Millennial Physics at Fermilab

The high energy physics program at the U.S. Premier platform for

DISCOVERY

- Introduction
- Standard Model
- Accelerator complex and detectors
- Remembrance of Things Past
 - with an emphasis on the top quark
- The future

Raymond Brock
Department of Physics and Astronomy
Michigan State University
brock@pa.msu.edu
I’m going to present the Fermilab proton-antiproton collider program in two lectures, past and future:

Lecture 1: A review of the physics of the Tevatron Collider in its first running

- introduction to the Standard Model of elementary particle physics
- introduction to the accelerator and the experiments

Lecture 2: Results and prospects

- Run I results
- Run II prospects

“Run I”, from 1193-1996, $L = 100 \text{ pb}^{-1}$
“Run IIa”, from 3/01 - ~03, $L \sim 3,000-5,000 \text{ pb}^{-1}$
“Run IIb”, from ~03 - LHC physics, $L \sim 20,000 \text{ pb}^{-1}$
Lecture 2: Fermilab Collider Physics: Results and Prospects
Run I

CDF’s second run...DØ’s first.
Run I physics, a (tiny) snapshot

Top quark– Discovery!

\[m_t = 174.3 \pm 3.2 \text{ (stat)} \pm 4.0 \text{ (sys)} \text{ GeV/c}^2 \]

- Beginnings of detailed studies (cross sections, distns, BR, etc.)

W/Z bosons

\[M_W = 80.45 \pm 0.063 \text{ GeV/c}^2 \]

- \(V-V-V \) couplings studied
- \(W/Z + \) soft gluon radiation

Bottom quarks – a new field

- 100’s B → J/\(\Psi \) - K\(_S \)
- \(B_C \) discovered
- Production \(\Psi \)’s & BR’s

Quantum Chromodynamics

- Substructure probed, \(10^{-18} \text{ cm} \)
- Radiative corrections confirmed
- Colorless exchange - Pomeron

Exotic physics – searches

- supersymmetry
- leptoquarks
- Higgs boson
- additional W/Z’s

Over 250 papers published in PRL, PR, NP
The Top Quark at Fermilab

it’s big.
Who ordered that? – the extraordinary mass of $175 \times m_p$ distorts one’s expected picture of (just) a quark...

The decay of a quark, Q, with $m_Q > M_W + m_q$ is straightforward:

$$\Gamma(Q \rightarrow qW^+) = \frac{G_F m_Q^3}{8\sqrt{2}} |V_{tb}|^2 \left(\frac{M_W^2}{m_Q^2} \right)^2 + \frac{2M_W^2}{m_Q}$$

V_{tb} is an element of the quark mixing matrix, bounded by the requirement of Unitarity and weak interaction phenomenology.

$$\begin{array}{ccc}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{array} \begin{array}{c}
0.9745 \pm 0.0045 \\
0.217 \pm 0.024 \\
0.004 \pm 0.013
\end{array}$$

SO, the fraction of decay of $t \rightarrow W b$ is almost 100%.
SO, $\Gamma_{top} \approx 0.4 \times 10^{-24}$ s … QCD confinement scale $\approx 1/\Lambda_{QCD} \approx \text{few } \times 10^{-24}$ s
Which means…top quarks decay before they form top-mesons…bare fermion… unprecedented and surely a clue to something?
TOP manifests itself three ways, depending on the W decay:

- **bℓq bq'** 30% “lepton + jets”

 - Charged lepton
 - Missing energy
 - 2 jets
 - 2 b quarks

 Serious backgrounds: QCD $Wjjbb$ w/ S/B \sim2/1, 4/1 with b tagging

- **bℓq bq'** 5% “dilepton”

 - 2 Charged leptons
 - Missing energy
 - no jets
 - 2 b quarks

 Low backgrounds: QCD $Wjjbb$, (fake e, missing j) w/ S/B~3-4/1

- **bqq' bq'** 44% “dijet”

 - no lepton
 - no Missing energy
 - 4 jets
 - 2 b quarks

 Huge backgrounds: QCD multijets w/ S/B~1/1

But wait, there’s more:
Getting to the bottom of the top quark...

- We have a magical key...
- The b quark lives a long time... $\tau_b \approx 1.5$ ps

Si vertex detectors are magic
1. lifetime is long enough to measure
2. Important for top physics
3. Important in it’s own right for B hadron physics
4. now a precision industry
 - Efficiency for 1 Si vertexing (SVX) tag is $\approx 50\%$ and essentially $p(b)$ independent
 - Can double tag with $\approx 40\%$
 - also can detect the presence of a soft lepton (SLT) from $b \rightarrow c \ell \nu$
Top, revealed

\[t \rightarrow W (e \bar{e}) \ b \]

\[\bar{t} \rightarrow W (q q) \ b \]
physics at fermilab

DØ top as art
Top’s bare bottom revealed by CDF

Two jets tagged by SVX
fit top mass is 170 ± 10 GeV

e^+, Missing E_t, jet #4 from top
jets 1,2,3 from top (2&3 from W)

Tracking View

seeing the bottom quark decay
Top quark physics: cross section

A cross section is a basic measurement:

$$\sigma(p\bar{p} \rightarrow X \rightarrow \text{channel}_i) = \frac{N_{\text{obs}}^i - N_{\text{background}}^i}{\epsilon_i \cdot \int \mathcal{L} \, dt}$$

A complicated theoretical effort for comparison

- Stresses QCD understanding at a deep level
- Heavy quark QCD calculations are tough

CDF: $6.5^{+1.7}_{-1.4}$ pb
DO: 5.9 ± 1.7 pb

Top Cross Sections

- **CDF preliminary**
 - 7.6^{+3.5}_{-2.7} pb
 - 5.1^{+1.6}_{-1.4} pb
 - 9.2^{+4.8}_{-4.0} pb
 - 8.4^{+4.3}_{-3.5} pb
 - 6.5^{+1.7}_{-1.4} pb

- **Theory (4.7 - 5.5)**
 - HAD
 - SVX
 - SLT
 - DIL
 - Combined

- **D0**
 - 6.4^{+3.4}_{-3.2} pb
 - 4.1^{+2.1}_{-1.9} pb
 - 8.3^{+3.6}_{-3.2} pb
 - 7.1^{+3.2}_{-3.0} pb
 - 5.9^{+1.7}_{-1.4} pb

- **Combined**
 - L+J (topo)
 - L+J (μ-tag)
 - HAD

Millennial Physics

Chip Brock, Michigan State University

2001
Top quark physics: mass determination

Full kinematical fitting of lepton+jets, dilepton, all jets candidates
- A serious challenge for background simulation
- in particular, the QCD production of W^+ multiple jets w/b’s

<table>
<thead>
<tr>
<th>Channel</th>
<th>DO</th>
<th>DO</th>
<th>CDF</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample</td>
<td>bckgnd</td>
<td>sample</td>
<td>bckgnd</td>
</tr>
<tr>
<td>Di-lepton</td>
<td>5</td>
<td>1.4 ± 0.4</td>
<td>9</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>Lep+jets SVX</td>
<td>11</td>
<td>2.4 ± 0.5</td>
<td>34</td>
<td>9.2 ± 1.5</td>
</tr>
<tr>
<td>Lep+jets SLT</td>
<td>19</td>
<td>8.7 ± 1.7</td>
<td>40</td>
<td>22.6 ± 2.8</td>
</tr>
<tr>
<td>Lep+jets top</td>
<td>41</td>
<td>24.8 ± 2.4</td>
<td>184</td>
<td>142 ± 12</td>
</tr>
<tr>
<td>All jets</td>
<td>4</td>
<td>1.2 ± 0.4</td>
<td>4</td>
<td>≈2</td>
</tr>
<tr>
<td>en</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et, mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Very sophisticated likelihood combinations of samples are now done
- eg., CDF combined 4 independent samples for their best result
- DO employs complicated kinematical and topological cuts
lepton plus jets mass results

<table>
<thead>
<tr>
<th>systematics</th>
<th>(GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet energy determination</td>
<td>4.0</td>
</tr>
<tr>
<td>bckgnd model</td>
<td>2.5</td>
</tr>
<tr>
<td>signal model</td>
<td>1.9</td>
</tr>
<tr>
<td>fitting tech.</td>
<td>1.5</td>
</tr>
<tr>
<td>cal. noise</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>5.5</td>
</tr>
</tbody>
</table>

(CDF)
Top Quark Mass

Tevatron Top Quark Mass Measurements

- 167.4 ± 11.4 GeV/c2 Dilepton
- 172.1 ± 7.1 GeV/c2 Combined
- 176.1 ± 7.4 GeV/c2 Lepton+jets
- 186.0 ± 11.5 GeV/c2 All-Hadronic
- 176.1 ± 6.6 GeV/c2 Combined
- 174.3 ± 5.1 GeV/c2
Electroweak Physics

fraction of a percent experiments with a 5500 ton microscope
Remember, if you don’t see anything, it’s a neutrino...

DØ $W \rightarrow e\nu$
Electroweak Interactions

The physics of W’s, g’s, and Z’s

- \(\frac{g}{g_{\text{EW}}}\) & \(\frac{g_{\text{W}}}{g_{\text{W}}}\) determination
 - Cross section – strong test of QCD
 - “tri-boson couplings”
 - Testing the gauge theory at the vertices – new physics would reveal itself here
- Mass determination (remember the loops?)
 - Requires precision of ±0.06%

Theoretical prediction: \(O\left(\frac{g^2}{s}\right)\) Hamberg, van Neerven, Matsuura; van Neerven & Zijlstra

Dominant uncertainties:
Luminosity, \(\approx 8\%\) (expt) & Parton distribution functions, \(\approx 3\%\) (theory)
物理学在费米实验室

一个棘手的测量

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>g</td>
<td></td>
<td></td>
<td>q</td>
</tr>
</tbody>
</table>

 Moderately hadronic recoil (~5 GeV/c)

利用两个粒子衰变的 kinematics，通过定义“transverse mass”来识别“Jacobian”边。

\[
m_T^2(\ell,\not p) = \left(|\vec{p}_\ell| + |\vec{p}_p| \right)^2 \left(\vec{p}_\ell + \vec{p}_p \right)^2
= 2E_\ell E_T (1 - \cos \theta_p)
\]

\[
\frac{d\sigma}{dm_T^2} = \frac{V_{qW}^2}{4\sqrt{2}} \left| G_F M_W \right|^2 \left(\frac{1}{s - M_W^2} + \frac{2m_T^2\hat{s}}{(1 - m_T^2\hat{s})^{3/2}} \right)
\]

DØ最新结果

\[
M_W = 80.474 \pm 0.093 \text{ GeV/c}^2 \text{ DO}
\]
\[
= 80.433 \pm 0.079 \text{ GeV/c}^2 \text{ CDF}
\]
\[
= 80.450 \pm 0.063 \text{ GeV/c}^2 \text{ Tevatron}
\]

Millennial Physics

Chip Brock, Michigan State University

2001
The full width of the W can be measured in three ways
(SM: $\Gamma_W = 2.077 \pm 0.014$ GeV)

- Indirectly from:

$$R_{W/Z} = \frac{\Gamma_W \cdot BR(W \ell \ell)}{\Gamma_Z \cdot BR(Z \ell \ell)} = \frac{\Gamma_W \cdot BR(W \ell \ell)}{\Gamma_Z \cdot BR(Z \ell \ell) \cdot \Gamma_W}$$

$$\Gamma_W = 2.130 \pm 0.56 \text{ GeV} \quad \text{DØ (new)}$$

$$= 2.064 \pm 0.084 \text{ GeV CDF}$$

- Directly from the tail of the m_T distribution:

$$\Gamma_W = 2.19 \pm 0.19 \text{ GeV CDF}$$

- Simultaneously, in 2 parameter fit with M_W
The IVB can couple to one-another due to the non-Abelian nature of the Yang-Mills prescription.

Measurements characterized as parameterized deviations from SM... an anomolous magnetic or electric moment.

Standard Model values: $k_g, Z = 1; l_g, Z = 0; h^{Z,g}_{1-4} = 0$

CDF preliminary

DØ

$-0.93 < \frac{k_g}{Z} -1 < 0.94$

$-0.31 < \frac{l_g}{Z} < 0.29$

$-1.8 < \frac{h^{Z,g}_{1-4}}{Z} < 0.94$

$-0.7 < \frac{h^{Z,g}_{1-4}}{Z} < 0.6$

DØ + LEP @ 68% CL

$\frac{h^{Z,g}_{1-4}}{Z} = 0.13 \pm 0.14$

$\frac{h^{Z,g}_{1-4}}{Z} = 0.6 \pm 0.07$
The Standard Model Connection

- LEP2 has final results
- NuTeV ($\square N$ DIS) has preliminary results

$\sin^2\theta_W$, interpreted as M_W

W-Boson Mass [GeV]

- $\bar{p}p$-colliders: 80.448 ± 0.062
- LEP2: 80.401 ± 0.048
- Average: 80.419 ± 0.038 (χ^2/DoF: 0.4/1)
- NuTeV/CCFR: 80.25 ± 0.11
- LEP1/SLD/νN/m_t: 80.382 ± 0.026

Run2 uncertainties intentionally plotted at 1996 central values

Good reminder of what L means & reason for growing excitement at Fermilab

IT'S A DIFFERENT GAME NOW – THE SM HIGGS BOSON APPEARS TO BE LIGHT
Quantum Chromodynamics

de the glue that holds us together: it’s everywhere
Quantum Chromodynamics

Study of strong interactions
Most basic measurement—the search for substructure... akin to the original discovery of partons at SLAC

Controversial for a while: was there an excess at high jet E_T? could be evidence for substructure

False alarm? Both experiments agree... both agree with theory. Probably a reminder of how hard it is to predict the gluon distribution in the proton
Highest E_T jet event in DO $E_T = 475$ GeV

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max E_T = 345.4 GeV</td>
<td></td>
</tr>
<tr>
<td>CAEH E_T SUM = 968.0 GeV</td>
<td></td>
</tr>
<tr>
<td>VTX in Z = -5.4 (cm)</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of physics at Fermilab](image)

![Plot of E_T vs. Dst Etta-Phi](image)
physics at Fermilab

Much more...

Dijet mass spectrum - another substructure search

Excess would suggest a new length scale in 2 parton collisions

σ_s running determination at an electron collider

...at a hadron collider!

From CDF inclusive jets:

Blue shows the running of the strong coupling, $\sqrt{s}(E)$, with changing scale, E_T. Red, shows the lack of dependence at a fixed scale. Not absolute $\sqrt{s}(E)$.
Gluons are cheap...

Indeed, they radiate like mad from quarks and gluons and accounting for them is complicated in processes in which there are two length scales ...like the $d\sigma/dp_T$ for W and Z production, or $g\bar{g}$ production

Must deal with ∞ series of divergences: $\ln(Q^2/p_T^2)$

Turn-over, the effect of QCD radiative corrections and infinite gluon resummation
Bottom Quark Physics

figuring out why we’re matter and not antimatter - or both!
B Physics – HEP with microbarns

Both experiments study B mesons

CDF’s SVX tags the detached vertices of the B’s

Forward production agrees with central production

this is beautiful physics
But wait, there’s more

CDF: lifetimes, eg.

\(t(B^-) = 1.637 \pm 0.058 \pm 0.045/-0.043 \text{ ps} \)
\(t(B^0) = 1.474 \pm 0.039 \pm 0.052/-0.051 \text{ ps} \)
\(t(B^+_s) = 1.34 \pm 0.23/-0.19 \pm 0.05 \text{ ps} \)
\(t(B^0_s) = 1.36 \pm 0.09 \pm 0.06/-0.05 \text{ ps} \)

CDF discovered the \(B_c \) meson

\(M(B_c) = 6.40 \pm 0.39 \pm 0.13 \text{ GeV/c}^2 \)
\(t(B_c) = 0.46 \pm 0.18 \pm 0.05 \text{ ps} \)

CDF observed and measured \(B^0 - B^0 \) oscillation parameters

Combination of 3 tagging techniques:
- SVX “same side” tag
- SLT tag
- Jet charge tag

\(\sin2\phi = 0.79 +0.41 -0.44 \)

Where the SM predicts 0.66 - 0.84

First observation of CP in the \(B \) system, confirming the large expected asymmetry
Many extensions of the SM are imaginable

- All must be dealt with systematically

Exotica including:
- Extra gauge bosons
- Leptoquarks (bound lepton-quark states)
- Technicolor

a matter of luminosity...

Measured limits are right on schedule for 100 pb$^{-1}$
Run II

the standard model has nowhere to hide
Goals of Run II

Accelerator:
- To deliver 10-30 x more integrated luminosity

Experiments:
- To deal with it...and the required upgrades

Physics goals:
- Understand the top quark, measure $\sqrt{m_t} \approx 2 \text{ GeV}/c^2$
- Determine the cross section to $\pm 8\%$
- Determine the W mass to $\sqrt{M_W} \approx 40 \text{ MeV}/c^2$
- Determine the W width to few \%
- Determine $|V_{tb}|$ to $\pm 10\%$
- Refine B physics measurements, extend rare decay searches
- Extend the reach for compositeness to 500 GeV
- Test NNLO QCD and further study the pomeron
- Extend the search reach for Supersymmetry and exotic phenomena
The TOP quark might be Special…we aim to find out.

<table>
<thead>
<tr>
<th>accepted/experiment</th>
<th>2fb(^{-1})</th>
<th>10fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt produced</td>
<td>16,000</td>
<td>80,000</td>
</tr>
<tr>
<td>(\ell + 3j / 1b)</td>
<td>1,800</td>
<td>9,000</td>
</tr>
<tr>
<td>(\ell + 4j / 2b)</td>
<td>600</td>
<td>3,000</td>
</tr>
<tr>
<td>(\ell + 2j)</td>
<td>200</td>
<td>1,000</td>
</tr>
<tr>
<td>EW produced top</td>
<td>330</td>
<td>1,650</td>
</tr>
</tbody>
</table>

With \(\int L dt = 10\ fb^{-1}\), we will:
- determine \(m_{\text{top}}\) to 1-2 GeV/c\(^2\)
- measure \(\mathbb{R}(t\bar{t})\) to 6%
- measure \(\text{BR}(t \rightarrow b\ell)\) to 5%
- probe for \(t\bar{t}\) resonant states to 1 TeV/c\(^2\)
- Michel analysis of top couplings
- isolate EW produced top quarks and:
 - determine \(\mathbb{R}\) to 10%
 - determine \(\mathbb{R}(t \rightarrow Wb)\) to 10%
 - determine \(V_{tb}\) to 5%
 - search for anomalous couplings
 - search for CP
- probe for rare decays to \(10^{-3} - 10^{-4}\)

Fermilab is a top quark factory.
physics at fermilab

With $\sqrt{s}dt = 10 \text{ fb}^{-1}$, we will:

determine M_W to $\sim 30 \text{ MeV/c}^2$
 - which will bound M_H to 40-50% of itself
 - (good timing for direct searches)
measure $\Gamma(W)$ to 15 MeV
refine asymmetries (W and Z) and hence, pdf’s
limit WWV and $Z\ell$ couplings
quantify radiation zero in $W\ell$
search for rare W decays
limit CP violation
quantify quartic gauge couplings
study resummation in 2 scale problems
 - $p_T(W)$, $p_T(gg)$

accepted/experiment

<table>
<thead>
<tr>
<th>channel</th>
<th>2fb^{-1}</th>
<th>10fb^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W\ell\ell$</td>
<td>1.6M</td>
<td>8M</td>
</tr>
<tr>
<td>$Z\ell\ell$</td>
<td>160k</td>
<td>800k</td>
</tr>
<tr>
<td>$W\ell$</td>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>$Z\ell$</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>WW</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>WZ</td>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>ZZ</td>
<td>few</td>
<td>30</td>
</tr>
</tbody>
</table>

Fermilab is a vector boson craft-workshop
With $\mathcal{L} dt = 10 \text{ fb}^{-1}$, we will:

- Study the edge of phase space!
- Probe deep structure beyond 500 GeV
- Measure IVB+jet production with high statistics
- Understand multi-scale physics
- Understand multi-gluon physics
- Heavy quark production kinematics/dynamics
- Probe jet structure
- Understand multi-jet kinematics
- NNLO calculational comparison
- Understand diffractive scattering!

Support all other collider analyses with crucial background studies

Fermilab is a QCD conglomerate

Millions of events, period.
With $\mathcal{L} dt = 2 \text{ fb}^{-1}$, we will:

Measure CP violation in three modes
- $B^0 \rightarrow J/\psi K_s$
- $B^0 \rightarrow \phi \phi$
- $B^0 \rightarrow J/\psi \psi$

Measure $|V_{td}| / |V_{ts}|$ from B_S mixing & $\phi \phi$

Refine rare decay searches
- $B \rightarrow \phi \phi K$
- $B \rightarrow \phi \phi K^*$
- $B_d \rightarrow \phi \phi$
- $B_s \rightarrow \phi \phi$

Completely understand the B_C system

Completely understand B_s mixing

- Semileptonic decays
- Fully hadronic decays

accepted/experiment channel

<table>
<thead>
<tr>
<th></th>
<th>2fb$^{-1}$</th>
<th>10fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B mesons</td>
<td>10^{10}</td>
<td>5×10^{10}</td>
</tr>
<tr>
<td>B baryons</td>
<td>10^8</td>
<td>5×10^8</td>
</tr>
<tr>
<td>B_c</td>
<td>10^9</td>
<td>5×10^9</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi K_s$</td>
<td>15,000</td>
<td>75,000</td>
</tr>
</tbody>
</table>

Fermilab is a bottom quark industry
There’s more

Multiple inverse femtobarns make a qualitative difference:

Supersymmetry

and

the Higgs Boson

are accessible before the LHC
Supersymmetry—In words

The SM is extraordinarily successful
 • nothing seems out of line…and yet nobody is happy.

Digging deeper is troubling
 • SM: physics of the scale of the W/Z masses ~ 100 GeV, or distances of ~ 10^{-18} cm
 • What about deeper scales? What are scale-milestones?

• Higgs is fat, due to radiative corrections
 • problem is due to quartic self-interactions – which correct the mass of the Higgs

\[M_H^2 \sim \frac{\mathcal{L}_f}{4} \mathcal{D}_f^2 + \frac{\mathcal{L}_f^2}{4} m_f^2 \]

The only high energy scale \(\mathcal{D} \sim M_p \) is the Planck scale of \(10^{18} \) GeV - no way to renormalize

Ugly...the SM is fundamentally sick due to quadratic divergences
Suppose the theory has Higgs, fermions, and additional scalars

- calculate their mass correction contributions

$$M_H^2 \sim \frac{\Box}{4\Box^2} \overline{q}^2 \Box - \frac{\Box}{4\Box^2} m^2$$

a magical negative sign...cancels the divergent quantity if $\Box = \overline{q}$..and there is a pattern of $N(f) = N(\overline{q})$.

Then, the correction is

$$\frac{\lambda^2}{4\pi^2} \left(m_f^2 - m^2 \right)$$

so, equal masses means a total cancellation - a symmetry

Supersymmetry...in which

$$S | F \rangle = | B \rangle$$
 physics at fermilab

In practice, difficult

Supersymmetric partners for all particles

• With a spin flip…and a cute s-prefix
 ▪ Electron (spin $1/2$) becomes selectron (spin 0)
 ▪ Quark (spin $1/2$) becomes squark (spin 0)
 ▪ Photon (spin 1) becomes photino (spin $1/2$)
 ▪ Gluon (spin 1) becomes gluino (spin $1/2$)

• No SUSY at low energies, so supersymmetry is broken…search for their interactions at higher energies

This is not just silly...

• The Higgs mechanism is accounted for in a natural way and the Weinberg angle is predicted
• Unification of forces appears to work
• Superstrings contain SUSY...

A bold theoretical suggestion, on par with Dirac’s positron, or Weinberg’s Z !!
SUSY provides a unification of couplings

Unification – a goal – requires serious tinkering

Each force (electromagnetic, strong, and weak) is characterized by a coupling,
\[\alpha_q(I = 1, 2, s), \]
for 2 EW couplings and 1 QCD coupling

Unification requires that
\[\alpha_1(M_X) = \alpha_2(M_X) = \alpha_s(M_X) \]

Modern analyses suggest \(\alpha_s \approx 0.13 \)
SUSY is not the only solution...

• composite Higgs can protect itself from infinities (technicolor)

However, it is taken very, very seriously

• Many flavors of models…thousands
• A particular brand is especially promising, called the Minimal SuperSymmetric Model (MSSM) contains definite predictions

1. 4 Higgs bosons, one of which is SM-like and must be lighter than ≈ 125 GeV/c2
2. A supersymmetric “number” is conserved, so decays of SUSY particle result in another SUSY particle
3. A mass spectrum is conceivable, so there is a sterile Lightest SUSY state…which is missing energy in a detector
4. Signals are many leptons, and/or jets with significant missing energy
physics at Fermilab

Model space

The time is right...

Each dot, an allowed supersymmetric model:

- χ^-
 - Predicted: Run I 2fb-1, 10fb-1
 - Actual: Run I
- g
 - Predicted: 65, $\sim 220, 235$
 - Actual: 70
- t_1
 - Predicted: 48, 150
 - Actual: 155, 145

Dozens of limits have been set already by both experiments

Fermilab could be a SUSY venture startup...
Hints appeared in September - a 1 month extension of the final running period was authorized...

- it experienced more than the average downtime, so it must have been frustrating
- Signal is associate production, $H(bb)Z(jj \text{ or } ll)$.

the hint is a 2.9σ signal (all 4 experiments) at a mass of 115 GeV/c^2, with a 0.4% probability of it being background.
The HIGGS is the thing...

The Higgs couples to fermions via m_f
- Big is beautiful.

- electron (or muon)
- missing energy
- two b’s, at M_H

The Golden Mode:
associated production

the cross section is large enough...

So, we expect a standard model Higgs boson:
- to be produced with an W and
- decay overwhelmingly to
 - b pairs (if light),
 - or 2W’s (if slightly heavier...)

The issue is background from $pp \rightarrow W+b+b$
Higgs could be ours...

Need:
- Luminosity
- Ability to tag b’s of relatively high p_T
- Ability to form $M(bb)$ with good resolution

Mass resolutions will be acceptable

CDF study of $Z \rightarrow bb$

CDF MC extrapolation to Run II

2fb$^{-1}$
Higgs will be surrounded

\[M(bb) \text{ in } 10 \text{ fb}^{-1} \]

\[M \approx 8 \text{ GeV} \]

S/B \approx 1/1, dependent on cuts

Mass resolution is key
top events

\[Z \rightarrow bb \]

Recently, a year-long workshop at Fermilab:

Fermilab could be a
Higgs cottage industry
The plan is clear...

Run IIa
- Provides an ability to take the top quark apart
- Uncover CP violation in the B system
- Determine the W mass to precision necessary to corner the Higgs

Run IIb, above a critical ℓ threshold of about 20pb$^{-1}$
- Maybe discover supersymmetry
- Maybe discover the Higgs Boson

If not there, then the more promising SUSY model is wrong, the SM EW model will be in jeopardy,
- and a whole new era in elementary particle physics will have opened.

If it is there, it will be studied at LHC, NLC, and/or a collider
- and a whole new era in elementary particle physics will have opened.

A familiar no-lose situation again for Fermilab physics!
Conclusion

I’ve not talked about the Kaon CP program or the neutrino oscillation experiments. The whole program leads to evolutionary measurements blended with significant discovery potential - it’s complete.

This is a great time to be at Fermilab.