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Abstract

We discuss how exact conformal invariance in the strong coupling leads

naturally through AdS/CFT correspondence to a systematic expansion for

the Pomeron and Odderon intercepts in power of λ−1/2, with λ = g2Nc

the ’t Hooft coupling. We also point out the importance of confinement

for a realistic treatment of DIS in the HERA energy range.

1 Introduction

In the past decade overwhelming evidence has emerged for a conjectured duality

between a wide class of gauge theories in d-dimensions and string theories on

asymptotically AdSd+1 spaces. It has been shown, in a holographic or AdS/CFT

dual description for QCD at high energies, the Pomeron can be identified with

a reggeized Graviton in AdS5 [1,2] and, similarly, an Odderon with a reggeized

anti-symmetric Kalb-Ramond B-field [3]. This approach has been successfully

applied to the study of HERA data [4], both for DIS at small-x [5] and for

∗Presented by Chung-I Tan at the Low x workshop, May 30 - June 4 2013, Rehovot and

Eilat, Israel.
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deeply virtual Compton scattering (DVCS) [6]. More recently, this treatment

has also been applied to the study of diffractive production of Higgs at LHC [7]

as well as other near forward scattering processes.

In this talk, we first briefly describe “Pomeron-Graviton” duality and its ap-

plication for deep inelastic scattering (DIS) at small-x and deep virtual Compton

scattering (DVCS) to HERA data. We next turn to a discussion on Pomeron and

Odderon intercepts in the conformal limit and their relation to the anomalous

dimensions.

2 Pomeron-Graviton Duality and Applications:

It can be shown for a wide range of scattering processes that the amplitude

in the Regge limit, s ≫ t, is dominated by Pomeron exchange, together with

the associated s-channel screening correction, e.g., via eikonalization. We will

use here a formulation based on gauge/gravity duality, or the AdS/CFT corre-

spondence, of which one particular example is the duality between N = 4 SYM

and Type-IIB string theory on AdS5 × S5. This approach has the advantages

of allowing us to study the strong coupling region, providing a unified soft and

hard diffractive mechanism, and as we will see it also fits well the experimental

data.

Traditionally the Pomeron has been modeled at weak coupling using per-

turbative QCD; in lowest order, a bare Pomeron was first identified by Low

and Nussinov as a two gluon exchange corresponding to a Regge cut in the

J-plane at j0 = 1. Going beyond the leading order, Balitsky, Fadin, Kuraev

and Lipatov (BFKL) summed generalized two gluon exchange diagrams to first

order in λ = g2Nc and all orders in (λ log s)n, giving rise to the so-called BFKL

Pomeron 1, which corresponds to a J-plane cut at j0 = 1 + log(2)λ/π2.

In a holographic approach, the weak coupling Pomeron is replaced by the

“Regge graviton” in AdS space, as formulated by Brower, Polchinski, Strassler

and Tan (BPST) [1] which has both hard components due to near conformality

in the UV and soft Regge behavior in the IR. Strong coupling corrections lower

the intercept from j = 2 to

j0 = 2 − 2/
√

λ . (1)

In Fig. 1a, we compare the BPST Pomeron intercept with the weak coupling

BFKL intercept for N = 4 YM as a function of ’t Hooft coupling λ. A typical

1See [8] and references cited therein.
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Figure 1: On the left, (a), intercept as a function of λ for the BPST Pomeron

(solid red) and for BFKL (dotted and dashed to first and second order in λ

respectively). On the right, (b), the conformal invariant ∆ − j curve which

controls both anomalous dimensions and the Pomeorn intercept.

phenomenological estimate for this parameter for QCD is about j0 ≃ 1.25, which

suggests that the physics of diffractive scattering is in the cross over region

between strong and weak coupling. A corresponding treatment for Odderons

has also been carried out [3].

2.1 BPST Pomeron Intercept in Conformal Limit:

Let us begin by first examining briefly the concept of a BPST Pomerorn in the

general context of conformal field theories (CFT). A CFT 4-point correlation

function A = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 can be analyzed in an operator product

expansion (OPE) by summing over allowed primary operators Ok,j , with in-

tegral spin j and dimensions ∆k(j), and their descendants. It can be shown

that the leading behavior in the Regge limit for the crossing even CFT corre-

lation functions, appropriate for Pomeron exchange, are controlled by a set of

dominant single-trace primary operators OG,j, one for each j and j even, with

conformal dimensions ∆G(j). (We will return to this treatment in Sec. 3.) It

is useful to express these scaling dimensions as

∆G(j) = τG + j + γG(j), (2)

where τG is the twist 2 and γG(j) are the anomalous dimensions. The lowest

j in this set has j = 2, which is the energy-momentum tensor. Due to energy-

momentum conservation, γG(2) vanishes and ∆G(4) = 4. For simplicity, we will

drop the subscript G in what follows.

Using AdS/CFT in strong coupling, it was shown in [1] that γ(j) is analytic

in j, so that one can expand ∆(j) about j = 2 as ∆(j) = 4 + α1(λ)(j − 2) +

2
τG = 2 is the minimal twist which dominates the amplitude.

3



O((j − 2)2), with the coefficient α1(λ) =
√

λ/4 + O(1) in the strong coupling

limit. Equivalently, one has an expansion

(∆(j) − 2)2 = 4 + 4α1(λ)S + O(S2) (3)

where we have simplified the expression by introducing S for j−2. This notation

is also useful for the discussion in Sec. 3 where we generalize the treatment to

higher order in 1/
√

λ and also to the case of Odderons.

It was stressed in [1] that the ∆ − j curve must be symmetric about ∆ = 2

due to conformal invariance, and, by inverting ∆(j), one has

j(∆) = j(2) + α1(λ)−1(∆ − 2)2 + O((∆ − 2)4) (4)

At large λ, the curve j(∆) takes on a minimum at ∆ = 2, as exhibited in

Fig. 1b. The Pomeron intercept is simply the minimum of j(∆) curve at ∆ = 2,

that is, j0 = j(2). In particular, it admits an expansion in 1/
√

λ, αP = j0 =

2 − 2
λ1/2 + a2

λ + a3

λ3/2 + a4

λ2 + · · · . The leading term corresponds to a graviton

exchange and the first order correction comes from the classical contribution

from string modes. We will return to higher order terms in Sec. 3.

2.2 Holographic Treatment of DIS and DVCS:

In the holographic approach, the impact parameter space (b⊥, z) is 3-dimensional,

where z ≥ 0 is the warped radial 5th dimension. Conformal dilatations, (z → cz

with c a constant), take one from the UV boundary at z = 0 deep into the IR

z = large. The near forward elastic amplitude A(s, t), where t = −q2
⊥, in a

transverse AdS3 representation, A(s, t) =
∫

d2b ei~q·~b
∫

dzdz′Ã(s, b, z, z′), can be

written in an eikonal form

Ã(s, b, z, z′) = 2isP13(z)P24(z
′)
{
1 − eiχ(s,b,z,z′)

}
. (5)

When expanded to first order in the eikonal function, it leads to the contribu-

tion from exchanging a single Pomeron, with χ(s, b, z, z′) =
g2
0

2s ( R2

zz′
)2K(s, b, z, z′),

where K(s, b, z, z′), is the BPST Pomeron kernel in a transverse AdS3 represen-

tation [1, 2]. In the conformal limit, a simple expression for K(s, b, z, z′) can

be found [2]. Confinement can next be introduced, e.g., via a hardwall model

z < zcut−off . The effect of saturation can next be included via the full trans-

verse AdS3 eikonal representation (5).

An important unifying feature for our treatment is factorization in the AdS

space. For hadron-hadron scattering, Pij(z) =
√
−g(z)(z/R)2φi(z)φj(z) in-

volves a product of two external normalizable wave functions for the projectile
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and the target respectively. For scattering involving external currents, we can

simply replace P13 by product of the appropriate unnormalized wave-functions.

We next make use of the fact that the DIS cross section can be related

to the imaginary part of the forward amplitude via the optical theorem, σ =

s−1ImA(s, t = 0). Therefore, the AdS/CFT amplitude gives expressions for all

structure functions Fi. We shall focus here on F2(x, Q2) = Q2

π2αem
(σT (γ∗p) +

σL(γ∗p)). In the conformal limit, P13 was calculated in [9] in terms of Bessel

functions, so that, to obtain F2, we simply replace in (5), P13(z) → P13(z, Q2) =
1
z (Qz)2(K2

0 (Qz)+K2
1(Qz)). For DVCS, states 1 and 3 are replaced by currents

for an off-shell and an on-shell photon respectively, with P13 given by product

of unnormalized wave-functions for appropriate R-currents. We can calculate

these by evaluating the R-current - graviton Witten diagram in AdS, and we

get P13(z) = −C π2

6 z3 K1(Qz). Here C is a normalization constant that can be

calculated in the strict conformal limit. The DVCS cross section and differential

cross section can then be calculated from A(s, t) via dσ
dt (x, Q2, t) = |A|2

16πs2 and

σ(x, Q2) = 1
16πs2

∫
dt |A|2.

2.3 Pomeron Kernel:

The leading order BFKL Pomeron has remarkable properties. It enters into

the first term in the large Nc expansion with zero beta function. Thus it is in

effect the weak coupling cylinder graph for the Pomeron for a large Nc confor-

mal theory, the same approximations used in the AdS/CFT approach albeit at

strong coupling. Remarkable BFKL integrability properties allows one to treat

the BFKL kernel as the solution to an SL(2, C) conformal spin chain. Going to

strong coupling, the two gluon exchange evolves into a closed string of infinitely

many tightly bound gluons, but the same underlying symmetry persists— re-

ferred to as Möbius invariance in string theory or the isometries of the transverse

AdS3 impact parameter geometry. The position of the j-plane cut moves from

j0 = 1 + log(2)λ/π2 up to j0 = 2 − 2/
√

λ.

The BPST Pomeron kernel in the J-plane, Gj(t, z, z′), obeys a Schrödinger

equation on AdS3 space, with j serving as eigenvalue for the Lorentz boost

operators M+−. In the conformal limit, Gj(t, z, z′) =
∫ ∞

0
dq2

2

J∆̃(j)(zq)J∆̃(j)(qz′)

q2−t ,

with ∆̃(j)2 = 2λ(j − j0). The full Pomeron kernel can then be obtained via an

inverse Mellin transform. In the mixed-representation, one has

K(s, b, z, z′) ∼ −
∫

dj

2πi
s̃j e−iπj + 1

sin πj

e(2−∆(j))η

sinh η
(6)

where cosh η is the chordal distance in AdS3. By integrating over~b, one obtains
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Figure 2: On the left, (a), Q2 dependence for “effective intercept”. On the right,

(b), fits by a single hardwall Pomeron vs hardwall eikonal.

for the imaginary part of the Pomeron kernel at t = 0

Im K(s, t = 0, z, z′) ∼ sj0√
πD log s

e−(log z − log z′)2/D log s, (7)

which exhibits diffusion in the “size” parameter, log z, for the exchanged closed

string. This is analogous to the BFKL kernel at weak coupling where diffu-

sion takes place in log(k⊥), the virtuality of the off shell gluon dipole. The

diffusion constant becomes D = 2/
√

g2Nc at strong coupling compared to

D = 7ζ(3)g2Nc/2π2 in weak coupling. The close analogy between the weak and

strong coupling Pomeron suggests the development of a hybrid phenomenology

leveraging plausible interpolations between the two extremes.

2.4 Fit to HERA Data

Both of these integrals, z and z′ in (5), remain sharply peaked, the first around

z ∼ 1/Q and the second around the inverse proton mass, z′ ≡ 1/Q′ ∼ 1/mp.

We approximate both of them by delta functions. Under such an “ultra-local”

approximation, all structure functions take on very simple form, e.g,

F2(x, Q2) =
g2
0

8π2λ

Q

Q′

e(j0 − 1) τ
√

πDτ
e−(logQ − log Q′)2/Dτ + Confining Images,

with diffusion time given more precisely as τ = log(s/QQ′
√

λ) = log(1/x) −
log(

√
λQ′/Q). Here the first term is conformal and, for the hardwall, the con-

fining effect can be expressed in terms of image charges [5]. It is important to

note that taking the s → ∞ limit, the single-Pomeron amplitude grows asymp-

totically as (1/x)j0 ∼ sj0 , thus violating the Froissart unitarity bound at very

high energies. The eikonal approximation in AdS space [2, 10] plays the role of

implementing “saturation” to restore unitary via multi-Pomeron shadowing.

We have shown various comparisons of our results [11] to the small-x DIS

data from the combined H1 and ZEUS experiments at HERA [4] in Fig. 2. Both
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Figure 3: Fits by the hard wall Pomeron to HERA data. The first 5 correspond

to the differential cross section, and the last one to the cross section.

the conformal, the hard-wall model as well as the eikonalized hard-wall model

can fit the data reasonably well. This can best be seen in Fig. 2a to the left

which exhibits the Q2 dependence of an effective Pomeron intercept. This can

be understood as a consequence of diffusion. However, it is important to observe

that the hard-wall model provides a much better fit than the conformal result

for Q2 less than 2 ∼ 3 GeV 2. The best fit to data is obtained using the hard-wall

eikonal model, with a χ2 = 1.04. This is clearly shown by Fig. 2b to the right,

where we present a comparison of the relative importance of confinement versus

eikonal at the current energies. We observe that the transition scale Q2
c(x) from

conformal to confinement increases with 1/x, and it comes before saturation

effect becomes important. For more details, see Ref. [11].

We now compare our model to the measurements at HERA. Related papers

using AdS/CFT correspondence applied to DVCS can be found in [6]. We

use conformal form for the photon wave functions and a delta function for

the proton. Note that Eq. (7) is for the conformal model, and the hard wall

expression would include another term with the contribution due to the presence

of the hard wall. We obtain a good agreement with experiment, with χ2 varying

from 0.51−1.33 depending on the particular data and model we are considering.

We find that confinement starts to play a role at small |t|, and the hardwall fits

the data better in this region. In Fig. 3 we present the plots for our fits. (See [6]

for details.)

3 Regge Limit in CFT, Anomalous Dimensions,

Conformal Pomeron and Odderon

Let us return to take a closer look at the Regge limit for a CFT. Consider a

connected 4-point correlation function for a scalar field φ(x) of dimension ∆0,

A = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉, which can be expressed as A = x−∆0
12 x−∆0

34 F (u, v).

Here x2
ij = (x1 − xj)

2, and (u, v) are two conformal invariant cross ratios,
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u = x2
12x

2
34/x2

14x
2
23, and v = x2

13x
2
24/x2

14x
2
34. It can formally be expanded in

an operator product expansion, which, in turn, can be expressed in a con-

formal partial-wave expansion, F (u, v) =
∑

k

∑
j,∆k,j

Ck,jGj(u, v; ∆k,j). Here

Gj(u, v; ∆k,j) are the “conformal blocks”, associated with a primary, Ok,j , which

includes contributions from its descendants. For each j, there can be many such

primaries, labelled by the index k. Of these, we will be interested in the family

of primaries, OG,j , for even j, which interpolate with the energy-momentum

tensor at j = 2. Since we are dealing with a CFT with AdS dual, this family of

primaries are that dual to string modes associated with the graviton, with spin

j = 2, 4, · · · , i.e., those given by Eq. (2). The challenge is to find the associated

anomalous dimensions in the strong coupling limit.

In a coordinate treatment, it can be shown that the Regge limit corresponds

to the simultaneous limits of u → 0 and v → 1, with ξ = (1 − v)/
√

u fixed. In

the Euclidean region, Gj(u, v; ∆k,j) ∼ u∆k,j/2 ∼ 0. However, the Regge limit of

interest is defined in the Minkowski region, where

Gj(u, v; ∆k,j) ∼ u(1−j)/2H(ξ; j, ∆k,j)

diverges as u → 0 The j-sum can be performed via a Sommerfeld-Watson re-

summation. After taking into account the analytic structure, e.g., Eq. (4), one

finds F (u, v) ∼ u(1−j0)/2H(ξ; j0, ∆k,j0). With
√

u ∼ 1/s and ξ identified with

the chordal distance, this precisely corresponds to that obtained earlier for the

conformal Pomeron kernel given in a mixed representation, e.g., Eqs. (6) and

(7) [1, 3, 12, 13].

Let us now return to the determination of the Pomeron intercept j0; as

discussed earlier, j0 is fixed by knowing ∆G,j, analytically continued to small j.

In a remarkable paper [14], Basso, taking advantage of many recent ingenious

calculations of anomalous dimensions for N = 4 YM based on integratibility,

has been able to generalize the work of [1] so that the coefficient α1(λ) in

Eq. (3), is known exactly, for all λ. Furthermore, coefficient for next few orders

in the (j−2)-expansion are also known through these studies. Taking advantage

of the supersymmetry, it is sufficient to work with the scalars and investigate

anomalous dimensions of the corresponding Konishi multiplets. These can be

symbolically represented by trDSZJ + mixing, where D is a covariant derivative

and Z is a complex scalar. (In [14], J is the twist. We shall use τ instead.)

For these operators, conformal dimensions admit a small S expansion, ∆ =

τ + α1(λ, τ)S + O(S2).

In making connection with our problem at hand, we need to identify ∆ above

with ∆−2, τ → 2, and S → j−2, leading to Eq. (3). Maintaining the symmetry
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in ∆ ↔ 4 − ∆, and keeping enough terms to evaluate up to O(λ5/2), we have

(∆ − 2)2 = τ2 +
(
2
√

λ − 1 +
τ2 − 1

4√
λ

+ · · ·
)
S +

(3

2
− b0√

λ
+

b1

λ
+ · · ·

)
S2

+ (− 3

8
√

λ
+ · · · )S3 + O(S4)

where the bi are unknown. After inverting, and evaluating the minimum of j(∆)

at ∆ = 2, one obtains [13, 15] (note: the b0 term is completely determined by

this procedure)

αP = j0 = 2 − 2

λ1/2
− 1

λ
+

1

4λ3/2
+

6ζ(3) + 2

λ2
+

−2b1 + 9ζ(3) + 245
64

λ5/2
+ · · · .

A similar analysis can also be applied for Odderons. Recall that, from

AdS/CFT, it has been shown that Odderons can be identified with modes

associated with the anti-symmetric Kalb-Ramond fields in AdS. We note, in

particular, the spin approaches j = 1 in the super-gravity limit. It follows that

a similar expansion in λ−1/2 can also be carried out, leading to an expansion

where αO = j−0 = 1 +
a−

1

λ1/2 +
a−

2

λ +
a−

3

λ3/2 +
a−

4

λ2 + · · · .. In [3], two Odderon solu-

tions were found. Solution-A has a−
1,A = −8. The second solution, solution-B,

surprisingly remains at 1 in the large λ limit, i.e., a−
1,B = 0. For solution-B, one

immediate question is whether this pattern will survive at higher order.

We have recently extended the analysis of [3] to higher order, leading to a

similar expansion as Eq. (3). For solution-A, we find

αO,A = j−0,A = 1− 8

λ1/2
− 4

λ
+

13

λ3/2
+

96ζ(3) + 41

λ2
+

−81
256 (45 + 32b1 − 144ζ(3))

λ5/2
+· · · .

Let us turn next to solution B. In order to match the vanishing first order

correction, we find that a−
i,B = 0 for all i = 1, 2, · · · recursively. This leads to a

surprising conclusion that

αO = 1

to all orders in 1/
√

λ in a strong coupling treatment. It is also interesting that

this finding is consistent with that reported from a weak-coupling analysis 3.

More detailed analysis will be presented in a forthcoming report 4.
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