it on local files . 3

3.3 Using SAM on ClueD0 . 3

3.4 Using SAM on CAB . 3

3.4.1 Output Directories . 4

3.4.2 Multiple Jobs . 4

3.4.3 Number of Input Files . 4

4 Production Mode Tree Generation 4

4.1 Datasets . 4

4.2 Recursive Datasets . 5

4.2.1 run-skim.sh . 7

5 Storing Trees into SAM 9

6 Customizing TMBAnalyze 10

7 Combining TMBAnalyze with Skimming 10

8 Merging Output Files 11

8.1 Merging Root Files . 12

8.2 Merging Metadata Files . 13

mailto:rhauser@fnal.gov
mailto:rhauser@fnal.gov

1. Introduction 2

8.3 Putting it Together . 15

9 Running Over Monte Carlo Files 16

9.1 Running over pure Monte Carlo Files . 17

10 Extending TMBAnalzye 17

10.1 Storing TClonesArrays . 18

10.2 Storing Single Objects . 19

10.3 Storing other Persistent Information . 19

1 Introduction

This document describes how to run TMBAnalyze with d0correct in p16.05.01 and newer releases. This
includes generating the correct metadata for SAM, storing trees back into SAM and using TMBAnalyze with
additional filters for skimming. It also discusses how to extend TMBAnalyze with your own classes.

2 Getting Started

2.1 Which Release to use

For pass 1 data you can use/should release p16.04.00. For pass 2 data you must use p16.05.01 or newer.
d0correct was not certified in any older release for pass 2 data.

2.2 Setting up the Release

% setup D0RunII p16.05.01

% newrel -t p16.05.01 work

% cd work

% d0setwa

% setup d0tools

3 Running TMBAnalyze x

3.1 Using d0tools

The preferred way to run TMBAnalyze is with d0tools. Since the the default setup now includes d0correct
by default you need additional files to be available at run-time. d0tools takes care of all of this.

To run it in stand-alone mode, check the $D0TOOLS BIN/runTMBAnalyze script to see what additional pa-
rameters it passes to rund0exe.

runTMBAnalyze is a wrapper script around the generic rund0exe script. You can just call it after you have
setup d0tools.

3. Running TMBAnalyze x 3

Run runTMBAnalyze -h to get a help message.

3.2 Running it on local files

For local files you should provide a list of input files and pass it via the filelist= argument to
runTMBAnalyze

runTMBAnalyze -filelist=myfiles

where myfiles should contain the absolute pathnames to your input files.

3.3 Using SAM on ClueD0

You can use TMBAnalyze with SAM on clued0, but only in batch mode. The way to submit a batch job
is to simply add the -batch option and additional parameters for cpu time and memory consumption. In
addition you have to specify the SAM definition name.

runTMBAnalyze -defname=MySAMDefinition -batch -cput=8:00:00 -mem=600mb

You should use this only for testing, not for large production jobs.

3.4 Using SAM on CAB

This is the preferred way to run production jobs. You can use all the usual options for D0 executables. We
describe the most common here and recommend some good practices.

You need a scratch directory into which d0tools will store a tar file containing your current working directory
(minus any stuff which is not needed for running). It is therefore preferable if you run an executable directly
out of a release instead of compiling it yourself. Even if you need to change RCP parameters, there is no
need to rebuild the executable.

The scratch directory can not be a subdirectory of your working area. d0tools will refuse to use if you try
it. Instead it should point somewhere to a /work or /rooms area where you have disk space available.

The two CAB systems are called cabsrv1 and cabsrv2.

runTMBAnalyze -defname=MySAMDefinition -cabsrv1 \

-scratch=/work/mymachine-clued0/myname/scratch [..other options..]

Once you have let d0tools create such a tar file, you can just re-use it. However, whenever you change an
RCP paramater, you must delete the old one or re-create a new one with a different name.

runTMBAnalyze -defname=MySAMDefinition -cabsrv1 \

-scratch=/work/mymachine-clued0/myname/scratch \

-cabtar=mycabjob.tar [...other options...]

4. Production Mode Tree Generation 4

3.4.1 Output Directories

By default the results of your job will be returned in the scratch directory. Instead of copying them afterwards
by hand to their final destination, you can instruct d0tools to directly store them there. You do this via
two options:

runTMBAnalyze -defname=MySAMDefinition -cabsrv1 \

-scratch=/work/mymachine-clued0/myname/scratch \

-cabtar=mycabjob.tar [...other options...] \

-cabouthost=servermachine-clued0 -caboutpath=/rooms/project/dir

You should always specify the correct output host name for performance reason. Otherwise there is a lot
of unnecessary copying across the network. This is especially true if your output directory is on one of the
/prj root/... disks. These are located at the Feynman Computing Center, so specifying the output path
but not the host would lead to a copy from FCC to D0 and then back again.

You can always find the host name by typing df /my/output/path. For the project disks it should be
typically something called d0srvNUMBER.

3.4.2 Multiple Jobs

If you run over a large data set, you can use multiple parallel jobs. Just specify the -jobs= option. The
maximum number of parallel jobs is 20. This only works for CAB.

runTMBAnalyze -defname=MySAMDefinition -cabsrv1 \

-scratch=/work/mymachine-clued0/myname/scratch \

-jobs=20 [...other options..]

3.4.3 Number of Input Files

The default setup will create one output root file for one input thumbnail file. If you use SAM and want to
store the results back into SAM you should not try to create one big output file. ROOT will open by itself
new output files if the first one grows to big, but since we have no control over that, all the SAM parentage
information will be confused.

If you run over a smaller sample and don’t care about this, you can change in
tmb tree maker/rcp/TMBTree.rcp the InputFilesPerFile variable and set it either to 0 (all input
goes into one output file) or a number higher than 1. For instance, if you do some additional filtering, you
may know that it is safe to have about 4 input files per output file due to the reduced event count.

4 Production Mode Tree Generation

4.1 Datasets

You can find the Pass 2 dataset definitions on the Common Samples Group page. They all follow this
pattern:

4. Production Mode Tree Generation 5

CSskim-${SKIM}-PASS2-${RECO}

where ${SKIM} is the name of the skim and ${RECO} is the version which was used to reconstruct the events.
If you don’t care about the reco version, you can also use a definition that encompasses all events for a skim:
CSskim-${SKIM}-PASS2.

4.2 Recursive Datasets

The datasets can be quite large (hundreds of files), so you have to process them with many jobs. Instead of
splitting the dataset by hand, you should use SAM to do the book-keeping for you.

The basic idea is to define a new dataset definition based on the original one, minus all the files that you
already processed. Remember that a definition is evaluated every time you make a new snapshot (i.e. start
a new project on it).

To make this more concrete, here is an example (myname is supposed to be your login name):

sam create definition \

--group=dzero \

--defname=myname_cskim_tree_v1_2MU_p14.06.00 \

--dim="__set__ CSskim-2MU-PASS2-p14.06.00 minus \

((project_name myname_cskim_tree_v1_2MU_p14.06.00-% \

and consumed_status consumed) and consumer myname)"

The idea is the following:

• We define a dataset based on a common skim definition.

• We force all our projects that we run on this new definition to have a certain name.

• The definition is the original skim minus all files that have been processed by any project with a given
name pattern (note the wildcard characater).

Normally d0tools will choose a project name for you (because you don’t care about the details), but if the
${SAM PROJECT} environment variable is defined, it will use that instead. We have to make sure that it is
unique, though.

The way to do a production skim is now:

setenv SAM_PROJECT myname_cskim_tree_v1_2MU_p14.06.00-‘date +%Y%m%d-%H%M%S‘

runTMBAnalyze -defname=myname_cskim_tree_v1_2MU_p14.06.00 -jobs=20 [..other options...]

You have to wait until these twenty jobs are finished before you submit the next one ! SAM will coordinate
file transfer to the parallel jobs and make sure there are no duplicates, but it won’t do this between different
projects.

While the jobs are running you can occasionally check the definition in the web browser or on the command
line. You should see that it will have less and less files over time. Once there are no files left, you are done.

sam translate constraints --dim="__set__ myname_cskim_tree_v1_2MU_p14.06.00"

4. Production Mode Tree Generation 6

The restriction to have only 20 jobs running is not a big one: usually you have one definition per reco release
and they are independent, so you can submit 20 jobs for each.

At the end you should check that you have processed all files. Sometimes things go wrong, be it with
SAM, CAB, the network or the output servers or disks. So you should compare the file list of the original
definition with all the files you processed. You can find this information in the events.read file in each
output directory.

grep Input /path/to/output/dirs/*/events.read

Here is a little script to do that for both files and events:

#!/bin/bash

#

usage:

#

count.sh <dirlist>...

#

Count number of input files and events processed.

<dirlist> should be the list of batch output directories

#

$* = list of files

count_events()

{

grep ’Total events:’ $* | (

x=0

while read a b count

do

x=‘expr ${x} + ${count}‘

done

echo "Event count = $x"

)

}

$* = list of files

count_files()

{

grep ’Input file:’ $* | grep -v ’END OF STREAM’ | (

c=0

while read a b filename

do

c=‘expr ${c} + 1‘

done

echo "File count = $c"

)

}

4. Production Mode Tree Generation 7

check_dir()

{

for d in $*

do

if [-r ${d}/events.read]; then

files="${files} ${d}/events.read"

else

echo "No events.read file in ${d}"

fi

done

}

files=""

check_dir $*

count_events $files

count_files $files

If the number of files and events don’t correspond to what SAM tells you, you missed some... However,
the latest version of d0correct removes duplicate events by default, so the number of events might not be
completely identical. Check the log files of your jobs (TMBAnalyze.out) for a line like this:

duplicated events rejected 181

The sum of the rejected events plus what you have in your output files should match the number of events
in the input dataset.

In many cases it’s just a few files, you should just make a new SAM definition with exactly the missing
filenames and submit a recovery job.

4.2.1 run-skim.sh

Here is a complete script to start a tree generation for a given skim. Please read the comments and modify
it before use.

#!/bin/sh

#

Usage:

#

run-skim.sh <skim-name> <release> [<version>]

#

This assumes that the dataset definition you want to use is

#

<user>-csskim-tree-<skim>-<release><version>

#

this definition should in turn be based on the official skim definitions

from the common sample group. Note there is no indication about which

4. Production Mode Tree Generation 8

tmbfixer was used here.

#

Your dateset definition should look like this:

#

__SET__ CSskim-2MU-PASS2-p14.06.00 minus

((PROJECT_NAME <user>-csskim-tree-<skim>-<release><version>-%

and CONSUMED_STATUS consumed) and CONSUMER <user>)

#

where

<skim> is one of 2MU, 2EM, EMMU, etc.

#

<release> is e.g. p14.06.00

#

Output name will be:

#

TMBTree-<skim>-<release>-<JOBID>

#

#

VERSION=""

CAB system to use, set to ’srv1’ or ’srv2’

CAB_SERVER="srv2"

number of maximum parallel jobs

NUM_JOBS=20

final output host and directory

OUT_HOST=dummy-clued0

OUT_DIR=/rooms/dummy/output

CAB_SCRATCH=/rooms/dummy/myname/scratch

Make this non-empty for any tests you do, append ${TEST} to your dataset definition

TEST=""

usage()

{

echo "run-skim.sh <skim-name> <release> [version]"

}

SKIM=""

RELEASE=""

if [$# -lt 2]; then

usage

exit 1

5. Storing Trees into SAM 9

fi

SKIM=$1

RELEASE=$2

if [$# -gt 2]; then

VERSION=$3

fi

BATCH_NAME=TMBTree-${SKIM}-${RELEASE}

DEFNAME=${USER}-csskim-tree-${SKIM}-${RELEASE}${VERSION}${TEST}

export SAM_PROJECT=${DEFNAME}-‘date +%Y%m%d-%H%M%S‘

if [-f ${CAB_SCRATCH}/cabfile.tar]; then

TAROPTION=" -cabtar=cabfile.tar"

else

TAROPTION=""

fi

runTMBAnalyze -name=${BATCH_NAME} -nofpe -maxopt \

-batch -cab${CAB_SERVER} \

-scratch=${CAB_SCRATCH} -jobs=${NUM_JOBS} \

-defname=${DEFNAME} -cabouthost=${OUT_HOST} \

-caboutpath=${OUT_DIR} \

${TAROPTION} \

-jobname=${SKIM} \

-fwkparams -num_files 2

5 Storing Trees into SAM

Often tmb trees are useful for other people beyond yourself or even your physics group. By storing them
back into SAM, everybody with a SAM station can easily pull them out or run directly on them via SAM.

By default, TMBAnalyze will create valid metadata for your job. So after you have an output file, you can
just go to the corresponding directory and do (in bash):

setup sam

for file in *.metadata.py

do

sam store --descrip=${file} --source=. --dest=[...]

done

The destination will depend on the physics group you are in. Ask your conveners, they should be able to
tell you which destination to use for root files.

6. Customizing TMBAnalyze 10

If the files are on clued0, you have to do this on flotsam-clued0 or sambar-clued0. It will not work on any
other machine.

If the files are on a FCC file server, you have to do it from [?don’t know yet?]. Until d0mino is down, these
disks are also visible from there, so it is easiest to log into d0mino and do it there.

6 Customizing TMBAnalyze

If you want to make changes to TMBAnalyze, there are three places to customize it. tmb analyze contains
the main framework RCPs. tmb tree maker contains RCPs for both controlling which branches are created
and for output options. tmb tree trigger make does the same for trigger branches.

addpkg tmb_analyze

addpkg tmb_tree_maker

If you make changes to the RCPs, remember to create a new tar file for CAB and specify the -localrcp

and/or -localfwkrpc option to runTMBAnalyze.

In tmb analyze/rcp/runTMBTreeMaker.rcp (there are variants for SAM and Monte Carlo) you can mainly
add/remove packages. The default is to run with d0correct, including duplicate event removal.

In tmb tree maker/rcp/TMBCorePkg.rcp you can enable or disable certain branches in the root file. There
is one boolean flag per branch.

In tmb tree maker/rcp/TMBTreePkg.rcp you can control the name of the output files and some other output
related parameters. The filename is by default the name of the first input file plus .root. It allows all the
options that the normal WriteEvent package provides.

The Tag option is only useful if you do additional skimming while producing the trees. See the next section.

For trigger information, you should customize tmb tree trigger maker/rcp/TMBTriggerPkg.rcp.

7 Combining TMBAnalyze with Skimming

The default version of TMBAnalyze in p16.05.01 does not link against the np tmb stream package. To do
custom skimming you have to relink the executable. Of course, you can provide your own filter/tagging
package and include that as well.

To use the standard skimming package np tmb stream, checkout the tmb analyze package and add the
following lines to bin/OBJECTS, then make all.

RegObjectFilter

RegObjectTag

RegAndTag

Then add as many RCP files as you like, instantiating the ObjectTag package. Here is an example based on
1MU2JET stream.rcp from the release:

8. Merging Output Files 11

// MySkim.rcp

string PackageName = "ObjectTag"

string Tag = "MY_1MU2JET"

string Trigger = ()

string Cuts = ("Cut1" "Cut2" "Cut3")

string Cut1 = ("MU" "Loose==1 && PtCentral>10.0")

// tighter cut

string Cut2 = ("JET" "Pt > 12.0 ")

string Cut3 = ("JET" "Pt > 8.0 ")

string JetName = "JCCB"

RCP EMid_Algo = < emreco EMReco-scone-id >

string EMid_SearchRCPs = ("clusterer","HMReco",)

RCP Muonid_Algo = <muonid MuoCandidateReco>

In the framework RCP add a new entry to the Packages string:

string Packages = "... unptmb d0corr links mytag tmb_core ..."

[...]

RCP mytag = <tmb_analyze MySkim>

This assumes you put MySkim.rcp into the tmb analyze package rcp directory.

Now you can modify tmb tree maker/rcp/TMBTreePkg.rcp and specify your tag (or a list of tags):

string Tags = ("MY_1MU2JET")

string OutputFile = "MY_1MU2JET-%n.root"

Only events that have this tag will be written out.

The obvious extension is that you can create multiple tags and have multiple copies of the TMBTreePkg.rcp

file (choosing a different output file name for each...).

Remember, you now have to run TMBAnalyze with the -localbuild option !

8 Merging Output Files

If you have an additional selection in your program, your output files may be very small if you left all
the default parameters of tmb tree maker as they are. Typically you will increase the InputFilesPerFile

parameter to some larger value.

8. Merging Output Files 12

As a rule of thumb, you should probably aim for output files of around 1 GB. It is not a desaster if they are
only half a gigabyte or 1.5 GB, however.

Very small files are very inefficient to store on tape. Files larger than 2 GB might lead to problems with the
filesystem and/or programs on Linux, depending on how you access them. A 1 GB file can still be processed
by an interactive root session in a reasonable time.

If you have many small files, you should merge them into larger ones. There are two steps involved: merging
the actual root file and merging the metadata.

8.1 Merging Root Files

Root itself provides various methods to merge two root trees. The following is a script that reads from
standard input the name of the output file, followed by a list of input files. It merges all the input file into
the single output file.

Typically you would use it like this:

echo output.root input1.root input2.root ... | root -b -l merge_root.C+

Here is the actual file:

/*

* Merge a number of .root files into one output file.

*

* Execute the function like this from the command line:

*

* echo outputfile.root input1.root input2.root... | root -b merge_root.C+

*

* This macro assumes that the TTree is named ’TMBTree’. Change

* the corresponding line below if this is different for your case.

*/

#include <string>

#include <iostream>

#include "TList.h"

#include "TFile.h"

#include "TTree.h"

// Change this line if your TTree has a different name

const char *TreeName = "TMBTree";

void merge_root()

{

using namespace std;

string outfile;

8. Merging Output Files 13

cin >> outfile;

TList tree_list;

std::string filename;

Int_t total_events = 0;

while(cin >> filename) {

TFile *f = new TFile(filename.c_str());

if(TTree *tree = (TTree *)f->Get(TreeName)) {

cout << "Adding file: " << filename << endl;

tree_list.Add(tree);

total_events += (Int_t)tree->GetEntries();

} else {

cout << "File has no TTree named TMBTree" << endl;

}

}

cout << "Opening output file: " << outfile << endl;

TFile output(outfile.c_str(), "RECREATE");

cout << "Merging trees...patience..." << endl;

TTree::MergeTrees(&tree_list);

output.Write();

output.Close();

cout << "Total Events: " << total_events << endl;

}

8.2 Merging Metadata Files

The following script takes the corresponding metadata files and creates a single output metadata file. You
would call it like this:

python merge_metadata.py output.root input1.root input2.root...

It will write the metadata file in the same directory where the output.root file lies. It expects the metadata
for the input files in the same directory as the .root files.

#!/usr/bin/python

#

Merge metadata information for multiple root files.

8. Merging Output Files 14

#

usage:

#

merge_metadata outputfile.root file1.root file2.root...

#

It will write the outputfile.root.metadata.py into the same

directory where outputfile.root is located.

#

It expects to find the metadata.py files for the input files

at the same location as the input *.root files.

#

import sys

import os.path

SAM

from import_classes import *

Python import interface

import imp

At least the output name is required

if len(sys.argv) < 2:

print "Usage: merge_metadata.py outputfile root.metadata.py input1.root input2.root..."

sys.exit(1)

output_name = sys.argv[1]

#

Initial values, we take some of the from the first file

we encounter, like ’tier’, ’start_time’, ’end_time’, ’pid’

#

sizeK = 0

first = 0

last = 0

events = 0

start_time = ’’

end_time = ’’

pid = 0

parents = []

tier = ’unknown’

for f in sys.argv[2:]:

m = imp.load_source("meta", f + ".metadata.py", open(f + ".metadata.py"))

if sizeK == 0:

first = m.TheFile.events.begin

last = m.TheFile.events.end

8. Merging Output Files 15

pid = m.TheFile.pid

start_time = m.TheFile.start_time

end_time = m.TheFile.end_time

tier = m.TheFile.tier

else:

if tier != m.TheFile.tier:

print "Different data tiers: expected %s, got %s" % (tier, m.TheFile.tier)

sizeK += m.TheFile.sizeK

events += m.TheFile.events.num

if m.TheFile.events.begin < first:

first = m.TheFile.events.begin

if m.TheFile.events.end > last:

last = m.TheFile.events.end

parents.extend(m.TheFile.parents)

#

Determine real file size, we don’t really trust ’sizeK’, since there

will be a different number of ROOT headers etc. per file

#

root_outfile = open(output_name)

root_outfile.seek(0,2)

real_sizeK = root_outfile.tell()/1024 + 1

outfile = open(output_name + ".metadata.py", "w")

print >>outfile,"from import_classes import *"

print >>outfile,"TheFile = ProcessedFile("

print >>outfile," name = ’%s’," % output_name

print >>outfile," sizeK = %d," % real_sizeK

print >>outfile," events = Events(%d, %d, %d)," % (first, last, events)

print >>outfile," stream = ’’,"

print >>outfile," tier = ’%s’," % tier

print >>outfile," start_time = ’%s’," % start_time

print >>outfile," end_time = ’%s’," % end_time

print >>outfile," pid = %d," % pid

print >>outfile," parents = ", parents, ")"

8.3 Putting it Together

Finally, the following script merge trees.sh will call the two scripts described above together:

9. Running Over Monte Carlo Files 16

#!/bin/bash

#

usage:

merge_trees.sh output.root [file.root]+

#

Merges the ROOT trees in the given files into one output file.

#

It expects to find a ’file.root.metadata.py’ file in the same

directory as the ’file.root’ file and will create a new

metadata file for the merged trees, ’output.root.metadata.py’

#

usage()

{

echo "usage: $0 output.root [input.root]+"

}

if [$# -lt 2]; then

usage

exit 1

fi

outfile=$1

shift

for file in $*

do

if [! -f ${file}]; then

echo "Cannot find file: ${file}"

exit 1

fi

if [! -f ${file}.metadata.py]; then

echo "Cannot find metadata for ${file}: ${file}.metadata.py"

exit 1

fi

done

echo ${outfile} $* | root -l -b merge_root.C+

python merge_metadata.py ${outfile} $*

9 Running Over Monte Carlo Files

If the Monte Carlo files have been reconstructed, you can run TMBAnalyze x as usual on them, except that
you should select the proper RCP file. There are variations runTMBTreeMaker MC.rcp for running over local
files, as well as a version for SAM, runTMBTreeMakerSAM MC.rcp.

10. Extending TMBAnalzye 17

To apply smearing to the Monte Carlo, use the runTMBTreeMaker MCSmear.rcp file instead.

9.1 Running over pure Monte Carlo Files

If you have a Monte Carlo file without d0reco thumbnails, these standard RCP files will not work. Instead,
you should use a modified version as shown below. This will only produce the various Monte Carlo particles,
vertices and event infos and nothing else in the output tree.

string InterfaceName = "process"

string Packages = "geo read config tmb_core tmb_mc tmb_tree dump"

RCP geo = <geometry_management geometry_management>

RCP read = <d0reco D0recoReadEvent>

RCP config = <run_config_fwk RunConfigPkg>

RCP tmb_core = <tmb_tree_maker TMBCorePkg>

RCP tmb_mc = <mc_analyze TMBTreeMCPkg>

RCP tmb_refs = <tmb_analyze TMBTRefsPkg>

RCP tmb_tree = <tmb_tree_maker TMBTreePkg>

RCP dump = <thumbnail tmbDumpEvent>

int DumpPeriod = 1

10 Extending TMBAnalzye

You can extend TMBAnalyze x without any modifications to the original packages. This is useful if you want
to add new branches or your own private information while generating the TMBTree. This section assumes
that you have basic knowledge about ROOT’s persistency system.

As a first step, you should create your own CVS and framework package where you will put your code. In
the following we assume that your framework class is called TMBExtendPkg. This class only has to inherit
from fwk::Package base class:

#include "framework/Package.hpp"

#include "tmb_tree_maker/TMBMaker.hpp"

namespace MyExtension {

class TMBExtendPkg : public fwk::package {

public:

TMBExtendPkg(fwk::Context *ctx);

std::string packageName() const;

static const std::string package_name();

static const std::string version();

private:

10. Extending TMBAnalzye 18

TMBMaker *_maker;

};

}

Extending TMBAnalyze is very easy if your own data is either:

• a single object of a user defined class.

• a TClonesArray of multiple objects of the same class.

In both cases you should create a subclass of the TMBMaker class. We assume you have defined your own
root class, e.g.

class MyClass : public TObject {

public:

MyClass();

private:

Int_t data;

public:

ClassDef(MyClass, 1);

};

10.1 Storing TClonesArrays

We handle the case of a TClonesArray first.

Your maker class should look like this:

class MyArrayMaker : public TMBMaker {

public:

MyArrayMaker(const char *name, const char *title);

~MyArrayMaker();

Int_t Make(edm::Event& event);

};

In the constructor, you specify your branch name and pass an instance of a properly initialized TClonesArray

to the base class:

MyArrayMaker::MyArrayMaker(const char *name, const char *title)

: TMBMaker(name, title)

{

_Fruits = new TClonesArray("MyClass", 2, kFALSE);

_BranchName = "MyArray";

Save();

}

Then, in the Make() method, you actually fill the array with any data you like. The assumption is that you
either get it from the edm::Event or generate it yourself.

10. Extending TMBAnalzye 19

Int_t MyArrayMaker::Make(const edm::Event& event)

{

TClonesArray& array = *(TClonesArray *)_Fruits;

for(int i = 0; i < numObjects; i++) {

// create your object

new (array[i]) MyClass();

}

return 0;

}

That’s it. Now all we have to do is make the MyArrayMaker class known to TMBAnalyze. We do this by
simply creating an instance of the class in our framework package:

TMBExtendPkg::TMBExtendPkg(fwk::Context *ctx)

: fwk::Package(ctx),

_maker(0)

{

bool doMyClassArray = packageRCP().getBool("doMyClassArray");

if(doMyClassArray) _maker = new MyArrayMaker("MyClassArray", "Maker for MyClass");

}

TMBExtendPkg::~TMBExtendPkg() { delete _maker; }

Now you can add your RegTMBExtendPkg to tmb analyze/bin/OBJECTS and relink the executable. Alter-
natively, you can create your own executable by copying over tmb analyze/bin/OBJECTS into your own
package bin directory and just add any local modifications.

10.2 Storing Single Objects

The modifications for storing a single object instead of a TClonesArray are rather simple.

• In the constructor, create an object of the desired type and assign it to Fruits:

_Fruits = new MyClass();

• Override the Clear method and call Fruits->Clear() in there.

10.3 Storing other Persistent Information

The scheme above assumes that you have one Maker class for each object or array of objects which is stored
in turn in a single branch.

You don’t have to follow this scheme, but you will have to do more of the work yourself in this case. If you
assign a null pointer to Fruits the normal procedure will not apply. However, in this case, you have to

10. Extending TMBAnalzye 20

create the branch yourself. To do this, override the MakeBranch method and do anything you have to do for
your custom branch(es).

You can get access to the common tree like this:

TTree *tree = gTMBTree->Tree();

tree->Branch("branch1", ...);

tree->Branch("branch2", ...);

...

For instance, you could store plain old ntuples here.

	Introduction
	Getting Started
	Which Release to use
	Setting up the Release

	Running TMBAnalyze_x
	Using d0tools
	Running it on local files
	Using SAM on ClueD0
	Using SAM on CAB
	Output Directories
	Multiple Jobs
	Number of Input Files

	Production Mode Tree Generation
	Datasets
	Recursive Datasets
	run-skim.sh

	Storing Trees into SAM
	Customizing TMBAnalyze
	Combining TMBAnalyze with Skimming
	Merging Output Files
	Merging Root Files
	Merging Metadata Files
	Putting it Together

	Running Over Monte Carlo Files
	Running over pure Monte Carlo Files

	Extending TMBAnalzye
	Storing TClonesArrays
	Storing Single Objects
	Storing other Persistent Information

